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ABSTRACT

The breeding method has been implemented in the NASA Global Modeling and Assimilation Office
coupled general circulation model (CGCM) in its operational configuration in which ocean data assimila-
tion is used to initialize the coupled forecasts. Bred vectors (BVs), designed to capture the dominant
growing errors in the atmosphere–ocean coupled system, are applied as initial ensemble perturbations. The
potential improvement for ensemble prediction is investigated by comparing BVs with the oceanic growing
errors, estimated by the one-month forecast error from the nonperturbed forecast. Results show that
one-month forecast errors and BVs from the NASA CGCM share very similar features: BVs are clearly
related to forecast errors in both SST and equatorial subsurface temperature—in particular, when the BV
growth rate is large. Both the forecast errors and the BVs in the subsurface are dominated by large-scale
structures near the thermocline. Results suggest that the forecast errors are dominated by dynamically
evolving structures related to the variations of the background anomalous state, and that their shapes can
be captured by BVs, especially during the strong 1997/98 El Niño. Hindcast experiments starting from
January 1997 with one pair of BVs achieve a significant improvement relative to the control (unperturbed)
hindcast by capturing many important features of this event, including the westerly wind burst in early 1997.

1. Introduction

During the last decade, the ability to simulate and
predict El Niño–Southern Oscillation (ENSO) phe-
nomena has greatly increased because of 1) the estab-
lishment of new types of observing systems contributing
to a better understanding of the dominant physical pro-

cesses and improved initial conditions, and 2) the im-
provement of coupled ocean–atmosphere modeling
(Hayes et al. 1991; Wallace et al. 1998; McPhaden et al.
1998; Saha et al. 2006). However, there are still limita-
tions in advancing ENSO forecast skill to several sea-
sons ahead (Latif et al. 1993; Chang et al. 1996; Fedorov
et al. 2003; Chen et al. 2004; and the special issue of the
Journal of Geophysical Research, 1998, Vol. 103, No. C7,
devoted to El Niño). These limitations arise from 1)
errors in the initial conditions, 2) systematic errors/
biases in the ocean–atmosphere coupled models, 3)
problems with the initialization process, for example,
model shocks in the initial coupling, and 4) the physical
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processes in coupled ocean–atmosphere models used to
represent ENSO, including feedbacks from variabilities
of different time scales (e.g., Madden–Julian oscillation;
Slingo et al. 1999).

Ensemble forecasting and initialization using ocean
data assimilation are, at the present, the most straight-
forward solutions for improving ENSO prediction
(Stockdale et al. 1998; Kirtman 2003; Ji and Leetma
1997; Rosati et al. 1997; Saha et al. 2006). Ensemble
forecasting systems are designed to use a set of initial
perturbations to represent the uncertainties and sensi-
tivities of the state. The ensemble mean from a well-
designed ensemble forecast system is expected to im-
prove the control forecast (without perturbations) as-
suming the true state can be encompassed within a set
of ensemble evolutions (Toth and Kalnay 1997). In ad-
dition, the ensemble spread can be used to assess the
forecasting skill (Moore and Kleeman 1998). However,
at this stage, the ensemble forecasts implemented for
seasonal to interannual prediction at operational cen-
ters still face the difficulty that the ensemble perturba-
tions from a single coupled ocean–atmosphere model
have limited growth at early forecast leads relative to
the amplitude of mean error (Vialard et al. 2003a;
Palmer et al. 2004; Saha et al. 2006). This indicates that
1) current techniques to initialize ensemble members
may not be optimal and not sensitive enough to low-
frequency variations, such as the seasonal-to-
interannual variability and 2) the operational coupled
model systems may have some serious deficiencies.
However, studies of the performance of the coupled
GCM suggested that the influence of the model error is
relatively small in the tropical Pacific over the first
month’s forecast because of the better quality of the
ocean analyses and higher potential predictability in
this region. Saha et al. (2006) showed that the climate
drift from the National Centers for Environmental Pre-
diction (NCEP) coupled GCM in the first month fore-
cast is small in the tropical Pacific, and Peng et al.
(2004) pointed out that the relatively small drift of the
first month forecast does not have a strong impact on
the SST variability in equatorial Pacific. Therefore, the
relatively large error of the one-month forecasts seems
to suggest that the initial conditions play a critical role
in the skill of the prediction.

Experiments from Moore and Kleeman (1996)
showed a connection between ensemble spread and
forecast skill when the ensemble perturbations are de-
signed to increase the low-frequency ENSO variability.
However, low ensemble spread would occur if random
perturbations are used for the initial ensemble. Toth
and Kalnay (1996) also point out that initial coupled
ensemble perturbations need to be generated in such a

way that they carry the slowly growing coupled insta-
bilities for ENSO prediction. These studies illustrate
the concept that the initial ensemble perturbations and
their evolution should project on the dominant modes
of variability of the coupled system.

Since the upper-ocean circulation is mostly a wind-
driven process, the changes in sea surface temperature
(SST) anomalies result from coupled atmosphere–
ocean processes. Most of the current methods for gen-
erating ensemble perturbations for coupled models in-
tend to perturb the wind to assess the uncertainties in
SST fields. For example, in a tier 2 system, the atmo-
spheric ensemble is generated under the influence of
only a single SST field (Bengtsson et al. 1993). Tier 1
systems generate the ensemble members via a coupled
ocean–atmospheric model in order to have the pertur-
bation grow under a coupled configuration (e.g., Stock-
dale et al. 1998; Saha et al. 2006). This single-stage con-
figuration is now widely used for operational ENSO
prediction. However, there is no sophisticated way so
far to use a full-physics coupled GCM to generate the
initial ensemble perturbations, which are naturally
“coupled” and can be projected on the growing mode
related to slowly varying coupled instability. The opti-
mal perturbations (Kleeman et al. 2003), which are
computationally expensive, need to separate out fast
physical processes explicitly in order to have the
ENSO-related growing mode. In most of the opera-
tional centers, the ensemble perturbations used for the
CGCM are mostly perturbing the atmospheric compo-
nents with a set of initial atmospheric state days apart.
As a result, ensemble perturbations are not optimally
coupled at the initial time and a spinup time is needed
to couple the oceanic and atmospheric perturbations.
Such a lack of coupling in the initial ensemble pertur-
bations would limit the initial growth of the ensemble
members and their ability to depict the uncertainties in
the forecasted state.

The coupled breeding technique proposed by Toth
and Kalnay (1996) provides a method to derive the
slowly varying, coupled instability for initial ensemble
perturbations. By repeatedly rescaling and evolving the
coupled bred perturbations upon the background flow
with the full nonlinear coupled model, the breeding
cycle is aimed at filtering out fast unwanted instabilities
(like fast weather noise) and retaining the growing
mode we are interested in (slowly varying coupled in-
stabilities). A bred vector (BV) is defined as the differ-
ence between two nonlinear runs (one with bred per-
turbations and the other without any perturbations). By
taking advantage of the fact that instabilities from a
complex coupled system are characterized by different
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time scales, and that their amplitudes saturate at differ-
ent levels, nonlinear integrations allow the unwanted
fast-growing instabilities to saturate early, and leave the
slow perturbations dominating the bred perturbations.

