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ABSTRACT

Assimilation of data from the Gravity Recovery and Climate Experiment (GRACE) system of satellites
yielded improved simulation of water storage and fluxes in the Mississippi River basin, as evaluated against
independent measurements. The authors assimilated GRACE-derived monthly terrestrial water storage
(TWS) anomalies for each of the four major subbasins of the Mississippi into the Catchment Land Surface
Model (CLSM) using an ensemble Kalman smoother from January 2003 to May 2006. Compared with the
open-loop CLSM simulation, assimilation estimates of groundwater variability exhibited enhanced skill with
respect to measured groundwater in all four subbasins. Assimilation also significantly increased the corre-
lation between simulated TWS and gauged river flow for all four subbasins and for the Mississippi River
itself. In addition, model performance was evaluated for eight smaller watersheds within the Mississippi
basin, all of which are smaller than the scale of GRACE observations. In seven of eight cases, GRACE
assimilation led to increased correlation between TWS estimates and gauged river flow, indicating that data
assimilation has considerable potential to downscale GRACE data for hydrological applications.

1. Introduction

Since its launch in March 2002, the Gravity Recovery
and Climate Experiment (GRACE) satellite system has
provided unprecedented measurements of column-
integrated terrestrial water storage (TWS) for the en-
tire globe. These measurements have been applied in
novel investigations of river discharge (Syed et al.
2005), regional evapotranspiration (Rodell et al. 2004a;
Swenson and Wahr 2006a), climate and teleconnections
(Andersen et al. 2005; Crowley et al. 2006), and the
changing mass of major glaciers and ice sheets (Luthcke
et al. 2006; Tamisiea et al. 2005; Velicogna and Wahr

2006), yielding important insight on regional to global-
scale water cycle variability.

To realize the full potential of GRACE for hydrol-
ogy, the derived regional-scale, column-integrated,
monthly water storage anomalies must be disaggre-
gated horizontally, vertically, and in time. Observa-
tional estimates of TWS from GRACE are routinely
generated on a monthly basis, though techniques have
been developed for producing 10-day anomalies (Row-
lands et al. 2005). GRACE’s horizontal resolution is
limited to about 150 000 km2 (Rowlands et al. 2005;
Yeh et al. 2006). Vertically, the GRACE TWS obser-
vation is a single number that integrates changes in
groundwater, soil moisture, vegetation, surface water,
snow, and ice. Skillful disaggregation of GRACE ter-
restrial water storage anomalies into changes in these
individual components would greatly improve their
value for hydrological research and applications. For

Corresponding author address: Benjamin F. Zaitchik, Hydro-
logical Sciences Branch, Code 614.3, NASA Goddard Space
Flight Center, Greenbelt, MD 20771.
E-mail: ben.zaitchik@nasa.gov

JUNE 2008 Z A I T C H I K E T A L . 535

DOI: 10.1175/2007JHM951.1

© 2008 American Meteorological Society

JHM951



example, initialization of seasonal forecasts requires ac-
curate estimates of model variables that are closely re-
lated to TWS and that contribute to the “memory” of
the climate system at monthly scales. While a number
of operational satellite platforms provide data on land
surface conditions, including skin temperature, surface
soil moisture, and vegetation, GRACE is the only re-
mote sensor currently capable of detecting changes in
TWS at any depth, under any conditions.

One approach to vertical disaggregation of GRACE
data is to use auxiliary information to isolate individual
components. Rodell et al. (2007) computed groundwa-
ter storage variations averaged over the Mississippi
River basin and its four major subbasins by using soil
moisture and snow water equivalent output from the
Global Land Data Assimilation System (GLDAS;
Rodell et al. 2004b) to estimate and remove those com-
ponents from GRACE TWS, assuming vegetation and
surface water contributions to be negligible. The results
compared favorably with piezometer-based groundwa-
ter storage estimates for the full Mississippi River basin
and the two larger subbasins. Similarly, Yeh et al.
(2006) used ground-based observations of soil moisture
to isolate groundwater storage variations from the
GRACE signal, with reasonable success.

