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ABSTRACT

In this study, satellite passive microwave sensor observations from the Tropical Rainfall Measuring Mission

(TRMM) Microwave Imager (TMI) are utilized to make estimates of latent 1 eddy sensible heating rates (Q1 2

QR) where Q1 is the apparent heat source and QR is the radiative heating rate in regions of precipitation. The

TMI heating algorithm (herein called TRAIN) is calibrated or ‘‘trained’’ using relatively accurate estimates of

heating based on spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over

a one-month period. The heating estimation technique is based on a previously described Bayesian methodology,

but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo

tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that

leads to an approximate balance between estimated vertically integrated condensation and surface precipitation.

Estimates of Q1 2 QR from TMI compare favorably with the PR training estimates and show only modest

sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover,

the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent

of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is

applied. Comparisons of Q1 produced by combining TMI Q1 2 QR with independently derived estimates of

QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the

satellite estimates exhibit heating profile structures with sharper and more intense heating peaks than the

rawinsonde estimates.

1. Introduction

The latent heat released or consumed during phase

changes of water substance is a major component of the

atmospheric energy budget, and one that dominates

other diabatic processes in the deep tropics (see Newell

et al. 1969; Schaack et al. 1990). Latent heating is also

responsible for the creation of available potential en-

ergy, one mechanism by which convective clouds can

interact with the larger-scale atmospheric circulations of

their environment (Nitta 1970, 1972; Yanai et al. 2000),

and the atmospheric response to heating is sensitive to
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its vertical distribution (e.g., Hartmann et al. 1984; Lau

and Peng 1987; Puri 1987; Valdes and Hoskins 1989;

Mapes and Houze 1995; Schumacher et al. 2004). Con-

sidering either diagnostics of the atmospheric energy

budget or cloud–environment interactions, knowledge

of the four-dimensional distribution of latent heating on

a global basis is of value.

Given the interest in atmospheric latent heating dis-

tributions from these different perspectives, several

methods for estimating latent heating from satellite obser-

vations have been developed. Tao et al. (1990) and Smith

et al. (1994) used satellite estimates of precipitation ver-

tical structure to infer latent heating rates in discrete

atmospheric layers, assuming that the net flux of precip-

itation into or out of a given layer is balanced by micro-

physical processes under steady-state conditions. Tao

et al. (1993) later simplified their approach by treating

the entire atmospheric column as a single layer, scaling

representative convective and stratiform heating pro-

files from cloud-resolving model simulations by the net

convective and stratiform precipitation fluxes, respec-

tively, at the surface. Shige et al. (2004; hereafter SH04)

expanded on this technique, extracting precipitation

column depth as well as convective–stratiform propor-

tion information from spaceborne radar observations

to further categorize a given vertical profile and then

assigning consistent cloud-resolving-model-generated

heating profiles to each category of precipitation profile.

Shige et al. (2007) improved on their method by subdi-

viding the atmosphere (at the freezing level) in convec-

tive regions into two layers and applying a precipitation

flux scaling of cloud-model-generated profiles in each

layer. In an alternative approach, Satoh and Noda

(2001) applied a steady-state moisture budget to the

atmospheric column and adjusted parameterized pro-

files of vertical motion to yield profiles of net conden-

sation and latent heating consistent with satellite-observed

precipitation.

Although the methods of Tao et al. (1993) and Smith

et al. (1994) have been applied to precipitation estimates

from satellite passive microwave sensors, the afore-

mentioned studies have primarily emphasized methods

that utilize the detailed vertical precipitation structure

information available from spaceborne radar to esti-

mate latent heating. In a separate line of investigation,

Olson et al. (1999, 2006) and Grecu and Olson (2006,

hereafter GO06) developed methods that directly in-

terpreted satellite passive microwave signatures in terms

of heating vertical structure. The first two of these

studies utilized cloud-resolving model simulations to

synthesize microwave radiances; the model relation-

ships between radiances and heating profiles were then

employed in a Bayesian methodology for inferring

heating profiles from satellite microwave sensor obser-

vations. These attempts to ‘‘train’’ a passive microwave

heating algorithm using only cloud-resolving model

simulations resulted in high biases of estimated upper-

tropospheric precipitation and heating because of high

biases in the precipitation simulations and synthesized

microwave signatures (see Lang et al. 2007). In GO06,

the high biases in estimated precipitation and heat-

ing profiles were overcome using globally distributed

spaceborne radar profiles of precipitation–heating in-

stead of a limited number of cloud model simulations to

train the passive microwave algorithm. However, in

the GO06 study, the estimation of precipitation pro-

files was emphasized, and only limited comparative data

were used to evaluate the estimates of heating vertical

structure.

In the present study, the satellite passive microwave

remote sensing method for estimating vertical latent

heating profiles that was briefly introduced in GO06 is

revised and analyzed, with emphasis on the evaluation

of uncertainties in heating estimates. The estimation

method, identified here as TRAIN, relies on two algo-

rithms: the first utilizes cloud-resolving model simula-

tions to interpret features of the vertical profiles of

reflectivity measured by spaceborne radar to estimate

vertical heating profiles. An algorithm of this kind was

shown by SH04 and Shige et al. (2007) to produce

heating estimates with reasonable accuracy in synthetic

data tests and in comparisons to independent rawinsonde-

based estimates of heating. However, to overcome the

limited global sampling by spaceborne radars, heating

estimates from the spaceborne radar algorithm are used

to train a second algorithm that requires only satellite

passive microwave radiometer observations to estimate

heating.

Relative to GO06, the satellite microwave estimation

method is modified to improve the heating diagnosis and

clarify the analysis of the estimates: First, only space-

borne radar [Precipitation Radar (PR)] data from the

Tropical Rainfall Measuring Mission (TRMM) standard

algorithm are used for training, as opposed to the com-

bined radar–microwave algorithm training of GO06, in

an effort to make the training algorithm a more in-

dependent reference. In addition, although the passive

microwave heating algorithm is not solely dependent on

cloud-resolving model simulations for training, as in

implementations prior to GO06, these simulations still

have an impact through the PR training algorithm; ac-

cordingly, greater care has been taken to improve the

fidelity of the simulations and to study their impact on

heating estimates. To this end, the simulations are per-

formed at very high horizontal and vertical resolutions

to produce more physically consistent precipitation and
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heating structures, and the environmental forcing of the

simulations is varied to produce a diversity of structures.