The key to selecting the instability of interest is to use
physically meaningful breeding parameters, that is, the
rescaling amplitude and rescaling time interval (Toth
and Kalnay 1993, 1997; Peña and Kalnay 2004). Peña
and Kalnay (2004) derived bred vectors, singular vec-
tors (SVs), and Lyapunov vectors (LVs) with experi-
ments using fast and slow coupled Lorenz three-
variable models. Their idealized coupled system was
designed to mimic a coupled system including a tropical
ocean, and tropical and extratropical atmospheres.
They demonstrated that breeding can be used to isolate
the slow modes when choosing a slow variable to mea-
sure the growth of the perturbation and when using a
long interval for the rescaling, allowing the fast extra-
tropical weather noise to saturate. In contrast, SVs and
LVs are swamped by the fast-growing instabilities,
since by being linear they are designed to capture the
fastest-growing instability of the system. For applica-
tions to atmosphere–ocean coupled models, most stud-
ies use intermediate or hybrid coupled models to derive
the SVs (optimal perturbations) for ENSO prediction.
However, results from different studies are not consis-
tent even when using the same optimization norm (i.e.,
SST norm with 3–6-month optimization period; Xue et
al. 1994; Chen et al. 1997; Fan et al. 2000; Moore and
Kleeman 1997a,b). Besides the concern of constructing
the tangent linear–adjoint of the complex matrix opera-
tor of the CGCM, there is a major difficulty in separat-
ing the ENSO-related SVs from the unwanted growing
modes. This problem is not encountered when dealing
with the simplified physics used in intermediate models.
When applying this method to CGCMs, particular care
needs to be taken to filter out the fast-growing modes
of weather instability in order to obtain the “climate
relevant SVs.” Kleeman et al. (2003) and Tang et al.
(2006) derived such SVs with an ensemble of 20–30
members in a reduced space based on the first five EOF
modes of Pacific SST anomalies.

The coupled breeding experiments of Cai et al.
(2003) with a Cane–Zebiak intermediate coupled
model, and of Yang et al. (2006) with the coupled gen-
eral circulation model (CGCM) developed at the Na-
tional Aeronautics and Space Administration (NASA)
Goddard Space Flight Center gave very similar robust
conclusions. In these breeding experiments, all the dy-
namical variables in both atmospheric and oceanic
components are perturbed so that coupled nonlinear
processes are naturally included. Both studies show

that ENSO bred vectors and their growth rate are sen-
sitive to the background ENSO evolution, and that the
dominant fast-growing mode in the SST appears in the
eastern equatorial Pacific. Moreover, Yang et al. (2006)
confirmed that the characteristics of bred vectors from
two independently developed CGCMs [NASA and Na-
tional Oceanic and Atmospheric Administration
(NOAA)/NCEP] have a similar structure, not only in
the tropical Pacific basin but also in the atmospheric
ENSO-teleconnected region. These findings suggest
that the perturbations derived from breeding runs are
representative of the coupled atmospheric and oceanic
changes associated with the ENSO variability. Cai et al.
(2003) also showed that using a pair of positive/negative
BVs as the ensemble perturbations, the “spring bar-
rier”1 in ENSO forecast skill could be substantially re-
duced.

Although the results of these studies were encourag-
ing, the coupled breeding experiments were performed
under a perfect model scenario. In this paper we extend
the coupled breeding technique to a realistic scenario:
performing breeding cycles in the NASA operational
CGCM with real, noisy observations assimilated into
the ocean component. We then explore the potential
applications for ensemble forecasting and ocean data
assimilation initialization of the CGCM, by reducing or
alleviating the growing errors that appear to be in the
initial conditions. We hypothesize that the uncertainties
related to coupled instabilities appear in the coupled
forecasts after integrating the CGCM beyond the time
scale of weather synoptic instabilities. Therefore, the
first goal in this study is to test whether BVs (repre-
senting the leading coupled instabilities) can be used to
represent the structure of the short-range (about one
month) coupled forecast error. If BVs turn out to be
similar to forecast errors then they have potential for
use in ensemble forecasting and in reducing the coupled
forecast errors at a longer forecast lead time, for ex-
ample, the 12-month forecast. Another goal in our
study is to explore the potential to incorporate bred
vectors with operational ocean data assimilation for
better use of the observations to provide better oceanic
analyses (initial conditions) for coupled forecasting.
The current ocean data assimilation in the NASA op-
erational system uses an optimal interpolation (OI)
scheme. The background error covariance used in the
OI scheme is a statistical estimation of the forecast er-
ror structure averaged in time and therefore it is flow
independent. A data assimilation scheme with a time-

1 “Spring barrier” is a common feature of a sudden drop of
forecast skill for the forecasts that begin in the spring and pass
through the summer.
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independent background error covariance may under-
estimate sudden changes of the background flow due to
the dynamical instabilities. Advanced oceanic data as-
similation schemes carrying flow-dependent error sta-
tistics, like ensemble ocean data assimilation (Evensen
2003; Keppenne and Rienecker 2002, 2003; Keppenne
et al. 2005) or four-dimensional variational data assimi-
lation (4DVAR; Weaver et al. 2003; Vialard et al.
2003b), have shown their advantages in the tropical Pa-
cific and have a positive impact on the ENSO forecasts.
However, even in these advanced methods, it is difficult
to include the impact from coupled processes needed
for better initialization for ENSO prediction when con-
structing the background error covariance. In either the
ensemble Kalman filter or 4DVAR, the observed wind
is used as the forcing field, that is, a fixed atmospheric
condition. Therefore, the uncertainties due to the
coupled processes are not included in the background
error covariance (e.g., the uncertainties in the wind
forcing do not include the feedbacks from the ocean
state). Also, the computational cost of these advanced
techniques is still a major concern.

Such dynamically coupled errors can be incorporated
within the data assimilation scheme with the bred en-
semble (described in full model space) by augmenting
their structures with the original uncoupled background
error covariance. Such a hybrid-type assimilation is
easier to implement on the (multivariate/univariate) OI
and ensemble Kalman filter. In principle, it would also
be possible to include them in the cost function defined
in a 4DVAR system, thus allowing the background er-
ror covariance to have state-dependent structures
(Lorenc 2003; Buehner 2005; Wang et al. 2007). There-
fore, we propose to test the use of bred vectors ob-
tained from the CGCM to provide information related
to coupled error structures at a very low computational
cost. If indeed there are similarities between bred vec-
tors and forecast errors (which we will determine ac-
cording to our first goal), BVs have the potential to
provide information related to the slowly varying,
coupled error structure in the OI scheme by augment-
ing the time-independent background structure with
flow-dependent structure (Corazza et al. 2003; Yang et
al. 2007).

Our paper is organized as follows. In section 2, we
briefly introduce the NASA coupled GCM used for
experimental forecasts and the setup of the coupled
breeding experiments. Section 3 describes the relation-
ship between bred vectors and forecast errors. The ap-
plication of bred vectors in ocean data assimilation
scheme is discussed in section 4. The summary and dis-
cussion are given in section 5.

2. Description of the breeding experiments in the
GMAO operational system

a. The NASA GMAO coupled GCM

The Global Modeling and Assimilation Office
(GMAO) coupled model is a fully coupled global
ocean–atmosphere–land system developed at the
NASA Goddard Space Flight Center (GSFC; Vintzi-
leos et al. 2003). It comprises the NASA Seasonal-to-
Interannual Prediction Project atmospheric general cir-
culation model (NSIPP AGCM; Takacs and Suarez
1996; Bacmeister and Suarez 2002; Bacmeister et al.
2000), the Poseidon ocean model (OGCM; Schopf and
Loughe 1995; Yang et al. 1999), and the Mosaic land
surface model (LSM; Koster and Suarez 1992), all de-
veloped for the purpose of improving seasonal to inter-
annual prediction.

