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ABSTRACT

Herein the authors introduce the Snowflake Video Imager (SVI), which is a new instrument for charac-

terizing frozen precipitation. An SVI utilizes a video camera with sufficient frame rate, pixels, and shutter

speed to record thousands of snowflake images. The camera housing and lighting produce little airflow

distortion, so SVI data are quite representative of natural conditions, which is important for volumetric data

products such as snowflake size distributions. Long-duration, unattended operation of an SVI is feasible

because datalogging software provides data compression and the hardware can operate for months in harsh

winter conditions. Details of SVI hardware and field operation are given. Snowflake size distributions (SSDs)

from a storm near Boulder, Colorado, are computed. An SVI is an imaging system, so SVI data can be

utilized to compute diverse data products for various applications. In this paper, the authors present visu-

alizations of frozen particles (i.e., snowflake aggregates as well as individual crystals), which provide insight

into the weather conditions such as temperature, humidity, and winds.

1. Introduction

The Snowflake Video Imager (SVI) is a new instru-

ment for characterizing frozen precipitation. We were

motivated to develop this system by the need to quan-

tify falling frozen precipitation over large geographic

regions because of the importance of snowfall to

drinking water supplies, agricultural production, floods,

and source material for glaciers. To address these topics,

the National Aeronautics and Space Administration’s

(NASA’s) Global Precipitation Measurement (GPM)

Mission plans to expand its satellite remote sensing

capability to cover high-latitude regions as well as

tropical regions. Many factors contribute to snowflake

geometry, which is important for both active and pas-

sive retrievals (i.e., Bringi and Chandrasekar 2001;

Matrosov et al. 1995; Meirold-Mautner et al. 2007; Liu

2004). Knowledge of snowflake classification, as well as

particle distribution characteristics, ought to reduce

uncertainty in remote sensing inversion algorithms. To

develop reliable inversion algorithms, snowflake char-

acteristics need to be documented at many diverse lo-

cations over extended periods of time to develop an

understanding of the variability of snowflake charac-

teristics for a given climatological regime.

The SVI is a new automated sampling system that can

be deployed to obtain such data. The following sections

contain descriptions of the SVI field instrument, of the

SVI data processing algorithms, and of SVI data prod-

ucts. The last section summarizes the main features of

an SVI.

2. SVI imaging system

a. Field unit

The field unit is a video system inside heated housing,

plus a halogen lamp that is located 3 m from the camera.

The video system is a camera and a lens. The camera is a

Supercircuits PC28C monochrome C-mount camera

* Current affiliation: Department of Atmospheric Science,

Colorado State University, Fort Collins, Colorado.
1Current affiliation: National Center for Atmospheric Re-

search, Boulder, Colorado.

Corresponding author address: Andrew J. Newman, Depart-

ment of Atmospheric Science, Colorado State University, Fort

Collins, CO 80523.

E-mail: anewman@atmos.colostate.edu

FEBRUARY 2009 N E W M A N E T A L . 167

DOI: 10.1175/2008JTECHA1148.1

� 2009 American Meteorological Society



with a charge-coupled device (CCD) image sensor. The

sensor has 640 pixels by 480 pixels, however, we operate

it in 640 3 240 noninterlaced mode so that the frame

rate is 60 frames per second. A CCD camera was chosen

rather than a line scan camera so that images are

obtained almost instantaneously and thus no correction

is needed for particle movement. The exposure time is

1/100 000 s so blurring due to particle motion is insig-

nificant. A 100–300-mm lens is attached to the camera.

During calibration, the video system is adjusted so that

the focal plane is 2 m from the end of the lens and the

field of view (FOV) is 32 mm by 24 mm, hence the

nominal pixel size of an image is 0.05 mm by 0.1 mm.

The calibration steps are to (i) set the f-stop to 8, (ii)

place a ruler 2 m from the end of the lens, and (iii) adjust

the zoom and focus so that the ruler is in sharp focus

with the desired FOV.

Figure 1 shows an example of a calibration image.