Also, the simulated heating structures incorporated into

the PR training algorithm are adjusted to account for

differences between the model-simulated convective–

stratiform precipitation proportions and the PR-estimated

proportions. This adjustment ensures a near-balance

of vertically integrated condensation and surface pre-

cipitation on a global basis. Further, the impact of

precipitation depth biases due to the cloud-resolving

simulations is mitigated by an echo-top scaling of the

training profiles.

In section 2, the satellite heating algorithm is de-

scribed in detail. This section is followed by an evalua-

tion of the errors of heating estimates relative to the PR

training estimates in section 3 and an evaluation of er-

rors due to the choice of cloud-resolving model simu-

lations in section 4. In section 5, passive microwave

estimates of latent and eddy sensible heating are com-

bined with estimates of radiative heating and compared

to rawinsonde-based analyses of total diabatic heating

from two field campaigns. Finally, a summary and rec-

ommendations are offered in section 6.

2. Method

a. Overview

The heating algorithm has two components, which are

illustrated schematically in Fig. 1. A training database is

first created to establish the relationships between ver-

tical latent heating profiles and upwelling microwave

radiances, as they might be observed by a satellite pas-

sive microwave radiometer. This is accomplished by

assigning vertical latent heating profiles to vertical pre-

cipitation profiles retrieved from spaceborne radar ob-

servations. Look-up tables derived from cloud-resolving

model simulations are used to relate radar-derived

precipitation profile features to vertical latent heating

structures in the profile assignment procedure. The

profile assignment procedure is similar to that of SH04,

but in addition, echo-top information in stratiform pre-

cipitation regions is utilized.

To complete the training database, upwelling microwave

radiances consistent with the radar-derived precipitation–

latent heating profiles are either (a) calculated from the

radar-retrieved 3D precipitation field or (b) assigned, if

coincident satellite passive microwave observations are

available. In the present study, microwave radiances are

assigned, since the spaceborne radar data are derived

from the PR, and coincident upwelling microwave radi-

ances from the TRMM Microwave Imager (TMI) are

available within the 220-km-wide overlap swath. For

algorithm applications to other satellite passive radi-

ometers such as the Special Sensor Microwave Imager

or the Advanced Microwave Scanning Radiometer–

Earth Observing System, upwelling radiances would be

calculated because the channel frequencies and viewing

geometry of these instruments differ from those of the

TMI. In the present study, a general training database is

created by assigning upwelling TMI radiances to co-

incident PR-estimated precipitation and latent heating

profiles, utilizing all coincident radiance–precipitation-

heating profile pairs collected from one month of TRMM

observations.

Once the training database is created, it may be ap-

plied to any TMI observations for which the training

data are representative. Given a set of TMI radiance

observations at a particular location, a Bayesian method

is employed to composite precipitation or latent heating

profiles in the training database and thereby construct

profile estimates that are consistent with the TMI ob-

servations. The basic formulation of the Bayesian

method is described in GO06. In the following two

subsections, the creation of the training database and

radiometer latent heating algorithm are described in

greater detail.

b. Generation of training data

The use of high-resolution spaceborne radar–derived

precipitation profiles to train satellite microwave radi-

ometer algorithms has been exploited in other remote

sensing studies for improving estimates of precipitation

(e.g., Bauer et al. 2001; Shin and Kummerow 2003;

Kubota et al. 2007), but only in GO06 were these data-

bases used to estimate latent heating. The primary dif-

ference between the latent heating algorithm of the

current study and GO06 lies in the construction of the

training database, described here.

As mentioned previously, GO06 utilized combined

PR-TMI precipitation profile estimates as the founda-

tion of their training database. The combined PR-TMI

algorithm was described in Grecu et al. (2004), and it

was demonstrated in that study that the combined

PR-TMI estimates of precipitation were remarkably

consistent with TRMM PR 2A-25 version 5 algorithm

estimates [see Iguchi et al. (2000) for a description of

the PR 2A25 algorithm]. However, in order to make

clean intercomparisons of TMI-derived and PR-derived

precipitation–latent heating estimates in the present study,

PR-only (2A-25 version 6) estimates of precipitation

profiles are used as the foundation of the training data-

base. All 2A-25 profiles from July 2000, over ocean surfaces

where precipitation was detected, are used to populate

the training database. It was shown by GO06 that only

small differences in subsequent satellite radiometer
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estimates of precipitation are incurred by selecting al-

ternate monthly periods for training; that is, one month

of training data well represents the diversity atmo-

spheric profiles that the satellite radiometer may en-

counter in any particular time period.

As described in the introduction, a number of meth-

ods for assigning latent heating vertical profiles to pre-

cipitation vertical profiles from the PR have been

developed. The basic principle behind several of these

methods (Tao et al. 1990, 1993; Smith et al. 1994; Satoh

and Noda 2001; SH04; Shige et al. 2007) is that under

steady-state conditions, the net flux of precipitation out

of (into) a given atmospheric layer must be compensated

by a net source (sink) of precipitation particles within

the layer. The net flux of precipitation is determined

either from the precipitation fallout rate estimated using

the PR algorithm or from the estimated water content

and a determination of the precipitation fall speed and

wind vertical velocity. The net rates of condensation–

deposition (evaporation–sublimation) provide the sources

(sinks) of precipitation within the atmospheric layer,

and these precipitation phase changes are related to

latent heating through the specific latent heats of con-

densation or sublimation (i.e., Lv or Ls). Near the 08C

isotherm, either precipitation freezing or melting can

occur, with the associated release or consumption of

latent heat per unit mass given by Lf. Although the as-

sumed steady-state conditions are not expected at the

scales of the instantaneous footprint data to which the

heating algorithms are usually applied, it is understood

that the steady-state assumption may be appropriate

for larger space or space–time averages of the satellite

heating estimates. In Tao et al. (1993), SH04, and Shige

et al. (2007) specifically, cloud-resolving model simula-

tions are utilized to relate the unknown vertical struc-

ture of heating or cooling within an atmospheric layer to

FIG. 1. Flow diagram for the PR training algorithm and TMI latent heating algorithm.
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precipitation fluxes. In addition, instead of imposing

a strict balance between layer-integrated heating and

net vertical precipitation flux in each observation col-

umn, only a scaling of a composite model heating pro-

file by the precipitation flux is performed to allow for

the effects of horizontal advection between convective

and stratiform regions. These horizontal advection ef-

fects are represented, at least implicitly, by the cloud-

resolving model simulations.

In the present study, the application of the steady-

state precipitation principle follows the work of SH04,

but stratiform precipitation is treated in a different way.