The model variables of the ocean GCM are arranged
on isopycnal layers; they are thickness, temperature,
zonal and meridional current velocity, and salinity. The
oceanic grid resolution is 5⁄8° in longitude, 1⁄3° in lati-
tude, and 27 layers in vertical. The model variables of
the atmospheric components are prescribed in sigma
coordinates; they are surface pressure, zonal and me-
ridional wind, potential temperature, and specific hu-
midity. The atmospheric grid resolution is 2.5° in lon-
gitude, 2.0° in latitude, and 34 levels in vertical. De-
tailed descriptions of the coupled model and the model
performances for climate variabilities can be found on-
line at http://gmao.gsfc.nasa.gov/cgi-bin/products/
climateforecasts/index.cgi.

In this study, breeding experiments are performed in
the operational configuration, where the ocean is ini-
tialized with a univariate OI analysis scheme, assimilat-
ing daily subsurface temperature observations from the
global XBT data (Troccoli et al. 2003). To maintain the
relationship between temperature and salinity to con-
serve water mass properties, the local salinity profile
from the model is then adjusted by the temperature
analysis increment according to the method of Troccoli
and Haines (1999). During the assimilation process, the
SST is strongly relaxed to the SST of Reynolds et al.
(2002), referred to hereafter as “Reynolds SST.”

For the coupled forecasts, the atmospheric and land
states are initialized independently from the ocean, and
from the Atmospheric Model Intercomparison Project
(AMIP) runs (Gates 1992), whose fields are obtained
with the Reynolds SST specified as the boundary con-
dition and interpolated into the AGCM resolution.
Prior to coupling, the atmospheric state spins up for one
day from the AMIP initial fields. The ocean is then
initialized by this daily averaged wind stress, which al-
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lows the ocean to include the memory of past wind, and
is important for maintaining the subsurface structure
and reducing climate drift and initial shock (Latif et al.
1993; Schneider et al. 1999).2 From the results of
coupled forecasts, one of the benefits of updating the
ocean initial condition with the OI scheme is a reduc-
tion of the cold seasonal drift in the early forecast
months, in particular for the tropical central to western
Pacific.

In the operational forecasting system, the GMAO
coupled GCM is used for forecasts of 12-month dura-
tion with six ensemble members. The six ensemble
members include three oceanic perturbed, two atmo-
spheric perturbed and one unperturbed initial condi-
tions. The oceanic perturbations are generated as the
difference between two randomly chosen analysis states
for the ocean initial condition (within a 5-day window)
and the atmospheric perturbations are randomly cho-
sen AMIP states (restart files). The results from the
hindcast experiments show that the prediction skill has
a strong dependence on the seasonal cycle. For ex-
ample, the prediction of the Niño-3 SST anomaly index
has the best prediction skill (in terms of anomaly cor-
relation and mean error) when starting from the cold
phase of the annual cycle in the tropical eastern Pacific,
especially when starting from September. On the other
hand, a large mean forecast SST error is observed at
early forecast leads when the coupled GCM starts from
May–June, a time in which SST is rapidly cooling and
before the strong cold equatorial tongue is established.
In addition, except for the cases starting from Septem-
ber, the operational ensemble exhibits rather small
spread at early forecast leads and is insensitive to sea-
son. The forecast of heat content exhibits skill similar to
that of SST in the tropical eastern Pacific. The forecast
heat content in the western Pacific shows good skill in
the early forecast months starting from February to
June. However, the ensemble spread is still very limited
in the subsurface equatorial region and is far from the
level of the mean anomaly forecast error. In addition,
and in contrast to the real evolution, the forecast state
in the eastern Pacific does not seem to benefit from the
memory of the western Pacific evolution, with SST
anomalies dominated by local processes for February–
June starting months, and minimal coupling between
the surface and the thermocline (Galanti et al. 2002).
These observations provide some clues that the imper-

fect model physics are unable to represent the mixed
layer very well when the thermocline is very shallow.
They also indicate the need for ensemble perturbations
that reflect seasonal uncertainties.

Based on these considerations, the main comparisons
between bred vectors and forecast errors will first focus
on their evolution within the oceanic component, in-
cluding the surface and subsurface variations. The oce-
anic growing error is defined as the difference between
the instantaneous fields after a one-month forecast and
the corresponding analysis. The control forecast is ini-
tialized from the unperturbed initial condition.

b. Breeding experiment

As discussed in section 1, initial perturbations gener-
ated through coupled breeding are designed to include
the growing errors associated with the slowly varying,
coupled instabilities in order to capture uncertainties
when predicting seasonal to interannual variations. In
the breeding cycle, there are two parameters allowing
us to select the growing instability of interest: 1) the
rescaling period and 2) the size of rescaling norm (Toth
and Kalnay 1996; Peña and Kalnay 2004; Yang et al.
2006; Vikhliaev et al. 2007). The choice of these param-
eters needs to be based on physical considerations (see
the discussion related to Fig. 1 in Yang et al. 2006). For
our purpose, a rescaling period of at least two weeks is
required to allow the fast-growing weather signals to
saturate and, at the same time, keep the slow, coupled
instability in the bred perturbations. Vikhliaev et al.
(2007) obtained similar results rescaling the bred per-
turbations from the COLA coupled GCM every six
months with a norm measuring the growth of upper-
ocean heat content.

The procedure we used to perform the breeding cycle
in the GMAO operational system is the same as de-
scribed in Yang et al. (2006), with a rescaling period of
one month. The period used for experimental breeding
and control (nonperturbed) forecasts is January 1993 to
November 1998. The choice of a one-month rescaling
period is fairly reasonable according to the error statis-
tics from this coupled GCM. SST errors from opera-
tional ensemble forecasts have their fastest growth on
the first month and grow much more slowly after two
months. Climate drift has little impact on the relative
error growth rate in the early forecast and removing it
mainly reduces the magnitude of the mean error. At the
beginning of the breeding cycle, the initial oceanic per-
turbations are obtained from the difference between
two randomly chosen oceanic analysis states and the
atmospheric perturbations from the differences be-
tween two randomly chosen AMIP restarts (the initial
conditions of the AGCM). This set of initial perturba-

2 Despite the one-day coupling, the introduction of a different
atmosphere produces a short-lived “coupling shock.” In this work
we assume that since the BVs are rescaled with a period long
enough to recover from the coupling shock, they are not funda-
mentally affected by it.
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tion is rescaled to have the same amplitude of the re-
scaling norm.

During the coupled breeding cycle, all the model
variables in the ocean and atmospheric components are
perturbed. The oceanic-bred perturbations are added
to oceanic analysis fields, and atmospheric bred pertur-
bations are added to the AMIP atmospheric restart
fields. After one month of coupled integration, the
coupled bred perturbation is computed as the differ-
ence between the one-month perturbed and unper-
turbed (control) forecasts, and is rescaled to its initial
amplitude according the chosen rescaling norm. The
rescaled perturbation is then added to the next oceanic
and atmospheric initial conditions. In our standard
breeding cycle, the rescaling factor is the inverse of the
growth of the RMS SST perturbation in the Niño-3
region (5°S–5°N, 150°–90°W) after one month and is
applied globally to all oceanic and atmospheric vari-
ables. The process is repeated throughout the breeding
period (January 1993 to November 1998). Bred vectors
are the difference between the one-month perturbed
and unperturbed (control) forecasts and they provide
an estimate of the structure of growing instabilities,
which presumably are also generating forecast errors. It
is important to keep in mind that bred vectors are gen-
erated without any information about the observations
used to estimate the new analysis state.