The goal is to have a sharp image with32 mm uniformly

spanning the 640 horizontal pixels of the image. This

image shows that the overall length is within ;0.5 mm

of the desired length. The arrows were generated by

software and accounts for the 0- and 32-mm locations on

the horizontal axis, as well as the slight tilt of the ruler

relative to the major axis of the image. There is ade-

quate correspondence between all the arrows and the

ruler ticks, and similar results are obtained for vertical

scaling. For the calibration configuration, the bright

light source produces shadows of the ruler markings on

the wall behind the ruler. The calibration method can be

refined by placing a grid in the FOV to create a lookup

table that can be used (in software) to correct for errors.

Furthermore, distortions can be minimized by using a

telecentric lens. For this study, this economical lens and

simple calibration procedure produce images and re-

sults suitable for the intended applications.

The light source is a halogen flood lamp with a 300-W

bulb, which is located approximately 3 m away from the

end of the lens. The frosted window on the flood lamp is

50 cm 3 80 cm and it diffuses the light to help provide a

uniform background.

b. Datalogger

The datalogger uses hardware and software to record

images from the field unit. Analog video images (RS170

format) from the camera are routed to the datalogger by

a coax cable. The datalogger is a personal computer

(PC) with a Windows-based operating system and a

National Instruments 1409 video acquisition card, which

converts the incoming video stream to digital format.

The PC acquires images at a maximum frequency of 60

Hz, with typical operational frequencies of 55–58 Hz.

The data rate is too great to effectively store raw images

for an entire winter, so we developed a data compres-

sion algorithm using LabVIEW. Our acquisition pro-

gram has several steps. First it adjusts the acquisition

card setup so that it utilizes its full 8-bit dynamic range

(i.e., the maximum brightness in an 8-bit image of the

lamp is nearly 255.) In the absence of particles, the raw

images are bright because the FOV only spans the

halogen lamp. Yet due to the bulb and reflector design,

there is about a factor of 2 in the range of pixel intensity.

A more uniform light source could be used; however

that would increase costs. To minimize costs, we use

software rather than hardware to obtain more uniform

background brightness. We wrote an automatic gain

control (AGC) subroutine that minimizes the bright-

ness variability. The AGC subroutine produces images

of the lamp with brightness levels within a 5% range. To

do this, the AGC uses pixel brightness from an average

image (from 128 images) to adjust each pixel in subse-

quent images. When an object is in the measurement

volume, it produces dark pixels in the images. The

number of snowflake particle pixels is a small fraction of

the total number of pixels. Thus we can reduce the data

storage significantly by compressing the data. For each

FIG. 1. The SVI calibration procedure uses a ruler in the focal plane and adjustment of the

lens. The SVI calibration is straightforward and the images are acceptable for the intended

applications.
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dark pixel, the compression subroutine records the (i)

time, (ii) brightness level, and (iii) the pixel location.

Although only a small portion of the total data stream is

recorded, all the pertinent snowflake data are archived.

The threshold value is set to assure no loss of useful

data.

c. Field operation

An SVI field unit is shown in Fig. 2. During calm

winds, an SVI records in situ conditions well because the

measurement volume is separated from the instrument

and snowflakes fall freely through the measurement

volume. Furthermore, most winds have negligible ef-

fects on snowflakes within the SVI measurement vol-

ume. So sensor induced turbulence is usually not an

issue and volume density measurements are reliable.

However, when winds blow along the optical axis, air-

flow around the instrument might cause sampling

anomalies. To assess this potential problem, we con-

ducted airflow simulations using the computational fluid

dynamics (CFD) software package FLUENT, developed

by Fluent, Inc. (Newman and Kucera 2005). Wind blow-

ing parallel to the optical axis is the worst-case scenario

for instrument interference, which is what we simulated.

Figure 3a displays vertical velocity magnitudes and re-

veals that nonzero vertical velocities dissipate within

approximately 1 m of the end of the camera housing.

Because snow has a downward velocity component and

the vertical velocity near the focal plane is close to zero,

the shielding effect of the camera housing is not am-

plified. Figure 3b shows ray paths for passive tracers

flowing past the SVI. The rays indicate nearly horizontal

flow throughout the sample volume. The SVI causes

acceleration of the wind around the camera housing,

which leads to areas of higher horizontal wind speeds

above and below the housing. There is also a region of

lower velocity downwind from the housing. Lower wind

speeds extend the full length of the instrument, which

means that there is some modification of the wind field.