First, the PR precipitation profile observations are sep-

arated into convective and stratiform categories, since

it is well established that the cloud processes and verti-

cal structures of latent heating in convective and strati-

form regions are characteristically different (see Houze

1989). Typically, in convective regions over the tropical

and subtropical oceans, latent heating profiles exhibit

a positive maximum in the lower-to-mid troposphere

because of condensation–deposition of water vapor in

moist updrafts. In stratiform regions, heating profiles

generally have a positive maximum in the upper tropo-

sphere and a negative minimum due to evaporation of

precipitation in the lower troposphere. In addition to the

convective and stratiform categories, PR precipitation

profiles are separated by the echo top of the pre-

cipitation column, defined as the greatest altitude at

which the PR-observed reflectivity exceeds the 17-dBZ

minimum detection threshold. The second categoriza-

tion is important because the profile of heating is lim-

ited, approximately, by the top of the precipitation

column.

Once a given PR precipitation profile is classified into

a convective–stratiform and echo-top category, a heat-

ing profile is assigned to it according to cloud-resolving

model simulations of precipitation–latent heating pro-

files with the same characteristics. The apparent heat

source (Yanai et al. 1973) is defined as

Q
1

5 p
›u

›t
1 V � $u 1 w

›u

›z

� �
, (1)

where p is the Exner function, defined as

p 5
p

1000 hPa

� �R/C
o

. (2)

Here, u is potential temperature, V is the horizontal

wind vector, w is the vertical wind velocity, p is pressure,

R is the dry air constant, cp is the specific heat of air at

constant pressure, and the overbars represent large-

scale horizontal averages. The right-hand side of (1)

therefore represents the large-scale average heating

rate, and it is commonly evaluated using arrays of ra-

winsondes with spacings of ;200 km (see Mapes et al.

2003). The apparent heat source can also be defined in

terms of sources within the averaging area:

Q
1

5
L

v

c
p

(c� e) 1
L

f

c
p

( f �m) 1
L

s

c
p

(d� s)

1 p �V9 � $u9� 1

r

›rw9u9

dz

� �
1 Q

R
, (3)

where the first three terms on the right-hand side are the

average latent heating due to clouds and precipitation,

the fourth and fifth terms (in the fourth set of paren-

theses) are the horizontal and vertical convergence of

eddy sensible heat flux, the last term is the radiative

heating rate (QR), and the primes indicate eddy per-

turbations with respect to the horizontal average.

In the present study, cloud-resolving model simula-

tions are used to evaluate the latent and eddy sensible

heat flux convergence terms of (3). Estimation of radi-

ative heating would require information regarding cloud

properties that is not obtainable from spaceborne radar

or passive microwave observations alone, and therefore

QR is not considered here. Strictly speaking, the eddy

heating terms are functions of the averaging scale, and in

the context of the current application the dimension of

the model domain (;500 km) is proposed. In the deep-

convective regimes of the tropics, the eddy sensible heat

flux terms are relatively small compared to the latent

heating terms.

Following SH04, three long-term model simulations

are performed to establish the relationships between

PR-retrieved precipitation properties and the vertical

latent 1 eddy heating profiles. The simulations are

performed using a 2D version of the Goddard Cumulus

Ensemble (GCE) model, described in Tao (2003) and

Tao et al. (2003a). Simulations in 2D allow for relatively

high horizontal resolution (250 m) runs on a large do-

main (512 km) for 30 days duration. It was shown by

Lang et al. (2007) that better diurnal convective growth

was achieved by decreasing the GCE model horizontal

grid spacing from 1000 m, as in SH04, to 250 m. It was

also argued by Bryan et al. (2003) that simulations with

resolutions of ;100 m enable the physical processes of

turbulence to occur, and these are essential for realistic

representations of convective processes. In the vertical,

a 41-level variable grid with higher resolution in the

boundary layer (about 80 m) and lower resolution in the

upper troposphere (about 1000 m) is utilized. The do-

main is periodic in the horizontal, which allows for long-

term integrations of the model (see Tao et al. 2003b). In

addition to predictions of the basic thermodynamic
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variables and winds, the GCE bulk microphysics pa-

rameterization yields prognostic water contents for five

hydrometeor classes, including nonprecipitating cloud

liquid, rain, nonprecipitating cloud ice, snow, and grau-

pel. Precipitation and latent 1 eddy heating profiles are

evaluated every hour of simulation time at each model

horizontal gridpoint.

The model is run for three 30-day periods, nudged by

the large-scale advective forcing of temperature, hu-

midity, and horizontal winds, using the method de-

scribed in Tao et al. (2003b). Advective forcings are

derived from rawinsonde array observations from the

South China Sea Monsoon Experiment (SCSMEX)

Northern Enhanced Sounding Array (NESA) over the

period 0000 UTC 18 May–0000 UTC 17 June 1998; the

Tropical Ocean Global Atmosphere Coupled Ocean–

Atmosphere Response Experiment (TOGA COARE)

Intensive Flux Array (IFA) over the period 0000 UTC

19 December 1992–0000 UTC 18 January 1993; and the

Kwajalein Experiment (KWAJEX) array over the pe-

riod 0600 UTC 6 August–0600 UTC 5 September 1999.

The SCSMEX and TOGA COARE observations were

analyzed by Johnson and Ciesielski (2002) and Lin and

Johnson (1996), respectively. The KWAJEX observa-

tions were subject to the constrained variational analysis

described in Zhang et al. (2001). Although fairly diverse

environmental forcing conditions are represented by the

three field campaign observing periods, very general

relationships between precipitation and latent 1 eddy

heating cannot be established from this limited sample.

However, for the purpose of testing the heating esti-

mation method in applications to TRMM observations

in the tropics and subtropics, these simulations are ad-

equate. A more comprehensive strategy for sampling

atmospheric environments is under development by the

authors and will appear in a future study.

With the exception of the first 36 h of each simulation,

which represents the model spin-up period, at each hour

of simulation time the instantaneous profiles of pre-

cipitation and latent 1 eddy heating are extracted from

the simulation at each model horizontal gridpoint. The

classification of each gridpoint as convective or strati-

form is performed using the methodology described by

Lang et al. (2003). The precipitation profiles at each

gridpoint are used to evaluate the corresponding un-

attenuated radar reflectivities in 250-m-thick bins along

each profile; the reflectivities are then averaged in the

horizontal to 4-km resolution to approximate the verti-

cal and horizontal resolution of the PR (0.25 and 4.3 km,

respectively). The model-simulated precipitation and

latent 1 eddy heating profiles are also averaged in the

horizontal to the same resolution. The averaged profiles

are categorized as convective (stratiform) if the con-

vective (stratiform) model rain rate averaged over 4 km

exceeds the average stratiform (convective) rain rate.