The breeding rescaling amplitude–period is chosen to
separate the instabilities and avoid the nonlinear satu-
ration and does not affect the bred structures as long as
the norm is chosen according to the characteristic of the
instability, and the period has to be relevant to the
characteristics of the instabilities. We have performed
breeding experiments with three types of rescaling
norms with the amplitude chosen to be about 10% of
the climate variability (i.e., the background anomaly
variance), which is large enough to saturate the weather
noise but detect the growth relevant to the ENSO-
dominated instability. The first two experiments use
global perturbations for both ocean and atmosphere
states and their rescaling factors are measured by 1) the
SST bred perturbations in the Niño-3 region with an
amplitude of 0.1°C (the standard run), 2) the perturba-
tion of depth of the 20°C isotherm (Z20) in the tropical
Pacific with an amplitude of 0.2 m, and 3) the rescaling
parameters are the same as 1) but the oceanic and at-
mospheric perturbations are added only in the tropical
regions. Since the BV structures obtained from differ-
ent rescaling norms are dominated by similar (but not
identical) growing instabilities (appendix B and Yang
2005), comparisons between the structures of forecast
error and bred vectors are focused on the run rescaled

with the Niño-3 SST perturbations norm in the next
section.

3. Observed relationship between one-month
forecast error, bred vectors, and background
anomaly

In this section, we illustrate the characteristics of
forecast error and bred vector from this coupled system
and how they evolve with the slowly varying back-
ground state (i.e., the background ENSO events). The
one-month forecast error is approximated by the dif-
ference between the one-month control forecast and
the analysis state verifying at the same time. This quan-
tity represents the optimized correction to the forecast
state after combining it with observational information
and as such is a proxy for forecast error. The bred vector
is derived as the difference between the perturbed fore-
cast and the nonperturbed forecast. We will first assess
whether ENSO dynamical processes dominate the evo-
lution of both one-month forecast errors and bred vec-
tors.

In ENSO variability, the slow dynamical processes in
the ocean component play an important role in charac-
terizing an ENSO event and, therefore, such processes
should also determine the characteristics of the growing
errors. This can be verified by examining the structures
of forecast error and bred vector as they evolve with the
background ENSO events. Several studies have indi-
cated that the origin of an ENSO event can be traced
back to perturbations in the subsurface of the western
Pacific, which are excited by variations of the trade
wind. During an El Niño event, the downwelling per-
turbation travels to the eastern Pacific through equato-
rial wave propagation, deepening the thermocline, al-
lowing the anomalous warm water to establish, and re-
ducing the zonal temperature gradient. The subsequent
positive feedbacks from air–sea interaction then con-
tribute to the growth of a warm episode (McPhaden et
al. 1998; McPhaden 1999; Wallace et al. 1998; Bou-
langer and Menkes 1995). Thus, dynamical coupled er-
rors in the surface layer of the eastern Pacific will not
only be affected by the local processes (e.g., upwelling)
but also be closely related to the errors in the subsur-
face state of the western Pacific, where it is also con-
nected to the atmospheric conditions.

a. The structure of bred vector and forecast error
during 1997/98 El Niño evolution

The 1997/98 El Niño is a strong warm event whose
background anomaly state is characterized by distinct
features of equatorial wave propagation (McPhaden
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1999; McPhaden and Yu 1999). The event was triggered
by a strong westerly wind burst in the western Pacific;
the extreme intensity of this event has been attributed
to the nonlinear interaction between ocean and atmo-
sphere (Zhang and McPhaden 2006; Vecchi et al. 2006).

For the following analysis we select four months rep-
resenting the different stages of the 1997 El Niño event
(prior, developing, mature, and post stages) in order to
illustrate how the forecast errors and bred vectors
evolve during ENSO development. Figure 1 shows the
Niño-3 index for the period October 1996 to October
1998 covering this major El Niño event that peaked at
the end of 1997. Figures 1a–d are snapshots of vertical
cross sections along the equator of forecast error (color
shading) and bred vectors (contour) of temperature
corresponding to prior, developing, mature, and post El
Niño stages. As shown in Fig. 1a (the prior stage), be-
fore the warming commences the forecast error was
mainly located in the subsurface of the central to west-
ern Pacific with some error also near the surface near
the eastern boundary. During the developing stage, the
forecast error expanded eastward and extended verti-
cally as the warm anomaly started to build up in the
eastern Pacific (Fig. 1b). At the mature stage of the
event, the forecast errors were smallest near the surface
near the eastern boundary and large near the ther-
mocline (Fig. 1c). When the warm anomaly diminished
and the background state returned to normal condi-
tions, the forecast error accumulated mostly in the east-
ern Pacific (Fig. 1d) above the thermocline. Very simi-
lar longitude-vertical variations appear as well in the
bred vectors shown with contour lines in the same fig-
ures. The bred vector evolution is characterized by an
eastward propagation well synchronized with the fore-
cast error movement, and BV shapes tend to capture
the large-scale forecast error, as indicated by the collo-
cation of forecast error and bred vector. Both the fore-
cast error and bred vector maxima are located near the
thermocline, where sharp temperature gradients can
easily introduce instabilities. Such results confirm one
of the important properties of BVs: local representa-
tion of the growing modes. These results also support
the hypothesis that the bred vectors obtained from such
a complicated CGCM with data assimilation are able to
carry the information related to realistic ENSO devel-
opment and that they indicate where the forecast errors
will be located. We also note that since the model errors
play a stronger role in the growth of the forecast errors
during late spring to summer (e.g., May/01/1997 in Fig.
1d), the forecast error and BVs are less similar. Never-
theless, even without access to the observations used in
estimating the analysis state and the forecast errors, the
results show that the bred vector contains the dynami-

cal instabilities that lead to the forecast errors corrected
in the data assimilation.

The structure of the bred vector suggests its potential
impact when used as an initial ensemble perturbation
for ensemble forecasting since it projects strongly on
background instabilities leading to forecast error
growth. Furthermore, this suggests their potential ap-
plication incorporating information on the “errors of
the month” into the data assimilation process. More
details and statistical diagnostics are provided in sec-
tion 4.

b. The temporal and spatial relationships between
bred vector, forecast error, and background
variability

An important conclusion from Yang et al. (2006) and
Cai et al. (2003) was that there is a relationship between
the ENSO phase and the bred vector growth rate, with
the maximum BV growth occurring between the two
extreme phases of ENSO episodes. BV growth rate is
measured as the amplitude of the BV SST in the Niño-3
region at the rescaling time (i.e., one month after
coupled integration) relative to the initial amplitude
and it has a nondimensional unit per month. This rela-
tionship remains valid for the BV growth rate obtained
from the operational system with data assimilation. Fig-
ure 2a is the background Niño-3 index computed using
the SST to indicate the temporal evolution of the
ENSO episodes from 1994 to 1998. Figure 2b shows
that the BV growth rates are large before and after an
ENSO event, especially after the 1997 strong El Niño
event, and smallest at the mature state of an ENSO
event. Figure 2c is the amplitude of the forecast error in
the Niño-3 region, obtained from the unperturbed ini-
tial condition, where the analysis (initial) errors are in-
cluded but impossible to accurately estimate. Although
the amplitudes in Figs. 2b and 2c are not directly com-
parable, the BV and the forecast error are dominated
by similar dynamical processes; and it is seen that the
temporal evolution of the BV growth rate and the fore-
cast error have much in common, suggesting that the
BV is state dependent (or sensitive to the anomalous
state). As already apparent in Fig. 1, the amplitude of
the forecast error is also very sensitive to the phase of
ENSO and is related to background variability. During
the decaying phase of the event, with rapid cooling, the
BV growth rate shows a sharp increase and so does the
forecast error. The change of the BV growth rate oc-
curring before the mature phase of the 1997/98 El Niño
is not as rapid as afterward but relatively large growth
rate occurs during the late summer to winter of 1996
and may be related to the strong MJO activities during
the same period, which contribute to trigger this strong
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event (Bergman et al. 2001). The relationship between
these two time series suggests that the bred vector has
similar behavior to the forecast error field and that bred
vector growth rates can provide information related to
large forecast errors, particularly when the background
SST is neutral and after an ENSO event. After the
anomalous ENSO warming is established in the back-
ground, error growth is inhibited because the back-
ground has reached a fairly stable state. It has been
confirmed that the forecasts made by the same CGCM
starting from August 1997 are very successful in cap-
turing the subsequent temporal and spatial SST varia-
tions up to 9 months in terms of both timing and inten-
sity (not shown).