Overall, the simulation indicates relatively minor

changes to the wind field in the SVI sampling volume.

From the simulations and Fig. 2, we conclude that the

SVI housing has minimal effect on its sample volume

and the housing creates insignificant interference for

most wind directions. In the worst-case scenario of

winds parallel to the optical axis, the camera housing

induced vertical velocities that dissipated outside of the

image volume; hence shadow effects are almost incon-

sequential. The simulation results help us to interpret

the snowpack in Fig. 2, which shows that there is a minor

ripple in the snowpack downwind and close to the cam-

era housing. However, in the region around the focal

plane, which is 2 m from the camera housing, the

snowpack seems to be a regular part of the surrounding

snowpack. The SVI in Fig. 2 is orientated to assess sys-

tem performance for a worst-case setup and it shows

that the snowpack under the SVI measurement volume

is relatively unperturbed. This is an excellent result

FIG. 2. SVI deployed in North Dakota. The camera is located in the heated housing on the right

of the image, while the flood lamp is on the left.
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because it shows that the SVI functions well in a natural

setting, There is no need for snow fences that make an

artificially calm wind environment so that snowflakes fall

into the measurement volume. SVIs can function with

any orientation in a natural setting. However, to reduce

the potential of wind effects in datasets, SVIs should be

orientated with regard to storm winds (i.e., with the op-

tical axis perpendicular to the climatological mean wind).

The SVI camera is orientated with the 24-mm axis in

the vertical direction to minimize the likelihood of

particles appearing in multiple images during calm

conditions. Yet particles falling slower than 0.72 m s21

may appear in consecutive images. At the North Dakota

field site, it was usually windy during frozen precipita-

tion events, so multiple images of particles were rare.

Independent sampling is desirable for the computation

of distributions. Consequently we recommend that an-

emometer data be collected in conjunction with SVI

data to identify calm wind conditions. If anemometer

data are not available, SVI images can be viewed to

detect calm conditions or the sampling rate can be

reduced during the analysis to ensure independent

sampling.

3. SVI data processing software

a. Detection

SVI images are predominately white, with an occa-

sional gray shadowgram of a snowflake. The detection

software finds snowflakes in SVI images in the com-

pressed data files and outputs a record of basic infor-

mation for each snowflake into a summary file. These

snowflakes have a myriad of shapes when they fall

somewhere between the camera and the lamp. The

detection software needs to be robust enough to handle

a variety of shapes well and to limit detection to

snowflakes that are suitably imaged (i.e., not artifacts of

out of focus snowflakes). First, we examine the detec-

tion algorithm by assessing its performance with

FIG. 3. (a) Cross section displaying vertical velocities. The scale ranges from 22 (dark blue)

to 2.5 m s21 (red) with contour intervals of 22 cm s21. (b) Cross section displaying passive

tracers with static pressure contoured on the SVI. The tracers are shaded by velocity magnitude,

which ranges from 0 (dark blue) to 4 m s21 (yellow).
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simulated objects that are uniformly black and in focus.

Then we discuss implementation of the algorithm with

SVI images of natural snow.

The SVI detection algorithm is concisely summarized

here. [See Newman (2007) for further details, and to

learn about image processing techniques, see texts such

as Russ (2002) and Seul et al. (2000).] Figure 4 shows a

flowchart of the SVI algorithm. The processing begins

with a Sobel edge detection routine (step 1) that detects

both vertical and horizontal edges. Next an edge

threshold (step 2) is applied. If the threshold selected is

too close to white (255), then many snowflake fragments

are detected due to snowflakes far from the focal plane.

On the other hand, if the threshold value is too close to

black (0), then only a few snowflakes very close to the

focal plane are detected. We obtained the operational

threshold value by examination of simulated snowflakes

and natural snowflakes. We optimized the threshold

value to yield as many snowflakes as possible, with a

minimal number of fragments from blurred snowflakes.

Dilation (step 4) is performed in an attempt to fill any

holes in the perimeter of the hydrometeor, and then the

hole filling subroutine (step 5) darkens the interior of

any closed outline of an object in the image. Erosion

(step 6) removes extra pixels around the edges of the

particle from the dilation step (i.e., returns the maxi-

mum dimensions of the object to the correct length).