The echo top of the precipitation column is determined

by the altitude of the first average reflectivity bin

(starting from the top of the model domain) that exceeds

the 17-dBZ PR detection threshold. After the echo top

of the precipitation column is determined, the profile is

categorized by echo top in 2-km-deep bins.

Once all of the simulated hydrometeor profiles are

separated into convective–stratiform and echo-top cat-

egories, all of the latent 1 eddy heating profiles in each

category are averaged to produce lookup tables of the

type shown in Fig. 2. These tables are similar to Fig. 6

of SH04, but in their study nonconvective precipitation

was separated into ‘‘stratiform’’ and ‘‘anvil’’ categories,

where the anvil category represented all stratiform

precipitation for which the precipitation top height was

greater than the altitude of the melting level. Sub-

sequently, anvil heating profiles were indexed by the

precipitation rate at the melting level. Since consider-

able variation of echo-top heights occurs for both the

stratiform and anvil categories, these categories were

combined in the stratiform category of the present

study. Note also that although they are qualitatively

similar, the three model simulations produce different

distributions of precipitation types. For example, the

stratiform rain percentages are 34%, 41%, and 45% for

the SCSMEX, TOGA COARE, and KWAJEX simu-

lations, respectively. Generally, these percentages tend

to be lower than the mean stratiform percentages esti-

mated in the tropics and subtropics by the PR, which has

an impact on the design of the algorithm; see the next

subsection.

c. The PR training algorithm

Given an observed PR precipitation profile and its

corresponding convective–stratiform classification, echo

top, and precipitation profile, the cloud-model-based

heating lookup tables are used to assign a latent 1 eddy

heating profile as follows. If the profile is convective,

then the observed echo top is used to identify the mean

convective heating profile and surface rain rate from the

convective heating table. If horizontal transports of pre-

cipitating hydrometeors could be neglected, then under

steady-state conditions the surface precipitation 3 Lv

would equal the vertically integrated heating in the

profile. However, a significant percentage of condensate

formed in the convective region is typically advected to

stratiform areas, resulting in a surplus of heating relative

to surface rain rate 3 Lv. Conversely, there is generally

a deficit of heating in stratiform regions relative to rain

rate 3 Lv because of the influx of condensate from the

convective region. As an approximation, it is assumed
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here (as in SH04) that the convective and stratiform

heating profiles are still proportional to surface rain rate.

Therefore, if a PR observation is classified as convective,

then

Q
1
(z)�Q

R
(z)
��
conv�PR

5
hQ

1
(z)�Q

R
(z)
��
conv�model

i
hP

conv�model
i P

conv�PR
(4)

is an estimate of the convective heating profile corre-

sponding to the PR-estimated convective rain rate,

Pconv2PR; Q1(z) 2 QR(z)jconv2model is a convective la-

tent 1 eddy heating profile and Pconv2model is a convec-

tive rain rate, from the model simulations, and the

brackets h�i indicate an ensemble average over all con-

vective model profiles in the appropriate echo-top cat-

egory of the lookup table. Similarly, if a PR observation

is classified as stratiform,

Q
1
(z)�Q

R
(z)
��
strat�PR

5
hQ

1
(z)�Q

R
(z)
��
strat�model

i
hP

strat�model
i P

strat�PR
. (5)

In estimating space or space–time average heating

profiles, the estimated average heating profile would be

equal to an average of the PR footprint-scale estimates

given by (4) and (5). However, since the advection of

condensate from convective to stratiform regions in the

model simulations may be different from the advection

of condensate over a given area–period where (4) and

(5) are applied, the estimated average vertically in-

tegrated heating and the estimated average surface rain

rate 3 Lv over that area–period may not be equal. To

FIG. 2. Latent 1 eddy heating profile lookup tables derived from (top) SCSMEX and

(bottom) TOGA COARE simulations. Colors indicate the magnitudes of the mean heating

rates, divided by the mean surface rain rates, of model profiles binned by echo top, plotted on

the abscissa. (left) Convective and (right) stratiform heating.
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make a correction for this effect, the model heating pro-

files in (4) and (5) are scaled by constant factors to yield

Q
1
(z)�Q

R
(z)
��
conv�PR�adj

5 Q
1
(z)�Q

R
(z)
��
conv�PR

b

(6)

and

Q
1
(z)�Q

R
(z)
��
strat�PR�adj

5 Q
1
(z)�Q

R
(z)
��
strat�PR

g,

(7)

where

b 5
(1� f

strat�model
)

(1� f
strat�PR

)
, (8)

g 5
f

strat�model

f
strat�PR

, (9)

and

f
strat�model

5
P

strat�model

P
total�model

, (10)

f
strat�PR

5
P

strat�PR

P
total�PR

. (11)

Here, the subscript ‘‘adj’’ refers to the adjusted con-

vective and stratiform heating profiles, and ‘‘total’’ in-

dicates combined convective and stratiform rain. The

overbar indicates a space–time average, and in the

present context the model precipitation rates are aver-

aged over all of the model volumes in a given 30-day

simulation. The PR-estimated precipitation rates are

averaged over all TRMM PR profiles over ocean during

a one-month period. By adjusting the lookup table

profiles using factors (8) and (9), the estimated total

monthly vertically integrated latent heating from PR is

brought into close agreement with the total monthly

surface rain rate 3 Lv. The methodology based on Eqs.

(4)–(7) may be used to estimate either latent 1 eddy

sensible heating profiles or latent heating only profiles.

However, the focus in the study is mainly on latent 1

eddy sensible heating estimates because these represent

the shortest path toward Q1, and independent estimates

of Q1 are available for intercomparisons.

Using the 30-day SCSMEX simulation and four

months (April, July, and October 1998 and January

1999) of PR data as a reference, mean values of b and g

equal to 1.42 and 0.64, respectively, are obtained. (Note:

the specific choice of PR time period is not critical, since

the b and g values are similar for each month.) Similar

algorithm applications based on the TOGA COARE

and KWAJEX simulations yield values of b equal to

1.26 and 1.17 and values of g equal to 0.78 and 0.85,

respectively. After the b and g factors are applied, PR

estimates of vertically integrated latent heating and

surface rain rate 3 Lv based on the SCSMEX heating

lookup table, averaged over all ocean regions and the

four test months, are within 6%. If the heating estima-

tion method had been based on a large spectrum of

model simulations with different proportions of ad-

vected condensate, then the lookup table profiles might

better represent global conditions, and b and g could

approach unity. However, the model could have its own

inherent biases, and so some correction would likely be

required. The use of a larger spectrum of model simu-

lations is left for future studies.

d. Echo-top correction

As described by SH04, the distribution of simulated

radar echo tops from cloud-resolving model simulations

is different from the echo-top distributions derived from

PR observations. Based on the present study, it is also

noted that histograms of both convective and stratiform

model-simulated echo tops are shifted toward higher

echo tops relative to PR-observed echo-top histograms.