A more sophisticated disaggregation method is to
merge GRACE-derived TWS with that simulated by a
land surface model (LSM) via data assimilation. This
approach has a number of advantages. First, the
GRACE observations themselves, though coarse, yield
reasonably reliable estimates of TWS anomalies (Swen-
son et al. 2006). Assimilating these data into an LSM,
therefore, has the potential to improve the accuracy of
TWS in LSM simulations (Ellett et al. 2006), much as
assimilation of remotely sensed snow cover (Clark et al.
2006; Rodell and Houser 2004), snow water equivalent
(Slater and Clark 2006), soil moisture (Reichle et al.
2007), and skin temperature (Bosilovich et al. 2007)
have had a positive impact on LSM simulations. Sec-
ond, our understanding of hydrological processes, as
captured by the model, is used to enhance the satellite
observations, providing downscaling and quality con-
trol of GRACE observations while enabling synthesis
of multiple observation types in a physically consistent
manner. Third, an assimilated observation of TWS in-
fluences a number of processes within an LSM in ad-
dition to water storage. Predictions of water and energy
fluxes are thus informed by the GRACE observation,
allowing us to quantify the influence of a bulk TWS
anomaly on spatially distributed runoff, evaporation,
ground heat transfer, etc. This is a primary motivation
for data assimilation in general, though it is also a point
of caution; assimilating one model state can have a de-

stabilizing impact on other model processes (Walker
and Houser 2005).

The unique characteristics of GRACE measure-
ments pose two particular challenges for assimilation
into an LSM. First, the assimilation algorithm itself
must map very few, coarse-resolution GRACE obser-
vations onto the many LSM elements required to simu-
late land surface processes at a useful resolution. This is
an uncertain process at best, and it demands an assim-
ilation algorithm that skillfully distributes the informa-
tion from a single coarse-scale observation onto the
numerous finer-scale model elements to which it is ap-
plied. Second, it is necessary to assimilate the GRACE
observation into an analogous field in the LSM. This is
a problem of disaggregation in its own right, as TWS is
divided between several storage components in any ad-
vanced LSM. Furthermore, the lack of a groundwater
reservoir is a deficiency that makes many current LSMs
inappropriate for this task (Niu et al. 2007).

In this study we adapted to these challenges by as-
similating GRACE TWS anomalies into the Catchment
Land Surface Model (CLSM) using an ensemble Kal-
man smoother (EnKS). The complete assimilation sys-
tem is presented as follows. In section 2 GRACE and
other data sources are described in greater detail. Sec-
tion 3 reviews relevant features of the CLSM and pre-
sents the EnKS. Results are given in section 4 and con-
clusions in section 5.

2. Data

The study required near-surface meteorological data
to force CLSM, GRACE-derived TWS anomalies for
data assimilation, and groundwater and runoff obser-
vations for evaluation. The meteorological data were
drawn from the GLDAS forcing database (Rodell et al.
2004b) at 2.0° � 2.5° resolution. The other datasets are
described next.

a. GRACE data

GRACE data used in this study were processed at
the University of Texas Center for Space Research
(CSR), at the GeoForschungsZentrum Potsdam
(GFZ), and at the National Aeronautics and Space Ad-
ministration (NASA) Jet Propulsion Laboratory (JPL).
Each center uses its own processing algorithm, but the
essential characteristics of the calculation are the same.
Global representations of Earth’s gravity field are pro-
duced on a near-monthly basis as sets of spherical har-
monic coefficients up to degree and order 120, based on
highly precise K-band microwave measurements of the
distance between two identical satellites orbiting earth
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in tandem (Tapley et al. 2004). The gravitational effects
of changes in atmospheric surface pressure and ocean
bottom pressure are removed using numerical model
analyses, such that the remaining variability can be at-
tributed primarily to the redistribution of terrestrial wa-
ter storage. The observed gravity signal degrades at
higher degrees and orders, so there is a trade-off be-
tween spatial resolution and signal accuracy. The
GRACE data used here (Chambers 2006) were
smoothed using a Gaussian averaging kernel with 400-
km averaging radius and “destriped” following Swen-
son and Wahr (2006b). Water storage changes were
extracted for each of the four major subbasins of the
Mississippi River: the Ohio–Tennessee, Upper Missis-
sippi, Missouri, and combined Red–Arkansas/Lower
Mississippi (Fig. 1). This approach is consistent with
earlier hydrological applications of GRACE (Chen et
al. 2005; Syed et al. 2005).