Any particle touching the border is rejected (step 6)

because it cannot be known how much of the hydro-

meteor is missing. Size filtering (step 7) rejects any ob-

ject with fewer than 30 pixels (approximately 0.3-mm

equivalent diameter) because of the great uncertainty

for those small particles. Step 8 is used to filter out other

processing artifacts and hydrometeors that are very far

out of the focal plane. Size and shape information are

produced in step 9, then characteristics for each snow-

flake are output to a summary file.

We validated the detection algorithm using (i) images

of water droplets and (ii) images of randomly sized

computer-generated objects. Images of water drops

(five sizes ranging in diameter from about 2 to 5 mm)

were recorded for drops falling close to the focal plane.

Analysis of the data shows that for each size, the stan-

dard error was about 1%. Likewise, the difference be-

tween the SVI equivalent diameters and the drop mass

diameters is less than 1%. So the SVI data system and

analysis software package provide good results for wa-

ter droplets near the focal plane. These results validate

the acquisition and sizing software for ideal conditions.

To assess other aspects of the SVI sizing software, we

generated images of squares, circles, and dendrites. By

simulating objects, the exact size is known and direct

comparisons to the SVI output can be made for shapes

that resemble snowflakes. The metrics we use to de-

termine the accuracy of the SVI algorithm varied

depending on the type of object generated. Yet for each

metric, the bias and root-mean-square error (RMSE)

was computed. One thousand objects per class were

used to compute the statistics. Rectangles were simu-

lated using integer multiples of pixel length and the

computed bias and RMSE of maximum length are zero,

which indicates that the software functions properly.

Circles were simulated using real numbers for diame-

ters, and so although the bias is almost zero, the RMSE

is 0.02 mm. The small RMSE shows that the inherent

uncertainty of pixel occultation is negligible for most

applications. We simulated dendrites following Wang

and Denzer (1983), and an example is shown in Fig. 5a.

The main problem with retrieving some dendritic met-

rics is the inner region where the arms are near each

other. The edge detection subroutine places the edge

outside the dark pixels as shown in Fig. 5b, so that when

dilation is performed, the arms are expanded outward

and some of the space between them is filled (Fig. 5c).

Figure 5 indicates that the edge detection algorithm does

not produce broken edges for the simulated particles,

FIG. 5. Processing of a simulated dendrite by the SVI particle

detection algorithm: (a) the simulated crystal, (b) after application

of the Sobel edge detection kernel, and (c) the final image after the

dilations and erosions.

FIG. 4. Flowchart of the SVI particle detection algorithm.
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which raises the question of why dilations and erosions

are necessary. For our idealized particles, the maximum

possible gradient is used (i.e., a white background with

perfectly black objects). SVI images of natural snow-

flakes have various shades of gray resulting in less than

optimal gradients, which creates edges of various in-

tensities. When the edge threshold is performed, some

parts of the outer edge may be missing, which creates

boundary breaks that the dilations and erosions repair.

Consequently, analysis of SVI snowflake images bene-

fits from including dilations and erosions in the particle

detection algorithm. So if one computes total pixel

count or equivalent diameter, there will be a bias from

the analysis algorithm. Fortunately, snowflake size is

generally characterized by maximum length, so the

filling effect is small. In fact, the errors for maximum

length estimates are 20.15-mm bias and 0.2-mm RMSE.

We attribute the bulk of these errors to quantization

effects associated with use of the equations to construct

digital images. Overall, these simulations show that the

sizing algorithm is robust and suitable for many appli-

cations.

b. Volumetric effects

We formulated the SVI depth of field (DOF) as a

function of particle size from data obtained during

laboratory experiments. DOF is determined by the

camera system, the object, and the analysis software.