To help compensate for this shift, each PR-observed

echo top is first scaled by a factor of 1.0/0.9, and then the

scaled echo top is used to identify the 2-km echo-top bin

used to assign a heating profile from the cloud-resolving

model tables. The upscaling of the observed echo tops

essentially corrects for the high bias of the cloud-resolving

model echo tops in the tables and leads to the assign-

ment of a more realistic vertical heating profile to the PR

data. This scaling is justified because of a known bias in

the cloud-resolving model ice microphysics, which leads

to excessive graupel and snow production in GCE sim-

ulations (see Lang et al. 2007).

The model echo-top scaling helps to bring the model-

simulated echo-top histograms from SCSMEX (NESA

forcing; 18 May–17 June 1998) and the PR-observed

echo-top histograms derived from observations over the

same region and period of SCSMEX into better agree-

ment. In the future, as the microphysical parameteriza-

tions of cloud-resolving models such as GCE improve,

this echo-top correction should no longer be necessary.

e. Radiometer estimates of heating

Equations (6) and (7) are applied to all PR-retrieved

precipitation profiles over ocean during a one-month

period (July 2000) to create the foundation of the sat-

ellite radiometer algorithm training database. Since our

study is currently limited to satellite radiometer heating

estimates from TMI, the training database is completed
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FIG. 3. (top to bottom) Mean estimates of surface rainfall rate, stratiform rain proportion, and Q1 2 QR at 7 km and 2 km altitudes from

(a) the TMI algorithm, and (b) the PR training algorithm, for the period 1 March 1998–28 February 1999. Estimates from the TMI have

been subsetted to include only those coinciding with the PR swath.
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FIG. 3. (Continued)
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by storing, in the database, the observed TMI radiances

collocated with the PR-retrieved precipitation and

heating profiles. In an attempt to match the resolution

of the TMI observations, the PR precipitation/heating

profiles in 3 3 3 neighborhoods centered on each TMI

footprint are horizontally averaged and stored with the

collocated TMI radiances. The collocation procedure

establishes the relationships between TMI radiances

and latent 1 eddy heating profiles. To examine the

sensitivity of the TMI heating estimates to the cloud-

resolving model simulations, separate training databases

are created using the SCSMEX, TOGA COARE, and

KWAJEX heating lookup tables.

Once created, the training databases are incorporated

into the Bayesian estimation method of GO06 and ap-

plied to TMI radiance observations. Briefly, this algo-

rithm does an initial search of the database to find

vertical profiles that are consistent with climatological

sea surface temperature conditions in the region of al-

gorithm application. The subset of database profiles with

compatible sea surface temperatures is then examined

to see how the observed TMI radiances and database

radiances compare. (Note that in addition to the single-

footprint radiances at all TMI channel frequencies and

polarizations, the local variance of 85-GHz vertical po-

larization radiances in a 3 3 3 footprint neighborhood is

also used as a radiance predictor.) A Bayesian com-

posite of the radiatively consistent profiles in the data-

base subset is created to yield the final TMI precipitation

and heating profile estimates. A detailed description of

the Bayesian algorithm may be found in GO06.

3. Comparisons of radiometer and radar-based
estimates

Here, estimates of Q1 2 QR from the TMI algorithm

are compared to estimates from the PR training algo-

rithm. In this comparison, the TMI algorithm trained

using the SCSMEX simulation heating lookup tables is

utilized. The purpose of this test is to evaluate the con-

sistency of TMI precipitation and heating estimates and

the PR training data. Inconsistencies between the two

sets of estimates would indicate a deficiency of relevant

information on precipitation–heating in the TMI ob-

servations and/or a lack of relevant radiance predictors

derived from the TMI observations.

Shown in Figs. 3a and 3b are the mean surface rain

rates, stratiform rain fractions, and Q1 2 QR at 7- and

2-km altitudes for the period March 1998–February 1999,

based on the TMI algorithm and the PR training algo-

rithm, respectively. Note that although the TMI and PR

mean rain rate distributions are similar, the distributions

of stratiform rain fraction show some significant differ-

ences. In particular, the range of stratiform fractions

from TMI is less than that of the PR, and the zonal

gradient of PR stratiform fractions across the tropical

Pacific Ocean is not evident in the TMI estimates. Re-

garding Q1 2 QR, the distributions of upper-tropospheric

heating from TMI and PR are quite similar. On the other

hand, greater convective precipitation percentages from

TMI, particularly in the eastern tropical Pacific, are

associated with greater lower-tropospheric heating from

the TMI algorithm. The TMI convective bias also man-

ifests itself in elevated lower-tropospheric heating in

the South Pacific convergence zone and over the central

Indian Ocean.

The regional variation of TMI Q1 2 QR estimates and

the differences with respect to the PR training algorithm

are further illustrated in Fig. 4. To construct this figure,

six test regions, defined in Table 1, are used to represent

characteristically different latent heating regimes for

which the heating vertical structure or its variability are

generally different. Monthly-mean TMI and PR esti-

mates of Q1 2 QR profiles in each test region, computed

for all 12 months during the March 1998–February 1999

period, provide the basis for the statistics shown in Fig. 4.

The bold solid curves are the 12-month mean profiles;

the thin solid curves are the standard deviations of

monthly values over the 12-month period. The dashed

and dashed–dotted curves represent the biases and error

standard deviations, respectively, of the TMI Q1 2 QR

monthly estimates relative to the PR monthly estimates.

First, note from Fig. 4 that the TMI algorithm appears

to capture regional variations of latent heating vertical

structure. So, for example, the estimated shallow con-

vective heating associated with trade wind cumulus and

precipitating congestus over the north central Pacific

(NCPAC) is in marked contrast to the deep heating

structures of the intertropical convergence zone re-

gimes, which are dominated by organized convective

systems. The variation of estimated heating profiles

tends to be greatest in the upper troposphere, at least in

the deep convective regimes near the equator. The bias

of TMI estimates relative to the PR in the upper tro-

posphere is generally small; however, in the lower tro-

posphere, the TMI estimates show a positive bias of

varying magnitude. As noted previously, this positive

bias is most pronounced in the eastern Pacific, with

a maximum magnitude of 1.9 K day21, and therefore it

has a significant impact on the vertical heating distri-

bution. TMI error standard deviations relative to PR are

also greatest in the lower troposphere, and the magni-

tudes of these errors are of the same order as the month-

to-month variation of heating.