Monthly TWS anomalies were obtained for February
2003–April 2006 from CSR (release 1), for February
2003–May 2006 from GFZ (release 3), and from Janu-
ary 2003–November 2005 from JPL (release 2). Gravi-
tational anomalies were not reported by any of the
three processing teams for June 2003, January 2004, or
July–October 2004. The data gap in the summer of 2004
was due to a resonance that caused the GRACE satel-
lites to enter near-repeat orbit for several months
(Wagner et al. 2006). As all three centers produced
reasonably similar TWS anomalies for the period of
overlap (Fig. 2), we used an average of available esti-
mates to provide monthly assimilation inputs from
January 2003 to May 2006.

Optimal data assimilation requires error estimates
for both the model and the observation. This is not
straightforward given the multiple sources of uncer-
tainty in GRACE. Following Wahr et al. (2006) we use
20 mm as a conservative estimate of RMS error for
midlatitude GRACE TWS measurements. The subba-
sin average anomalies used in this study span several
averaging radii, suggesting that actual error for the en-
tire subbasin may be smaller. For this reason a second
assimilation integration was performed for which the
error of GRACE subbasin averages was assumed to be
10 mm. Results for this simulation did not differ signifi-
cantly from the simulation with the conservative error
estimate, so they are not presented in this paper.

b. Groundwater observations

Time series of groundwater storage anomalies were
generated based on unconfined and semiconfined wa-
ter-level records from 58 piezometers distributed across
the Mississippi River basin (Fig. 1). Sources included
the U.S. Geological Survey (USGS) Ground-Water Cli-
mate Response Network (CRN), the USGS WatStore
system, the Illinois State Water Survey, and published
reports. The groundwater and GRACE TWS datasets
were derived completely independently. Specific yield
estimates, used to convert well-water levels to equiva-
lent heights of water, were individually selected based
on published information prior to any comparisons with
GRACE, and no subsequent tuning was performed on
either dataset. Additional details are provided by
Rodell et al. (2007).

c. River discharge

River discharge data used in this study are daily
mean gauged values collected by automated recorders.
For the Mississippi River itself, these data were ob-
tained from the U.S. Army Corps of Engineers New
Orleans District (http://www.mvn.usace.army.mil/eng/
edhd/watercon.htm). For all tributary rivers (including
the Upper Mississippi), data were obtained from the
USGS National Water Information Service (http://nwis.
waterdata.usgs.gov/nwis/sw).

3. Methods

a. The Catchment Land Surface Model

The CLSM (Koster et al. 2000) was developed in
response to a perceived shortcoming in conventional
land surface models: the soil-layer-based vertical dis-
cretization of conventional LSMs is not well suited to
surface hydrologic processes. In effect, layer-based