The camera systems are the same for all SVIs, so only

the analysis software is examined here. Imaged objects

affect the DOF through their optical properties and

their size, which contribute through contrast and blur-

ring. Contrast is a function of optical density and ranges

from opaque to translucent. Blurring occurs when an

imaged point resides outside of the focal plane. When

this occurs, the light acquired by the lens from the point

will be imaged as a circle on the detector. This circle size

depends on the distance from the focal plane. As the

distance from the focal plane is increased, the blurring

increases as well. With increasing blurring, the contrast

of the object imaged decreases. At some distance from

the focal plane, the contrast is sufficiently decreased

such that the analysis software does not detect the

particle. This location is dependent on the image anal-

ysis techniques and user-defined parameters. For an in-

depth discussion on photography and the issues of

blurring, see photography texts and/or an optical phys-

ics text [such as University Physics by Young and

Freedman (2000)].

For analysis of SVI data, we follow the method pre-

sented by Frank et al. (1994) that uses laboratory ex-

periments to derive the DOF relationship from

DOF 5 LðDÞ; ð1Þ

where L is the distance from the focal plane and D a

length of the object. We used objects with maximum

lengths from 2 to 10 mm and we dropped them through

the sample volume at varying locations. The fractional

capture F is defined as

F 5 Cact

�
Call

; ð2Þ

where Call is the number of objects captured by the SVI

for objects in the focal plane and Cact is the actual

number of objects captured at the various locations

along the optical axis. Figure 6 displays the experi-

mentally determined F values for an object of 6 mm.

Linear regression fit lines are also shown. We assume

that for the region very close to the focal plane, F is

1 and Fig. 6b shows that a linear fit to the truncated data

is reasonable. Next the DOF was determined through

discrete trapezoidal integration, given as

DOF 5
Xi5N�1

i

F Dið Þ1 F Di11ð Þ½ �
2

DD

� �
; ð3Þ

FIG. 6. The F values for an object of 6 mm in maximum length (left) without and (right) with

linear fits to the data.
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where N is the total number of drop points, F(Di) is the

fractional capture at the ith point, F(Di11) is the frac-

tional capture at the i11th point, and DD is the dis-

tance between the two points. At last the DOF

relationship for the SVI can be determined from the

results from the eight size classes that ranged from 2.3 to

10 mm. Figure 7 shows DOF values for each object size

along with a linear fit to data, which indicates that the

DOF is approximately 117 times the object maximum

length. Newman (2007) estimates the DOF uncertainty

to be around 15% for laboratory conditions. It is pos-

sible that extreme differences in snowflake densities and

shapes would result in a larger DOF uncertainty. Fur-

ther work is needed to quantify DOF uncertainty in

actual measurement conditions. This DOF uncertainty

will result in snowflake size distribution (SSD) uncer-

tainty, as can be seen in section 4a.

We used translucent objects to estimate the DOF.

Snowflakes have complex optical properties due to their

crystalline parts and their aggregate structure, so they

have texture that ranges from transparent to translu-

cent. Our laboratory simulations do not account for

optical texture, so there is some uncertainty in applying

the laboratory DOF formulation to natural conditions.

In summary, we have developed an estimate of DOF

for the SVI from laboratory experiments, but further

research is needed to assess its reliability in natural

conditions.

c. Blurring effects

To estimate sizing error, a water drop of known size

was dropped through the sample volume. Figure 8

shows that the imaged object size generally increases

with distance from the focal plan. With regards to SVI

data products, this trend is diminished due to fractional

capture. We computed the distribution of particles

FIG. 7. The DOF values along with a linear DOF relationship plotted to the first eight points.

FIG. 8. The L sizing error distribution shows that although rel-

atively large measurement errors do occur, they are unlikely.

Consequently, the standard error of L sizing for this SVI hardware

and software configuration is ;18%.
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sizing errors, shown in Fig. 8, by using fractional capture

data. Recall that fractional capture is the ratio of objects

the processing algorithm accepts to the total number of

objects imaged. Because fractional capture decreases

with distance from the focal plane, the sizing error dis-

tribution has a somewhat exponential form as shown in

Fig. 8. So although relatively large errors are possible,

they occur infrequently. Using the sizing error distri-

bution, we estimate the sizing standard error to be 18%,

which is suitable for our applications. Note that if we set

the threshold in the data analysis to reduce the DOF,

the sizing error would decrease and the number of ob-

served snowflakes would decrease. On the other hand, if

we set the threshold to increase the DOF, the sizing

error would increase and the number of observed

snowflakes would increase. We selected a threshold to

provide as many snowflakes as possible, with a sizing

error that is suitable for routine operations.