To quantify the relationship between BV, forecast
error, and background state, we used the pattern cor-
relation between the bred vector and the forecast error
in the Niño-3 region to determine to what extent the
breeding method could capture such dynamical error
throughout the 6 yr. The monthly pattern correlations
are grouped into bins classified by BV growth rate
(�2.5, 2.5–3.5, 3.5–4.5 . . . and �8.5 per month). We
then calculate the mean of the absolute value of pattern
correlation in each group. For comparison, the corre-
sponding mean absolute value of the Niño-3 SST
anomaly is also calculated. The absolute value is used
to emphasize the phase of the ENSO event, that is, the
anomalous state of the background. Figure 3 shows that
the absolute value of the Niño-3 index is high when the
BV growth rate is small, and close to zero when the
growth rate is large, as discussed above, confirming the
results of Cai et al. (2003) obtained with the ZC model.
The mean pattern correlation between BVs and fore-
cast error in the last two groups with large growth rates
are significantly higher than the mean correlations of
lower growth rates (with a 95% confidence level). Also,
the mean background SST anomaly (absolute values)
corresponding to the small growth rates (the first two
groups) are higher than the values of other groups with
an 80% confidence level. This suggests that when the
background is in a near-neutral state, BV tend to have
larger projection on the forecast error. The relatively
small spatial correlation (�0.4) is due to the fact that
such a complex system includes not only ENSO insta-
bilities but also instabilities associated with shorter
space and time scales and with the introduction of
AMIP atmospheric initial conditions, noisy processes
that could not be captured with breeding and may also
be partially due to the model errors. Nevertheless, by
visually comparing the structure of BV and forecast
error on months with large BV growth rate, we observe
that BV tends to stretch into the directions that are
dominant in the forecast errors although the local maxi-
mum–minimum may not be perfectly overlapping due
to the presence of multiple dynamical processes.

Combining the results from Figs. 2 and 3, we can
conclude that bred vectors are naturally influenced by
the background instabilities, particularly the dominant
large-scale, low-frequency variabilities. The shapes of

FIG. 2. (a) Background Niño-3 index (°C), (b) bred vector
growth rate (month�1), and (c) rms of the difference between SST
analysis and one-month forecast SST in the Niño-3 region (°C).

←

FIG. 1. (left) Background Niño-3 SST index (°C) and (right) vertical cross section of the temperature forecast error (°C; color shades)
and BV temperature (°C; contours) at constant depth with the depth of the 20°C isotherm denoted as the thick dash–dotted line,
corresponding to (a) 1 Nov 1996, prior to ENSO stage, before warming developed; (b) 1 May 1997, the developing stage, when warming
started; (c) 1 Dec 1997, the mature stage, when warming is strongest; and (d) 1 May 1998, post-ENSO stage, when the warm anomaly
diminished. The contour interval is 0.5°C, and the zero contour is not plotted. The scale of the color shading is from �5° to 5°C. The
amplitude within the range of �1° and 1° is not colored.
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forecast errors are also affected by these same instabili-
ties. Therefore, the bred vector can detect the rapidly
changing stage of the background occurring in the east-
ern Pacific and represent the shape of the correspond-
ing forecast errors.

The spatial correlation between bred vectors and
forecast error suggests bred vectors can be used to iden-
tify the shapes of the fast-growing instabilities that
dominate the forecast error. We have examined the
agreement between the bred vectors and forecast error
by fitting the zonal and meridional error covariance
structures with a Gaussian function (see appendix A).
The correlation length derived from forecast error and
bred vector illustrates the characteristic length of the
“error of the month” associated with the coupled insta-
bility. Table 1 summarizes the mean value of the cor-
relation lengths estimated from one-month forecast er-
ror and bred vector near the equator for all months. It

is seen that the ranges of the mean correlation lengths
and their standard deviations are very similar for the
forecast error and bred vector, suggesting that the bred
vector is able to provide information on the structure of
the forecast error. The characteristic scale of error of
the month is much shorter than what is currently used
in the OI scheme (�1500 km). In addition, the fitted
variance from the forecast error and bred vector both
indicate larger amplitudes near the equator, particu-
larly in the bred vector field. Here, we should note that
the BV represents the structures of growing instability,
and its magnitude is not to indicate the magnitude of
the analysis/forecast error since we choose the rescaling
breeding amplitude to be large enough to capture the
growth of the ENSO-related coupled instability and to
filter out the unwanted instabilities. The forecast errors
appear as the result of analysis errors in the initial con-
dition and the model deficiency so its variance is shown

FIG. 3. Mean value of the pattern correlation (blue line) and the Niño-3 index (°C; red line) in bins defined by the BV growth rate.
The pattern correlation and the Niño-3 index are grouped based on their corresponding growth rate located within the ranges of �2.5,
2.5–3.5, 3.5–4.5, . . . and �8.5. Pattern correlation is defined as the spatial correlation between the bred vector and the one-month
forecast error in the Niño-3 region, and the absolute value is used for both the pattern correlation and the Niño-3 index.
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to be larger compared to BVs. Results also show that
both the meridional correlation scales estimated from
the forecast error and bred vector are similar to the one
used in the current OI scheme (�400 km). In practical
applications, it may not be easy to determine the cor-
relation length in different regions every analysis cycle.
Instead the full BV states can be used to augment the
structures of the background error covariance in the
data assimilation system (as discussed in section 1) and
the augmented amplitude can be globally scaled to have
the same amplitude as the 3DVARR/OI background
error covariance (Yang et al. 2007).

c. Dynamic error structure in the equatorial
subsurface ocean

In the previous subsections, we have shown that in
the eastern Pacific both the growth of BV SST and the
forecast error are dominated by similar dynamic errors.
The growth of SST perturbations in the western Pacific
is limited by its low natural variability due to the deep
well-mixed surface warm water. As the result, the
growth of temperature perturbations is less detectable
near the surface layer in the western-central Pacific.
However, subsurface perturbations can carry the infor-

mation of coupled instabilities driven by the wind
stress. Moreover, the warm pool in this region plays an
essential role in the interaction between the atmo-
sphere and the ocean through heat exchange at the
surface. These observations suggest that a good en-
semble forecast system for ENSO prediction should be
able to generate perturbations to include the uncertain-
ties related to these effects of covariabilities.

It has been recognized that interannual variability of
equatorial subsurface temperature has large variance
near the mean thermocline, that is, at a depth of about
175 m in the west Pacific and 50 m in the east. Figures
4a and 4b show that the first two leading EOF modes of
the anomalous ocean subsurface temperature fields
(computed using the vertical cross section of tempera-
ture analysis fields at the equator) are strongly related
to the development of an ENSO event and explain
more than 60% of the total variance of the equatorial
subsurface temperature. The leading mode has large
variability located in the eastern Pacific (mature El
Niño) and its corresponding principal component is in
phase with the variations of the Niño-3 index. The sec-
ond mode, related to the early development of the
event, exhibits large variability that extends from the

FIG. 4. (a) The first EOF mode of the equatorial temperature anomaly and (b) the second
mode. The thick dashed line is the depth of the mean thermocline. EOF modes are normal-
ized, and their explained variances are in parentheses.