FIG. 1. The four major subbasins of the Mississippi River: the
Missouri, Upper Mississippi, Ohio–Tennessee, and the combined
Red–Arkansas/Lower Mississippi (RA–LM). Thin white lines in-
dicate the borders of smaller watersheds within each subbasin,
including the 1) Kanahwa, 2) Wabash, 3) Illinois, 4) Minnesota, 5)
Arkansas, 6) Ouachita, 7) Yellowstone, and 8) Kansas Rivers,
which were used in model evaluations (Table 3). Black dots indi-
cate location of river gauges for the smaller watersheds. Crosses
indicate locations of the 58 piezometers used to calculate ground-
water variability.
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LSMs assume uniform topographic and hydrologic
characteristics at the grid scale, typically spanning tens
of kilometers. This impairs a model’s ability to simulate
runoff, which in turn leads to unrealistic fields of soil
moisture and evapotranspiration (Koster and Milly
1997). CLSM instead divides the land surface into to-
pographically defined catchments with an average area
of approximately 4000 km2 and models hydrologic pro-
cesses based on each catchment’s topographical statis-
tics. Subcatchment heterogeneity of soil moisture is
modeled by dividing the catchment into dynamic frac-
tions of saturated, unsaturated, and wilting areas, each
governed by equations appropriate for its soil moisture
status.

The primary prognostic variable in the CLSM is the
catchment deficit, defined as the average depth of water
that would need to be added to bring the catchment to
saturation (Fig. 3). The equilibrium vertical distribution
of soil moisture is then diagnosed on the basis of the

catchment deficit and soil parameters. This distribution
includes an implicit water table, located at the depth of
equilibrium saturation. In addition to the catchment
deficit, CLSM prognostics include reservoirs of root
zone excess moisture and surface excess moisture that
permit a rough representation of nonequilibrium verti-
cal conditions such as infiltration fronts. The surface
excess moisture reservoir is small relative to both root
zone excess and catchment deficit. Snow is represented
in a state-of-the-art three-layer snow physics scheme
(Stieglitz et al. 2001).

In this study CLSM simulations were performed for
the Mississippi River basin. Catchment information was
defined on the basis of a 30 arc-s digital elevation model
from the USGS (Verdin and Verdin 1999). For compu-
tational reasons, the fundamental modeling element in
CLSM is the “tile,” defined by the intersection of a
catchment with the overlying atmospheric grid. The
Mississippi River basin comprises 783 defined catch-

FIG. 2. Monthly TWS anomalies based on CSR, GFZ, and JPL GRACE observational estimates and from an
open-loop simulation with the CLSM.
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ments, resulting in 1950 tiles under a 1.0° � 1.25° at-
mospheric grid (Fig. 4). The model was spun up for 10
yr under 2002 forcing conditions and integrated from 1
January 2003 through 1 June 2006. The results of two
integrations are described in this paper: an open-loop
(OL) simulation without assimilation and a GRACE
data assimilation (GRACE DA) integration.

The defining characteristics of CLSM make it par-
ticularly appropriate for the assimilation of GRACE-
derived TWS anomalies. As described in section 2a,
GRACE TWS anomalies can be extracted for a water-
shed of arbitrary shape. By pairing watershed-defined
GRACE estimates with a watershed-defined CLSM
domain, it is possible to perform area-accurate assimi-
lation for hydrologically defined basins. More impor-
tantly, the presence of a variable water table is essen-
tial, since it means that the model accounts for most of
the groundwater variability measured by GRACE.
CLSM’s lack of traditional hydrologic layers in the sub-
surface is convenient: we apply increments (based on
TWS) directly to the column-integrated prognostic
variable (the catchment deficit) and the primary non-
equilibrium prognostic (the root zone excess moisture),
without need for arbitrary vertical disaggregation. Fi-
nally, the subdivision of each catchment into saturated,
unsaturated, and wilting fractions provides a physically
based mechanism for weighting the hydrologic effects
of an assimilated GRACE observation across a mor-
phologically diverse modeling unit. This does not solve
the problem of applying a single GRACE observation
of a given subbasin to numerous model catchments

within the subbasin, but it does furnish a rationale for
spatially distributing the effects of assimilation at the
subcatchment scale.

b. Data assimilation

In a data assimilation system, the modeled fields are
corrected toward observational estimates, with the de-
gree of correction determined by the levels of error
associated with each. Data assimilation algorithms can
be divided into filters, including the widely used en-
semble Kalman filter (EnKF), and smoothers. Filters
assimilate observations as they become available, up-
date only the most recent model state estimates, and
are well suited for forecast applications that require
estimates of present conditions only. By contrast,
smoothers use information from a series of observa-
tions to update model fields over a window of time and
are often preferable in reanalyses, where there is an
interest in accurate representation of the evolving sys-
tem (Dunne and Entekhabi 2005; Evensen and van
Leeuwen 2000). Generally, smoothing estimates are at
least as good as filtering estimates. Smoothing algo-
rithms, however, carry a considerable computational
cost and their efficient implementation is not trivial
(Dunne and Entekhabi 2005; Ravela and McLaughlin
2007).