4. SVI data products

a. Snowflake size distribution

SVIs record cross-sectional images, so a variety of

metrics can be computed to characterize particles. The

SVI analysis software provides some representative

sizing metrics, such as the bounding rectangle lengths,

the equivalent rectangle lengths, and the feret diameter.

The bounding rectangle lengths are the maximum

x- and y-axis dimensions of a snowflake; the equivalent

rectangle lengths are the mean x- and y-axis lengths; and

the feret diameter is the maximum length (L) between

any two points on the perimeter of the snowflake. A key

feature of L is that it is invariant to coordinate axis

rotation. Thus, we present snowflake size distributions

using L as the metric; L is commonly reported in the

literature and the presentation of SVI data products in

terms of L lays the groundwork for future studies.

An SVI was located near Boulder, Colorado, during

December 2007. About 170 mm of snow fell during an

event observed on 11 December 2007. The SVI recor-

ded snowfall from 0100 to 1900 UTC, with the time

history of the number of snowflakes per minute shown

in Fig. 9. During the event, the SVI detected approxi-

mately 446 000 snowflakes; hence the average is about

400 snowflakes per minute. The maximum number of

snowflakes per minute was 1701 and that occurred

during 1020 UTC. The SVI frame rate is nearly 60

frames per second, so about one in nine frames had a

snowflake. Yet during the peak minute, about half of

the frames had snowflakes. On the other hand, the hour

with the maximum number of snowflakes occurred be-

tween 1000 and 1100 UTC, during which ;65 000

snowflakes were detected, or about one in three frames

have snowflakes. For this snow storm, the SVI detected

almost 70 000 snowflakes for each 25 mm of snow on the

ground. We conclude that the SVI hardware and soft-

ware packages yield a sufficient number of snowflakes

for many snowflake sizing studies.

Each segment of the snow size distribution is com-

puted as follows:

SSDi 5 Ni

,
ðVidDÞ: ð4Þ

FIG. 9. History of snowflake observations during an 18-h storm observed near Boulder.
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SSDi is the number of particles per unit volume per unit

size, so the units of SSDi are (m23 mm21); dD is the

particle interval size, which is 0.4 mm for 60 bins span-

ning 0.0–24 mm; Ni is the number of particles within

each bin detected by analysis of the SVI data; Vi is the

volume corresponding to Ni; Ni and Vi are obtained by

counting particles and summing volume increments for

the appropriate time interval, which in this study is ei-

ther 1 min or the duration of the snow event, and Vi is

computed as follows:

Vi 5 ntDOFLmFOVLm; ð5Þ

where nt is the number of frames accumulated by the

SVI during the time interval; Lm is the length at the

middle of each size interval; and volume is the product

of area and length (i.e., depth of field times field of

view). We use the laboratory results, so DOFLm (m) 5

0.117 Lm (mm). We compute FOVLm, the field of view,

based upon the 32 mm 3 24 mm calibration image, with

an adjustment for edge effects, that is,

FOVi 5 10�6ð32� LmÞð24� LmÞ: ð6Þ

SSD for the entire snow event is shown in Fig. 10, and

it has a typical exponential distribution with an abun-

dance of small particles and relatively few large ones.

For this event, the size distribution spans more than

seven orders of magnitude. The largest snowflake has

the longest axis of 20 mm. The SSD shows that there are

about 100 1-mm particles for each 4-mm snowflake. The

presence of snowflakes larger than 10 mm implies that

there was some period(s) with high aggregation effi-

ciencies.

A time history of snow size distributions for the snow

storm observed near Boulder is shown in Fig. 11, which

displays the SSD for each minute. For the 1-min re-

cords, the size distribution covers less than four decades

because the SVI records fewer than 3600 images per

minute. However, large snowflakes are present and it is

interesting to observe when they occur because that

implies calmer winds. Figure 9 shows that there is a

spike in the snowflake count after 1200 UTC and that

after about 1300 UTC, the snowflake count decreases to

a minimum. Figure 11 indicates that the first period has

an abundance of small particles and a limited number of

aggregates, whereas the second period has fewer small

particles and an abundance of large aggregates. This

pattern suggests that differing aggregation conditions

occurred within a brief period of time, most likely when

the wind subsided.