TABLE 1. The error zonal correlation lengths and mean error variance of SST, obtained by fitting the bred vector and forecast error
with a Gaussian function.

Correlation length (km) STD of correlation length (km) Fitted variance (°C2)

Forecast error Bred vector Forecast error Bred vector Forecast error Bred vector

2.5°–7.5°N 514 540 272 269 0.63 0.05
2.5°S–2.5°N 575 505 251 226 0.99 0.14

7.5°–2.5°S 445 416 217 199 0.83 0.07
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subsurface of the western Pacific and peaks in the cen-
tral Pacific. Based on the temperature analysis fields,
this mode leads the first one by about 7 months. It is
clear that for ENSO prediction, the ability to describe
thermal variations in subsurface conditions should
strongly contribute to how well the SST forecast per-
forms. The NASA GMAO CGCM exhibits reasonable
interannual phase variations in the subsurface but the
simulated subsurface temperature variations from this
CGCM have a weak magnitude compared to the ob-
servations (not shown). Also, the current ensemble
spread from operational ensemble perturbations is very
limited near the thermocline in the western Pacific and
smaller than the temperature error. Such a limitation
due to the suboptimal ensemble perturbations and im-
perfect model physics is a common feature of many
CGCMs and will crucially influence the ability to fore-
cast SST anomalies in the equatorial eastern Pacific.
Although BVs are not intended to capture the errors
due to model deficiencies, they are used to reduce the
initial errors associated to the corresponding initial at-
mospheric–oceanic conditions.

The same EOF analysis is applied to the forecast
error and the bred vector temperature cross section at
the equator. Figures 5a–c show the first three EOF
modes of forecast error and their explained variances
are 20%, 12%, and 6%, respectively. The first two
modes of the forecast error have somewhat similar lo-
cations as the dominant ENSO-related modes, and they
all show large amplitudes along the thermocline. The
first mode has large variabilities in both the eastern and
western Pacific with comparable amplitudes. The sec-
ond mode is mainly located in the central Pacific. This
implies that the subsurface growing error is dominated
by large-scale variations, related to the zonal tilt of the

thermocline. Comparing with Fig. 4, these patterns
shown in Fig. 5 strongly project on the space of ENSO-
related variability. Consequently, such growing errors
will develop variations like El Niño–La Niña.

We then applied the same EOF analysis to the bred
vector equatorial temperature. Here, we use the bred
vectors before rescaling, that is, the bred vectors are
weighted by their growth rates, in order to find the
patterns that dominate the growing components. Fig-
ures 6a–c show the first three EOF modes and have
similar amounts of explained variances (7%, 8%, and
9%). The EOF modes have a striking resemblance to
the EOF modes of the forecast error. Here the ordering
of the BV’s EOF mode is rearranged in order for con-
venient comparison and to emphasize their relation
with the forecast error. As discussed before, the rela-
tively low explained variances should not be a serious
concern for our understanding and for implication. The
results are obtained from the fact that, in addition to
ENSO instabilities, there are also other instabilities and
processes with very different space and time scales
present in such a complex system (i.e., very large de-
grees of freedom). Despite this, the dominant growing
pattern is still associated with the large-scale variations.
This supports the hypothesis that bred vectors can cap-
ture the shape of the related dynamic error that domi-
nates the forecast error. Currently, the background er-
ror covariance in the univariate optimal interpolation
analysis uses a Gaussian shape in the horizontal and
vertical directions. By contrast, the patterns of EOF
modes suggest that the background error in the subsur-
face should have considered large-scale shapes expand-
ing near the thermocline in order to ensure the correc-
tions from the data assimilation scheme project on the
ENSO-related low dimensional space.

FIG. 5. As in Fig. 1, but for (a) the first EOF mode of equatorial temperature of forecast error, (b) the second mode, and (c) the
third mode.
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We also notice that in the BV EOF modes, there is a
feature locally trapped in the extreme eastern equato-
rial Pacific near surface. This feature is absent in the
EOF modes of the forecast error. This may be due to
the rapid dynamical adjustment of Ekman pumping in
the shallow region off the South American coast when
adding the bred perturbation to the unperturbed con-
trol background, that is, the analysis field.

4. Application to ensemble forecasting: Case study
for 1997/98 El Niño

To explore the impact of using coupled BV for en-
semble forecasting, we performed a two-sided breeding
cycle (Toth and Kalnay 1997) to generate initial en-
semble perturbations and study the impact on predic-
tions of the strong 1997/98 El Niño event. In a two-
sided breeding cycle, pairs of positive and negative bred
perturbations are used to perturb the initial state. The
rescaling factor is then measured by the difference be-
tween this pair of perturbations after one month, cal-
culated according to Eq. (1):

factor �
��x0 �

��x�t��
�

��x0 �

�0.5 � 	xp�t� � xn�t�
 �
. �1�

In Eq. (1), ��x0 � is the initial size of the perturbation
(e.g., the rms of Niño-3 BV SST chosen to be 0.1°C)
and ��x(t) � is the evolved (unrescaled) bred perturba-
tion after one month, xp(t) is the positively perturbed
one-month forecast and xn(t) is the negatively per-
turbed one-month forecast. This constant factor is then
applied to rescale the evolved bred perturbation. This
rescaled perturbation is added and subtracted from the
control as the next initial condition for the next breed-
ing cycle.

Studies have shown that the trigger and development

of this event is closely related to a series of westerly
wind bursts with long fetch along the equator, which
weakened and reversed the trade winds in early 1997
(McPhaden 1999). The wind burst forced a down-
welling Kelvin wave that deepened the thermocline in
the eastern equatorial Pacific and contributed to the
development of the warm SST anomaly. The reduced
zonal SST gradient helped to strengthen the westerly
wind anomalies. The anomalous states were further in-
tensified due to the nonlinear interactions between the
atmosphere–ocean coupling, including phase locking
with the seasonal variability in the equatorial Pacific.

The hindcast experiment with the operational en-
semble is able to predict the phase and intensity of this
event after it has already developed (e.g., starting on
May 1997). The hindcast initialized in January 1997
forecasts a warm event, but underestimates the inten-
sity. Using forecasts started from a pair of positive and
negative BV perturbations, we found that the mean
from this pair of ensemble members is able to substan-
tially improve upon the control (unperturbed) forecast
starting from January 1997. In the following analysis,
we use this case to discuss the impact of applying
coupled BV perturbations.

Starting from January 1997, we found that the en-
semble member initialized with the positive BV cap-
tures very well the intensity of this strong El Niño event
and that the anomalous phase is more accurate, as
shown by the red line in Fig. 7. The observed Niño-3
index (the blue dashed line) is computed from the
Reynolds SST and is used for verification. The forecast
initialized with the negative BV (red dashed–dotted
line) shows a behavior rather similar to that of the con-
trol forecast (black line). For convenience, we will refer
to the positive BV as PBV, and the negative BV as

FIG. 6. As in Fig. 1, but for (a) the third EOF mode of equatorial temperature of the unrescaled bred vector, (b) the second mode,
and (c) the first mode.
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NBV and the control forecast as CNT. To test whether
the best forecast in this case can only be achieved when
both the atmosphere and ocean are perturbed, we per-
formed two additional forecast experiments that use
only the ocean component of the PBV as the initial
perturbation (PBVO) and only the atmospheric com-
ponent (PBVA). Neither PBVO (the green line) nor
PBVA (the magenta line) are able to reproduce the
intensity of the anomalous warm state that PBV pre-
dicted, even though PBVA shows a larger impact than
perturbing the ocean alone. Our results suggest that
only when the coupled bred perturbation is applied is
the evolved perturbation able to maximize the coupling
effect and predict the event.