The vertical distributions of biases and error standard

deviations suggest that it is difficult for the current TMI
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algorithm to accurately quantify Q1 2 QR in the lower

troposphere, or at least it is difficult for the algorithm to

reproduce the lower-tropospheric heating variations

derived from the PR observations. An examination of

instantaneous, footprint-scale estimates of heating from

the TMI and PR indicate a lack of sensitivity of the TMI

predictors (both radiances and 85-GHz radiance vari-

ances) to variations of convective/stratiform proportion,

particularly in regimes such as the eastern tropical Pa-

cific. In the eastern tropical Pacific, specifically, Shige

et al. (2008) present evidence that precipitation systems

have a tendency to be shallower, with weaker updrafts

FIG. 4. Profiles of the mean, standard deviation, bias, and error standard deviation of TMI

monthly-mean estimates of Q1 2 QR for the six regions defined in Table 1 over the period 1 Mar

1998–28 Feb 1999. Biases and error standard deviations are based on the differences of esti-

mates from the TMI algorithm and the PR training algorithm. Estimates from the TMI have

been subsetted to include only those coinciding with the PR swath.
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and less production of ice-phase precipitation. For pre-

cipitation systems of this type, the heating algorithm’s

convective–stratiform separation must rely on lower-

frequency microwave emission signatures, which are less

descriptive of convective–stratiform conditions in weakly

organized systems (see Hong et al. 1999). A partial cor-

rection of the lower-tropospheric bias using a maximum

radiance difference predictor is examined in section 6;

however, a full correction will likely require the con-

struction of more specific algorithm training databases

that target regional climatic conditions.

Finally, it should be noted that although the focus here

has been on the relatively large positive heating bias in

the lower troposphere of the tropical Eastern Pacific

Ocean (TEPAC), there are also negative biases in other

locations that are not illustrated by the six test regions.

The Bayesian formulation of the TMI algorithm is

designed to produce global-mean heating estimates that

are unbiased (relative to PR), which leads to offsetting

regional biases.

4. Sensitivity to the cloud-resolving model tables

Here, the objective is to determine how the specific

choice of training data affects regional estimates of

heating at monthly scale. The selected regions are the six

regions previously described in section 3; see Table 1. As

in the last section, the heating algorithm trained using

the SCSMEX simulation is first applied to TMI data

from each of the 12 months from March 1998 through

February 1999. Monthly, regional-mean Q1 2 QR is cal-

culated for each of the six regions in the table. Next,

the TMI algorithm trained using the TOGA COARE

and KWAJEX simulations is alternately applied to the

12 months of regional data, and monthly, regional-mean

Q1 2 QR is calculated using these two variations of the

algorithm. For each month and region, a reference Q1 2

QR is then computed as the arithmetic mean of the

SCSMEX, TOGA COARE, and KWAJEX estimates,

following the work of Smith et al. (2006). The biases

and error standard deviations of the SCSMEX monthly,

regional-mean estimates are then evaluated relative to

the reference mean estimates. Since the reference esti-

mates are based on only three different lookup tables,

the computed biases and error standard deviations are

only intended to provide a rough measure of the magni-

tudes of potential errors that might be incurred by using

only a single lookup table to train the TMI algorithm.

Shown in Fig. 5 are the 12-month mean and stan-

dard deviation profiles of the monthly, regional-mean

SCSMEX estimates, as well as the bias and error stan-

dard deviation profiles of the SCSMEX-based estimates

relative to the reference estimates. In the mean, the

SCSMEX-based estimates deviate from the reference by

at most 0.68K day21 at an altitude near 6 km. Error

standard deviations of the SCSMEX-based estimates, on

the order of 0.58K day21 or less, are relatively small. It

might be concluded that as long as the simulations uti-

lized to generate a given lookup table are representative

of the region where the algorithm is applied, then the

heating estimates will not be too sensitive to the details

of the table. However, in light of the regionally depen-

dent heating biases noted in section 3, regionally depen-

dent or regime-dependent training of the TMI algorithm

should help to reduce heating biases, and lookup tables

consistent with the regions or regimes selected for train-

ing should be developed.

5. Evaluation of radiometer estimates versus field
observations

In this section, satellite estimates of surface rain rate,

Q1 2 QR, and Q1 are compared to rawinsonde-based

estimates of surface rain rate and Q1. The satellite esti-

mates of surface rain rate and Q1 2 QR are derived from

the TMI algorithm trained using the SCSMEX cloud

model lookup tables, as described previously. Satellite

estimates of Q1 are derived by combining the TMI Q1 2

QR with estimates of QR from the Hydrologic Cycle and

Earth’s Radiation Budget (HERB) algorithm originally

described in L’Ecuyer and Stephens (2003, 2007). Briefly,

HERB synthesizes ice cloud microphysical property

information from VIRS; liquid cloud properties, pre-

cipitation profiles, SST, and water vapor retrievals from

the TRMM TMI; and vertical profiles of temperature and

humidity from the European Center for Medium-Range

Weather Forecasts (ECMWF) reanalyses to characterize

TABLE 1. Regions used in the error analysis of TMI Q1 2 QR estimates.

Region Latitude range Longitude range

Northwest Pacific Ocean (NWPAC) 208–308N 1308–1608E

North central Pacific Ocean (NCPAC) 158–258N 1808–1508W

Tropical western Pacific Ocean (TWPAC) 08–108N 1308–1608E

Tropical eastern Pacific Ocean (TEPAC) 08–108N 1308–1008W

Tropical central Indian Ocean (TCIO) 108S–08 608–908E

Tropical central Atlantic Ocean (TCATL) 08–108N 458–158W
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the three-dimensional structure of clouds and pre-

cipitation in the atmosphere. These provide input to

a broadband radiative transfer model that simulates

vertical profiles of upwelling and downwelling longwave

and shortwave radiative fluxes and their convergence–

divergence, defining the vertical profile of atmospheric

QR. A comprehensive description of the latest version of

the HERB algorithm and its uncertainty characteristics

can be found in L’Ecuyer and McGarragh (2009).