b. Snowflake visualizations

An SVI can operate for months at a field site or be set

up to obtain data during a storm; either way, thousands

of snowflakes are recorded during significant snow-

storms. Several snowflakes detected by the particle de-

tection algorithm are illustrated in Fig. 12, which shows

that some snowflakes are blurred and others are well

focused. Blurring due to particle motion is not an issue

because an SVI uses a two-dimensional detector that

takes a snapshot of an entire snowflake at a very brief

instant in time. On the other hand, line scan cameras

FIG. 10. SSD(L) from a snowstorm observed near Boulder.
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produce snowflake images by assembling line scans

taken sequentially in time. So for windy conditions,

snowflake images from a line scan camera are distorted

due to horizontal motion. To compensate for this effect,

those images must be altered, which requires fall ve-

locity and horizontal velocity information for each

snowflake. On the other hand, compensation for wind is

simply not needed for SVI data. However, blurring at-

tributable to the location of a snowflake along the op-

tical axis is an issue. Positional blurring occurs due to

the optical phenomenon known as the ‘‘circle of con-

fusion.’’ Ideally, a point object in the focal plane pro-

duces a point image on the detector. However, if a point

object is along the optical axis but not in the focal plan,

it casts a spot on the detector rather than a point. The

spot perimeter is the circle of confusion. Positional

blurring hinders observation of crystal structure in some

SVI images. Figure 12 shows that snowflakes far from

the focal plane appear as light gray blobs; closer to the

focal plane, snowflakes have some structure and are

darker; and last, snowflakes near the focal plane reveal

crystal structure and holes (if present) and they have

well-defined borders with sharp contrast. All the parti-

cles in Fig. 12 meet the requirements specified in section

3 for particle sizing studies; however, for snowflake vi-

sualizations, the selection process needs to be refined.

For snowflake visualizations, we developed software

that quickly selects snowflakes that are usually well fo-

cused. SVI images are grayscale and snowflakes closer

to the focal plane tend to produce darker images, so

there are a number of ways to select particles. For ex-

ample, to accept or reject a particle, one could use any

of the following intensity metrics: maximum, mean,

minimum, or standard deviation. Because of the varia-

bility of snowflakes, a single parameter selection process

will not reject all blurred particles. So if a more robust

algorithm is required, a multilevel selection algorithm

would be appropriate. We wanted a simple algorithm

that works efficiently with the SVI operational particle

detection algorithm. The particle detection algorithm

has a runtime approximately equal to the observational

FIG. 11. Minute time history SSD of a snowstorm observed near Boulder. The data span 4

decades of SSD(L) values. Yellow bands show periods of enhanced numbers of small particles.

Black towers show periods with large aggregates. Color scale is log[SSD (mm23 mm21)].

FIG. 12. Snowflake images from an SVI showing various degrees

of blurring. The amount of blurring is related to camera and

analysis software settings. These results were obtained with set-

tings that provide DOF ’ 120 3 (particle size), hence the SVI

records a large population of snowflakes. Although all these

snowflakes are acceptable for sizing studies, the blurring obscures

visualization of crystal structure.
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time of data. We want the particle selection algorithm to

run much faster. So we choose to sieve through the par-

ticles from the detection algorithm to find well-focused

snowflakes. Our selection process uses two inputs: def-

inition of size classes, and specification of the number of

particles for each class. The SVI visualization program

(i) sieves the particle file by size class, (ii) sorts size–class

particles by minimum intensity, that is, the darkest

pixel, and (iii) outputs the desired number of particles in

darkest pixel order. The selected particles are sorted by

size and displayed on composite images. The number of

rows and columns in a composite image depends upon

the size of the particles; each composite image has a

unique title and file name for easy identification. To

facilitate the viewing of composite images, we construct

a digital video for each snow day.