The initial SST perturbation of PBV at this time,
shown in Fig. 8a, has a warm perturbation located in the
eastern Pacific (140°–100°W) and a slight cool pertur-
bation in the west. The bred temperature perturbation
in the subsurface reflects the downwelling/deepening
perturbation of the thermocline in the eastern Pacific
(Fig. 8b). On the western edge of the warm perturba-

tions, there are corresponding westerly wind perturba-
tions in the equatorial central Pacific. As we will discuss
later, the westerly wind perturbation is able to expand
farther to the east and makes the downwelling (deep-
ening) effect more easily amplified in the shallow re-
gion. Although the details of the appearance of the
wind burst in PBV are not completely consistent with
observations, the development of the warm anomaly in
PBV has a similar triggering effect and results in a bet-
ter prediction of the strong El Niño event.

We examine the Hovmoeller diagram of zonal wind
stress from these experiments and notice that only PBV
(Fig. 9b) has the westerly wind burst that took place in
mid-February until early March, slightly earlier than
the observations (Fig. 9f). Also, the duration of this
wind burst in Fig. 9b is long and it extends to 140°W,
while other forecast members show relatively neutral or
easterly wind anomalies during March. In addition,
only PBV shows the consistent strong positive wind
anomaly after the El Niño event has been established in
May 1997, suggesting its role is tightly coupled with the

FIG. 7. Forecast Niño-3 indices from different initial condition starting from January 1997. The observed Niño-3
index (from Reynolds SST) is denoted with a blue dashed line. The control forecast without perturbation is
denoted as the black line. The red solid line is the forecast initialized with PBV, the red dot–dash line is the one
initialized with NBV, the green solid line is the one initialized with perturbed ocean only from PBV, and the cyan
line is the one initialized with perturbed atmosphere only from PBV. See the detailed discussion in section 4a.
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warm anomaly in the upper ocean. This can also be
observed in the anomalous changes of the subsurface
structure. The similar response in the low-frequency
variability between the PBV and the observation, al-
though they differ in detail, suggests that successful pre-
dictions of the 1997 El Niño event do not rely on de-
terministic variations only. The result may relate to lin-

ear stochastic forcing theory of ENSO (Zavala-Garay
et al. 2005). The atmospheric perturbation of PBV
projects on the low-frequency variations and together
with the oceanic perturbation induces a stronger ENSO
response.

Figure 10 shows the monthly mean vertical tempera-
ture in the equatorial upper ocean above 300 m. The

FIG. 8. Bred perturbation used to initialize PBV: (a) SST perturbation (°C) with color shading and wind perturbation (m s�1), shown
as vector, averaged from 1000 to 850 hPa, and (b) the temperature perturbation along the equator with the dash–dotted line denoting
the depth of the background 20°C isotherm.
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FIG. 9. Forecast zonal wind stress anomaly (N m�2) over the ocean from January 1997 to December 1997 from (a) the control forecast,
(b) the perturbed forecast initialized with the PBV, (c) the perturbed forecast initialized with the NBV, (d) the perturbed forecast
initialized with the PBVO (ocean only), (e) the perturbed forecast initialized with the PBVA (atmosphere only), and (f) observations,
obtained from SSM/I. All fields are daily data with a 1-week running mean.
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analysis state derived from the data assimilation
scheme is used to represent the best estimate of the true
state. As shown in Fig. 10a, a seesaw pattern (negative–
positive anomaly to represent the flattened ther-
mocline) is evident during the intensification of this
warm event because of the positive feedback from air–
sea interaction. Overall, the source of the forecast skill
from all the ensembles is the subsurface western Pacific,
where all the forecast states have already indicated a
deepening anomaly and are able to describe its east-
ward propagation. However, only PBV captures the
dominant seesaw pattern in the subsurface temperature
anomaly, though the mature phase is about one month
ahead of the verification. In the early forecast months,
all of the forecast states (including PBV) show a too-

shallow thermocline in the eastern basin and they stay
in the cold phase. Such results indicate that a much
better depiction of the equatorial wave propagations
could be obtained if the perturbation is able to effec-
tively modulate the wind forcing. In addition, except for
PBV, the amplitude of the deepening anomaly decays
prematurely and the deepening feature near the eastern
end of the Pacific basin becomes neutral after Septem-
ber.

We notice that when the PBV atmospheric compo-
nent is used (PBVA), it has some important features
shown in PBV. For example, the deepening feature is
able to develop in the eastern Pacific even though the
amplitude is smaller, and it includes the shoaling
anomaly in the western Pacific. This is evidence that the

FIG. 10. Monthly mean equatorial vertically average temperature anomaly (°C) in the upper ocean
(defined as the upper 300 m) from January 1997 to December 1997 from (a) the control forecast, (b) the
perturbed forecast initialized with the PBV, (c) the perturbed forecast initialized with the NBV, (d) the
perturbed forecast initialized with the PBVO (ocean only), and (e) the perturbed forecast initialized with
the PBVA (atmosphere only), and (f) the analysis data. The analysis data used for validation are derived
from the OI scheme implemented in the same ocean GCM, assimilating temperature and synthetic
salinity profiles.
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atmospheric perturbation carries information that is
able to drive the tilting of the thermocline.

5. Summary and discussion

The coupled breeding method has been implemented
into the NASA GMAO operational coupled GCM, in
which the ocean component assimilates the real tem-
perature observations through an OI scheme. Breeding
experiments are then performed under this imperfect
model scenario, so that growing errors are much more
complicated than in the perfect model scenario ex-
plored in Yang et al. (2006). They include, in addition
to those dominated by the coupled ENSO dynamics,
other errors such as initial errors due to an imperfect
data assimilation scheme, noisy observation errors, and
model errors (as well as those due to the spinup of the
AMIP atmospheric initialization). We explore the pos-
sibility that bred vectors could still be used as a proxy to
represent the structure of the one-month forecast er-
rors despite the presence of these complications in a
real operational system. Potential applications for this
work are the improvement of ENSO ensemble fore-
casting system and the better use of observations in the
data assimilation scheme by including evolving “errors
of the month.”

For the ENSO prediction, the forecast SST in the
tropical Pacific is the most crucial variable directly de-
picting air–sea interaction and determining the perfor-
mance of the coupled GCM. As a first step, we analyze
the temperature structure characteristics of the one-
month forecast errors and the bred vectors. One-month
forecast errors show dynamical structures evolving with
the variations of the background flow and bred vectors
strongly project onto these forecast errors. Both the
amplitude of forecast error and the bred vector growth
rate are dominated by low-frequency variations with a
very similar trend: they are small when the background
anomalies are in the mature phase of ENSO events and
are large when the background anomalies are near neu-
tral, especially during the sharp transition that occurred
from the 1997/98 strong El Niño to the 1999 La Niña
event. A statistical analysis suggests that the agreement
between bred vector and forecast error is particularly
good when the BV growth rate is large and when the
background anomaly is near neutral. In addition, our
results suggest that the leading EOF modes of subsur-
face structure of one-month forecast errors and bred
vectors are both dominated by similar large-scale fea-
tures with peak variations near the thermocline.

For the 1997 El Niño event, the forecast error of the
temperature cross section along the equator shows that
large error appeared first in the subsurface of the cen-

tral-to-western Pacific, propagated eastward, and am-
plified off the east coast during the development of this
strong event. The operational forecast error is smallest
near the surface at the mature stage but the subsurface
errors show a wide zonal expansion. The evolution of
the one-month subsurface forecast error structure
shows that the errors reflect the large-scale displace-
ment of the thermocline associated with the anomalous
background variations. The bred vectors at the relevant
times captured most of the shapes of the one-month
forecast error, including the eastward propagation and
vertical and zonal expansion, even though they were
computed without using observations.