Independent estimates of surface rain rate and Q1 are

derived from enhanced sounding network and surface

data that were collected during field campaign inten-

sive observing periods. Data collected from the North-

ern Enhanced Sounding Array during the intensive

FIG. 5. As in Fig. 4, but the biases and error standard deviations are estimated potential errors

due to the choice of heating lookup table. The biases and error standard deviations are based on

the differences between the TMI algorithm (using the SCSMEX heating lookup table) and an

average of TMI algorithm estimates derived using the SCSMEX, TOGA COARE, and

KWAJEX heating lookup tables.
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observing period of SCSMEX (5 May–20 June 1998)

were analyzed by Johnson and Ciesielski (2002). The

sounding array data were augmented with large-scale

analyses of pressure, temperature, humidity, and winds

to estimate the mean vertical profiles of Q1 and Q2 over

NESA, where Q2 is the apparent moisture sink (Yanai

et al. 1973). By vertically integrating Q2 to obtain the net

atmospheric sink of humidity and then adding to this

estimates of surface evaporation from a combination of

ship measurements and analyzed fluxes, Johnson and

Ciesielski (2002) also estimated surface rain rate as

a residual of the moisture budget. For the purpose of the

intercomparisons in the present study, a subset of the

intensive observing period (15 May–20 June 1998) was

selected because of the increased potential for biases in

the analyzed winds during the monsoon pre-onset pe-

riod (prior to 15 May, approximately; see Johnson and

Ciesielski 2002).

More recently, estimates of Q1 and Q2 were derived

from rawinsonde network data collected during the

Mirai Indian Ocean cruise for the Study of the Madden–

Julian Oscillation Convection Onset (MISMO; October–

December 2006). Surface rain rates were estimated as

a residual of the moisture budget in a manner similar to

Johnson and Ciesielski (2002), using additional ship-

board flux measurements. MISMO estimates of surface

rain rate and Q1 were provided by Dr. Masaki Katsumata

of the Japanese Agency for Marine–Earth Science and

Technology (JAMSTEC). During the period 31 October–

26 November 2006, the MISMO rawinsonde network was

fully operational, and so data from that period were se-

lected for the purpose of intercomparisons in the pres-

ent study. A description of the synoptic-scale processes

over the MISMO network during this period is given in

Katsumata et al. (2009).

Time series of surface rain rate, TMI Q1 2 QR,

combined TMI–VIRS Q1, and rawinsonde Q1 over the

SCSMEX NESA are presented in Fig. 6a. A 3-day run-

ning mean filter is applied to all time series to reduce

the effects of random sampling errors; see Mapes et al.

(2003) for a discussion of the impact of temporal aver-

aging on the errors of rawinsonde-based heating esti-

mates. Note that there is a fairly good correspondence

between TMI and rawinsonde-derived estimates of sur-

face rain rate, in spite of the very different methods

employed to make these estimates. Nevertheless, there

are some significant differences between the time series

prior to 15 May, near 25 May, and after 7 June 1998. By

subsampling the rawinsonde time series within 1.5 h of

the TMI overpass times (not shown), it was determined

that the differences prior to 15 May and near 25 May are

likely due to insufficient temporal sampling by the TMI

(;1.4 day21) relative to that of the rawinsonde array

(2–4 day21). The differences after 7 June are not af-

fected greatly by sampling, and the lighter precipitation

during that period may be difficult for TMI to detect. In

spite of the sampling differences, the mean rain rates

from the TMI (10.3 mm day21) and the rawinsonde

analyses (9.4 mm day21) over the entire period are

close in magnitude.

When the TMI–VIRS estimates of QR are added to

the TMI estimates of Q1 2 QR, the resulting heating

estimate is a close approximation to Q1. Only eddy

sensible heat flux contributions outside regions of pre-

cipitation are not included in the TMI–VIRS Q1 esti-

mate, and these eddy contributions primarily impact the

heating of the boundary layer (see Newell et al. 1969;

Schaack et al. 1990). Aside from the periods of under-

sampling by TMI, the Q1 time series from TMI–VIRS

and the rawinsonde analyses are qualitatively similar.

The main notable differences are the peak magnitudes

of heating, which are higher in the TMI–VIRS series.

The mean heating profiles for the entire period, nor-

malized by the mean surface rain rates, are shown in

Fig. 6b. The higher peak magnitude of Q1 from the

TMI–VIRS is evident from the figure, and the impact of

radiative cooling is nearly uniform in the vertical below

11-km altitude. Although the vertical gradient of TMI–

VIRS heating with altitude is similar to that of the ra-

winsonde analyses below the level of peak heating

(about 7.5 km), there is a sharper falloff of TMI–VIRS

heating with altitude above that level. The TMI esti-

mates of rainfall show a deficiency of rain relative to the

rawinsonde Q2 budget analyses after 11 June, which

might account for the deficiency of Q1 above 7.5 km;

however, radiative cooling is particularly strong near

!
FIG. 6. (a) (top) Time series of surface rain rates from the TMI algorithm and the

rawinsonde moisture budget, (second row) TMI estimates of Q1 2 QR, (third row)

TMI–VIRS combined estimates of Q1, and (bottom) rawinsonde analyses of Q1 for

the period 15 May–20 Jun 1998, over the SCSMEX NESA. (b) Rain rate nor-

malized mean profiles of TMI-estimated Q1 2 QR, TMI–VIRS combined estimates

of Q1, and rawinsonde analysis estimates of Q1 for the period 15 May–20 Jun 1998

over the SCSMEX NESA.
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10-km altitude, and so the ingredients of both the Q1 2

QR and QR satellite estimates should be examined for

potential biases. This work is left for a future study.

Nevertheless, the addition of TMI–VIRS radiative cool-

ing profiles to the TMI Q1 2 QR profiles yields estimates

of Q1 that are a much better approximation to the ra-

winsonde estimates of Q1 than if they were omitted.

TMI sampling of the MISMO array (1.2 day21) is less

than that of the NESA array, and the correspondence

between the TMI and rawinsonde estimates of surface

rain rate is weaker (see Fig. 7a). Subsampling of the

MISMO rawinsonde time series near the TMI overpass

times (not shown) does not necessarily result in a better

correspondence with the TMI time series. The bias of

the TMI Q1 estimates in the time series of Fig. 7a clearly

follows the bias of the TMI rain estimates. The total

bias of the TMI rain rates (12.4 mm day21) relative to

the rawinsonde rain estimates (9.5 mm day21) over the

entire observation period is significant. After normaliza-

tion by rain rate, the mean TMI–VIRS and rawinsonde

Q1 heating profiles are similar (see Fig. 7b). The TMI–

VIRS mean Q1 profile exhibits a slightly stronger peak

heating near 7.5 km and weaker heating at higher and

lower altitudes relative to the rawinsonde mean Q1

profile.