To assemble snowflakes shown in Fig. 13, we have

selected particles from SVI data recorded during the

winter of 2005–06 in North Dakota, as well as the

Boulder snowstorm. These aggregates are composed of

whole and fragmented snow crystals and the images

show that the aggregates have both solid areas and voids

(i.e., holes). From a particle analysis perspective, a hole

is any contiguous set of pixels within an object that have

intensity values outside the selected range for objects;

holes means the number of holes inside an object; hole

area means the area of holes within an object; and hole

ratio means the ratio of the object area excluding holes

to the total area of the object, as determined by area/

(area 1 holes area). Software exists that fills holes so

that all particles have a hole ratio value of zero, which is

useful for sizing particles. The aggregates in Fig. 13 are

composed of mainly needles and dendrites.

SVI data also record individual snow crystals, as

shown in Fig. 14. Environmental factors affect the de-

velopment to snow crystals types. Temperature and

humidity are especially important and various combi-

nations of these variables result in numerous types of

crystals. This complicates interpretation of remote

sensing data from frozen precipitation because micro-

wave scattering is highly dependent upon particle size

and shape characteristics. So snow crystal classification

is likely to be a key factor for developing robust inver-

sion algorithms for space applications. SVI data can

contribute to interpretation of remote sensing data be-

cause it can be used to classify snow crystals. The In-

ternational Snowflake Commission defines snow crystal

types. Figure 14 lists the crystal types and shows ex-

amples of SVI images that range from plates to ice

pellets. The variety of snow crystals shows that a broad

range of temperature and humidity conditions contrib-

uted to the formation of frozen precipitation in North

Dakota during the winter of 2005/06. The SVI did

not, however, record any hail, which is not unexpected

FIG. 13. Aggregate snowflakes selected by SVI visualization software.
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because hail is usually observed during warmer months.

SVI visualizations are useful for assessing snow crystal

type.

5. Summary

An SVI can be installed at a field site in about an

hour. Its operation requires minimal maintenance. In

fact, several systems have operated unattended for

months in harsh winter conditions with winds up to 50

kts and temperatures as low as 2408C. For most wind

directions, instrument interference with the sample

volume is inconsequential. The worst case is when winds

rate is almost 10 megapixels s21. Our data compression

algorithm compresses ;0.5 billion images from a

3-month season to about 50 gigabytes, so an entire

season of data fits on an ordinary disc. The optical depth

of field is ;120 times the particle size, so for a 5-mm

snowflake the DOF is ;0.6 m, and consequently the

measurement volume is ;0.0003 m3, or ;1.1 m3 min21.

Consequently, a 24-h snowstorm yields several hundred

thousand snowflake images. The SVI snowflake visual-

ization software selects well-focused images that we use

to classify the snow crystal type as defined by the In-

ternational Snowflake Classification. The SVI analysis

software also produces snowflake size distributions,

which are the standard data product for frozen precip-

itation disdrometers. An SVI obtains images of snow-

flakes, so the data can be analyzed to compute particle

orientation distributions, which are important for in-

terpreting dual-polarization radar data. Thus an SVI

system is able to produce classical data products, as well

as refined data products.

Intercomparison between the SVI and other dis-

drometers is beyond the scope of this investigation. In

the future, comparisons can be made with (i) the two-

dimensional video disdrometer (2DVD), (ii) the parti-

cle size and velocity optical disdrometer (PARSIVEL),

and (iii) the hydrometeor velocity and shape detector

(HVSD) (Kruger and Krajewski 2002; Brandes et al.

2007; Löffler-Mang and Joss 2000; Löffler-Mang and

Blahak 2001; Barthazy et al. 2004). Certainly each in-

strument has its strengths and limitations, so it would be

useful to publish comparisons of costs, operations, and

data products.

In summary, an SVI system enables (i) measurement

of snowflake size distributions, (ii) snowflake classifi-

cation from grayscale images, and (iii) further analysis

as desired because snowflake images are digitally ar-

chived. An SVI does not measure fall velocity; never-

theless snowflake fall velocity could be obtained by

refinement of the camera and lighting systems.
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Frank, G., T. Härtl, and J. Tschiersch, 1994: The pluviospec-

trometer: Classification of falling hydrometeors via digital

image processing. Atmos. Res., 34, 367–378.

Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video

disdrometer: A description. J. Atmos. Oceanic Technol., 19,
602–617.

Liu, G., 2004: Approximation of single scattering properties of ice

and snow particles for high microwave frequencies. J. Atmos.

Sci., 61, 2441–2456.
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