Because GRACE TWS observations are time aver-
aged and our focus is on retrospective analysis, we use
an ensemble smoother for our application. Our ap-
proach is similar (but not identical) to previous en-
semble smoothing studies (e.g., Dunne and Entekhabi
2005; van Leeuwen 2001). A few practical modifications
were necessary on account of the time-averaged nature
of GRACE observations: this is not a case of distribut-
ing instantaneous observations over a number of model

FIG. 3. Prognostic hydrologic variables in the CLSM: 1) catch-
ment deficit, 2) root zone excess, 3) surface excess, 4)–6) three
snow layers.

FIG. 4. CLSM modeling domain for the Mississippi River basin.
Shading indicates topographically defined catchment units, and
the dashed grid indicates atmospheric forcing. The CLSM model
unit is the tile, defined by any unique combination of a catchment
with an atmospheric grid cell.
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time steps, but of temporally disaggregating a month-
long observation onto the finer temporal scale of the
LSM. The next section describes the ensemble
smoother, and section 3d gives details on its implemen-
tation.

c. The ensemble Kalman smoother

The ensemble smoother used here is similar to the
EnKF (Reichle et al. 2002). In the ensemble approach,
conditional probability densities for predicted states are
approximated by a finite number of model trajecto-
ries—the ensemble—with a covariance that reflects un-
certainties in the model physics, parameters, and forc-
ing data. Assimilation increments are calculated based
on the relative uncertainty in the model and the obser-
vations, described by the (sample) error covariance ma-
trices.

In our application we subdivide the experiment pe-
riod into data assimilation (or smoothing) windows T
that coincide with calendar months. Each GRACE ob-
servation is assimilated only in the month in which the
observation was collected. Stated generically, the up-
date for each ensemble member and for smoothing win-
dow T can be written as

XT�
i � XT�

i � KT�YT
i � MT�XT�

i ��. �1�

Here, Xi
T� and Xi

T� denote the ith ensemble member of
the state vector before and after the update, respec-
tively. The state vector is a collection of model prog-
nostic variables at one or more times in the assimilation
window T. The vector Yi

T contains the observations
(suitably perturbed) and MT is the measurement opera-
tor that maps the model fields into observation space.
Vectors Xi

T and Yi
T need not be of the same length: Xi

T

has length n (for n model variables), while Yi
T has

length m (for m observations).
The time-dependent Kalman gain matrix determines

the relative weights of the model versus the observa-
tions during the update, and is defined on the basis of
their respective covariance matrices,

KT � �CXM�CM � C��
�1�T. �2�

Uncertainties in the observations are described with the
covariance matrix C	. The matrix CM is the error co-
variance of the corresponding model predictions
(MT[XT]), and CXM is the error cross covariance be-
tween the state Xt and the model predictions MT[XT].
The cross covariance CXM is particularly important be-
cause it provides the basis for the distribution of obser-
vational information from the coarse subbasin scale to
the finer-scale tile space. Since CXM is diagnosed from
the ensemble, the perturbations that are added to the

forcings and state variables of each ensemble member
must include realistic horizontal correlations (see be-
low).