6. Summary and recommendations

In this study, satellite passive microwave sensor ob-

servations from the TMI are utilized to make estimates

of latent 1 eddy sensible heating rates (Q1 2 QR). The

TMI heating algorithm, TRAIN, is calibrated using

relatively accurate PR-based estimates of heating, which

are collocated with the TMI observations over a one-

month period to create a training dataset. The TMI

heating estimation technique is based on a Bayesian

methodology originally described in GO06, but with

noted improvements.

Estimates of Q1 2 QR from TMI compare favorably

with the PR training estimates and show only modest

sensitivity to the cloud-resolving model simulations of

heating used to construct the training data. Moreover,

the net condensation in the corresponding annual mean

satellite latent heating profile is within a few percent of

the annual mean surface precipitation rate over the

tropical and subtropical oceans where the algorithm is

applied. Comparisons of Q1 produced by combining

TMI Q1 2 QR with estimates of QR from L’Ecuyer and

McGarragh (2009) show reasonable agreement with

rawinsonde-based analyses of Q1 from two field cam-

paigns, although the satellite estimates exhibit heating

profile structure with sharper and more intense heating

peaks than the rawinsonde estimates.

Although the emphasis in this study has been on the

characterization of errors in microwave radiometer heat-

ing estimates, more work is required (a) to reduce biases

in regional heating estimates, most notably (but not ex-

clusively) in the eastern Pacific where estimated lower-

tropospheric heating is significantly greater than the PR

training estimates, and (b) to produce a useful model of

the random errors in heating estimates that covers the

range of space–time scales considered in weather and

climate applications. Regarding (a), regional or climate-

regime dependent training of the heating method may be

required, since the current method is only designed to

minimize the heating bias on a global basis. Such regional

training has been applied to microwave precipitation

estimation by Shin and Kummerow (2003) with some

success. Improvement of lower-tropospheric heating es-

timates are of particular interest because the quantifica-

tion of heating from shallow modes of convection may be

important for understanding the impact of these modes on

large-scale atmospheric dynamics (see Wu 2003; Zhang

et al. 2008). A preliminary analysis using the TMI esti-

mates of heating indicates a 71% contribution of shallow

convection (‘‘precipitating’’ congestus, primarily) to total

convective heating at 2-km altitude over the tropical and

subtropical oceans. In future work, the differences be-

tween TMI and PR estimates of shallow convective

heating will be examined further. With respect to (b), an

error model for TMI precipitation estimates was de-

veloped by Olson et al. (2006) to span scales from in-

stantaneous microwave footprints to seasonal averages at

2.58 resolution. The form of such an error model should

also be applicable to estimates of Q1 2 QR, but first the

space–time correlation of random heating errors must be

estimated to produce a credible model.

Another strategy to reduce heating bias and random

error is to introduce additional radiance predictors into

the estimation method. In the current method, only the

radiances at each TMI channel frequency and the local

variance of 85-GHz vertical polarization radiances in a

3 3 3 footprint neighborhood are utilized to estimate

heating. In a preliminary test, these radiance predictors

are augmented by the 19-GHz horizontal polarization

‘‘maximum difference’’ as an additional predictor. The

radiance maximum difference is defined here as the

maximum difference between the radiance of a given

central footprint and the radiances of all neighboring

footprints in a small grid surrounding the central foot-

print (see, e.g., Hong et al. 1999). In the present imple-

mentation, the grid of footprints includes all footprints

within one scan line and three scan positions of the

central footprint, forming an approximately square re-

gion 28 km on a side. The 19-GHz maximum difference

radiance predictor identifies local maxima of microwave
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FIG. 7. (a),(b) As in Figs. 6a,b, respectively, but for the period 31 Oct–26 Nov

2006 over the MISMO sounding array.
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rain emission that may be associated with convective

precipitation. What prompted the choice of this addi-

tional predictor is the misidentification by the current

TMI algorithm of shallow, uniform rain fields as par-

tially convective, and this leads to greater estimated

convective heating than that determined from the PR.

When the additional predictor is included in the esti-

mation method and applied to TMI data from the March

1998–February 1999 period, the stratiform precipitation

fraction in the TEPAC region increases only 2%, but the

high bias in lower-tropospheric heating is reduced by

18% at 3-km altitude and 28% at 4-km altitude. The

TEPAC mean Q1 2 QR profiles with and without the

new radiance predictor are shown in Fig. 8. Tests such as

this one illustrate the potential benefits of exploiting

new radiance information in radiometer-based heating

estimation methods.

In a recent study (Takayabu et al. 2009), the vertical

structure of heating was shown to vary systematically

with sea surface temperature and large-scale subsidence.

From this perspective, it is worthwhile to consider the

possibility of using additional environmental data as

predictors of heating. Formally, sea surface temperature

and large-scale vertical velocity can be readily intro-

duced as additional predictors in the current estimation

method. However, if the vertical motion is derived from

standard atmospheric analyses, algorithm estimates of

Q1 2 QR would become model dependent to some ex-

tent. From this perspective, it is worth first studying

whether there is any variable exclusively derivable from

satellite observations that could act as a proxy for large-

scale vertical velocity.

It should be emphasized that the microwave radiome-

ter estimates of Q1 2 QR in this study include eddy sen-

sible heat flux contributions, but only where the algorithm

is applied (i.e., in regions of significant precipitation).

Outside regions of precipitation, the contributions of

sensible heat fluxes to atmospheric heating, particularly

in the boundary layer, are significant. Therefore, for

global energy budget applications, an effort to estimate

boundary layer heating using satellite observations, in

conjunction with model-based analyses, should be un-

dertaken. The estimation of heating profiles over land,

although much more difficult from passive microwave

radiometry due to the reduced precipitation signal, must

also be considered if the atmospheric energy budget is to

be ‘‘closed.’’ Because land regions tend to be rich in data

relative to ocean regions, large-scale analyses of pressure,

temperature, humidity, and winds could be adjusted using

satellite passive microwave and visible–infrared estimates

of water and energy fluxes to provide improved estimates

of diabatic heating (see Xie et al. 2004). The estimation of

boundary layer heating and the extension of the heating

estimation method to land regions will be the subjects of

future studies by the authors.
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