The potential application of using bred vectors in the
ocean data assimilation is also explored in this study.
For a complex system like a coupled GCM, it is far too
costly and practically impossible to retrieve the full di-
mension, atmosphere–ocean error covariance structure.
However, it is possible to create a shortcut, represent-
ing the dominant structures with the bred vectors de-
rived here to augment the time-independent covariance
structure. We have demonstrated that bred vectors are
characterized by similar correlation length as the ones
derived from the forecast error, even though the bred
vector is calculated only from the difference between
perturbed and unperturbed forecasts and has no infor-
mation about the analysis used to calculate the forecast
errors. The horizontal correlation length associated
with “errors of the month” is found to be shorter than
the one used in OI scheme.

Last, we include the coupled bred vectors with two-
sided breeding in the ensemble members to explore the
impact of using coupled initial perturbations. Our re-
sults show that the mean from the pair of BV ensemble
members substantially improves the control forecast
starting from January 1997 because one of the BV
members captures most of the important features in the
1997/98 El Niño event. We found that such a result
cannot be achieved if only the atmospheric or the oce-
anic component of the bred perturbation is retained.
Only when the coupled perturbation is used are the
amplitude and phase of the forecasted warm event
close to the observed evolution. The successful member
initialized with the positive BV is the only one that
developed westerly wind bursts that extended eastward
of the date line in early 1997 and suggest it captures the
most probable coupled uncertainties. We believe this
precursor contributes to the subsequent well-developed
positive feedback of this event, including the deepening
thermocline in the eastern Pacific and the consistent
positive zonal wind stress anomaly that prevailed in the
central basin.

For the next phase of our studies, we will extend the
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coupled bred vectors with two-sided breeding in the
ensemble members for a much longer hindcast experi-
ment period so that we can explore their impact on
different starting months. Additionally, based on our
results of error structure in subsurface temperature, we
will explore the possibility of including the time-varying
error structures derived from the BV in the background
error covariance within a data assimilation scheme like
OI. By using such dynamically related error covariance,
the corrections made to the background state with the
observation information are expected to reflect the
anomalous, flow-dependent variations in the subsur-
face.

Currently, the NASA ensemble Kalman filter
(EnKF), developed for the purpose of ocean data as-
similation (Keppenne and Rienecker 2002), typically
has an analysis interval of 5 days in this NASA system.
So the ensemble members used to construct the flow-
dependent background errors covariance are domi-
nated by the oceanic instabilities and may not correct
the background errors projecting onto the coupled in-
stabilities. Moreover, the EnKF can suffer from en-
semble collapse and may not span the range of uncer-
tainties associated with the dominant coupled modes.
The underestimation of the ensemble forecast spread
due to the absence of some unstable directions and the
neglect of model errors in the formulation of the system
noise can result in overconfidence in the forecast (en-
semble collapse) during the process of data assimila-
tion. Although procedures like multiplicative and addi-
tive variance inflation (Anderson and Anderson 1999;
Hamill and Whitaker 2005) commonly used in EnKF-
based schemes can alleviate such problem, we suggest
that augmenting the ensemble members from the
EnKF with the BVs in order to capture the most im-
portant coupled growing directions would allow errors
to project on the low-frequency variations. Therefore, it
is possible to provide a better background error covari-
ance after BVs are incorporated in the EnKF frame-
work.

For the applications on the numerical weather pre-
diction (NWP), Corazza et al. (2003, 2007) and Yang et
al. (2007) show that refreshing the bred structures by
adding a small amount of random perturbations during
the breeding cycles is able to efficiently prevent the
bred ensemble collapsing into similar directions. This
method is also akin to the additive perturbation used in
EnKF and allows the bred vectors to capture more
growing directions. In future applications on ensemble
forecasting or data assimilation, we may need more en-
semble members to describe the subgrowing directions,
but this can also be approached with a similar idea
discussed above and by including random perturbation

(white noise like) wind fields in the monthly breeding
cycle. However, the question raised here may be some-
what different from the point view of NWP since the
interannual instability is dominated by the ENSO vari-
ability depending on the longer memory of the ocean
component. Therefore, it is reasonable to assume that
the coupled bred vectors are associated with the growth
of the slowly varying ENSO-related instability. We also
note that for the slow coupled ENSO bred vectors, the
presence of weather is a large source of noise, which
should accomplish the same effect of refreshing the
bred vectors. Therefore, though the coupled bred vec-
tors are dominated by similar slowly varying instability,
their structure will not be too similar and can be rea-
sonably used to augment the background error covari-
ance in the data assimilation.
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APPENDIX A

Fitting the Forecast Error/Bred Vector with a
Gaussian Function

In this section, we briefly describe the procedures
that we use to obtain the fitting parameters of a Gauss-
ian function, that is, the fitted error variance (C0) and
the correlation length (L) in Eq. (A1):

f�r� � C0 exp��
r2

L2�. �A1�

The Levenberg–Marquardt algorithm is first applied to
estimate these parameters, and the standard deviation
corresponding to the fitting points are required for non-
linear fitting. In our results, the standard deviations
from both the one-month forecast error and bred vec-
tor have larger values at short ranges and smaller values
near the tail. Therefore, this scheme will try to overfit
the tail. To avoid overemphasizing the small covari-
ances at large separations (which is dominated by sam-
pling errors), we use the e-folding value of the average
of the first two fitting points to determine how many
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data points should be used for fitting, and a correspond-
ing length, Le, is chosen.

Once (C0, L) are determined, we repeat the proce-
dure by increasing the number of points used for the
fitting and calculate the rms error within Le. The (C0,
L), which has the smallest rms error, is assigned to our
final result. If the e-folding range cannot be found at the
last point of the data, it suggests a very large-scale lin-
ear behavior of the error covariance. We then switch to
a simple linear regression form [Eq. (A2)] to avoid fail-
ure in fitting the nonlinear scheme:

ln	 f�r�
 � lnC0 �
r2

L2 . �A2�

APPENDIX B

Bred Vectors with Different Rescaling Norms

In this section, we will compare BVs derived from
two different rescaling norms: 1) the BV SST in the
Niño-3 region with an amplitude of 0.1°C and 2) the BV
D20 (the depth of 20° isotherm) in the tropical Pacific
with an amplitude of 0.2 m, and both are rescaled every
month. They are referred as to BV1 and BV2, and the
results shown in section 3 are related to BV1. In addi-
tion, with one-month rescaling period, it is long enough

to capture the growth of the slowly varying instability
associated with ENSO. We also found that BVs’ struc-
tures are dominated by similar growing instabilities but
are not identical due to the nonlinearity of the coupled
system.

Figure B1a is the time series of the RMS of the BV1
and BV2 SST (unrescaled) in the Niño-3 region. The
high correlation (0.67) between these two time series
suggests similar growing structures in the Niño-3 re-
gion. The structures between these two BVs are com-
pared in the eastern Pacific (Niño-3 region) and the
western Pacific by computing their correlations. Figure
B1b shows that overall the correlation is large in either
region for the same month, which suggest that these
two BVs have similar structures propagating in the
tropical Pacific. The EOF analysis of BV2 has similar
subsurface features as shown in Fig. 6 (not shown).
These results confirm that BVs’ structures are not sen-
sitive to the rescaling norm as long as the rescaling
period is long enough and the amplitude is reasonable
to capture the growth of the coupled instabilities.
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