d. Implementation of the GRACE EnKS

Here, we apply the EnKF update separately for each
subbasin, such that the model state matrix XT has di-
mensions 2Nj � 20, reflecting an ensemble of 20 mem-
bers for the catchment deficit and the root zone excess
moisture at the beginning of the month in each of the Nj

tiles in subbasin j( j �1, . . . , 4). (See below for tiles with
snow cover.) Meanwhile, YT is a scalar, as only one
GRACE observation is available for each major sub-
basin in each assimilation window. GRACE TWS
anomalies were converted to absolute TWS values by
adding the corresponding time-mean TWS from an
open-loop CLSM simulation for the assimilation pe-
riod. GRACE observations were not otherwise scaled
for assimilation. The (scalar) observation error vari-
ance C	 � (20 mm)2 includes errors involved in pro-
ducing TWS anomaly estimates from GRACE orbital
data. Each CLSM integration included 20 ensemble
members; additional integrations with 12 and 100 en-
semble members each were performed for comparison,
and they yielded similar results.

In the past, both the EnKF and the EnKS have been
applied successfully to the assimilation of land surface
observations with roughly the same temporal and spa-
tial scales as the land surface model. GRACE data,
however, present additional challenges due to their
coarse temporal and spatial resolutions. Temporally,
each GRACE observation can be described as a
monthly estimate of relative TWS that is informed by
approximately three satellite overpasses, depending on
region size, shape, and orientation (Tapley et al. 2004).
We therefore calculate the model-predicted TWS—
denoted MT[XT] above—as follows (and schematically
depicted in Fig. 5). First, the CLSM ensemble is prop-
agated forward one month without any data assimila-
tion. During this first pass, model estimates of subbasin
average TWS are stored in memory at three specific
times—on the 5th, 15th, and 25th days of the month—
roughly mimicking the GRACE observation frequency
(Fig. 5[1]). The model-predicted TWS, MT[XT], is then
computed as the average TWS over these three times
(Fig. 5[2]). Next, the assimilation increments are calcu-
lated using Eq. (1) for a state XT that consists of the
catchment deficit and root zone excess values on the 1st
of the month, one value each for every catchment
within the subbasin and every ensemble member (Fig.
5[3]). Finally, the ensemble is reinitialized at the begin-
ning of the month and, on the second iteration, the
assimilation increments (Fig. 5[3]) are applied evenly
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over each day of the month (incremental analysis up-
date; Fig. 5[4]). This uniform smoother is appropriate
for TWS, which exhibits low-frequency variability as
well as high-frequency responses to atmospheric events
(Rodell and Famiglietti 2001). The updates are redis-
tributed between water reservoirs in the CLSM over
time, while the atmospheric forcing data enables the
model to depict high-frequency variability. The efficacy
with which CLSM redistributes water between catch-
ment deficit, root zone excess moisture, and surface
excess moisture is demonstrated by the fact that it
makes very little difference whether or not root zone
excess moisture is included in the assimilation update.
A simulation that used only catchment deficit in the
update yielded results that were very similar, though
not entirely identical, to those reported here (results
not shown).

Spatially, each GRACE observation spans tens to
hundreds of CLSM catchments. In an EnKF-based up-

dating system, the horizontal error correlations con-
tained in CXM dictate the horizontal distribution of
GRACE observational information from the subbasin
scale onto the many catchments that are contained
within the subbasin. These correlations are determined
by the spatial structure of the perturbations that we add
to model forcings and prognostic variables of each en-
semble member. For the simulations presented in this
paper, perturbations were added to the precipitation
and radiation forcing fields and to the catchment deficit
and root zone excess moisture CLSM prognostics. All
perturbations were generated with a horizontal corre-
lation scale of 2°, which very roughly represents error
scales in global-scale precipitation fields (Reichle and
Koster 2003), with a temporal correlation of 72 h for the
forcing perturbations and 24 h for perturbations to the
model prognostics, and with probability distributions
and covariances drawn from earlier experience with
CLSM data assimilation (Reichle et al. 2007). At the

FIG. 5. Ensemble smoother. Consider one subbasin with two snow-free CLSM tiles and
three ensemble members. For simplicity, root zone excess moisture is not included in this
schematic. [1] One-month forecast ensemble integration without assimilation. Store catch-
ment deficit for the 5th, 15th, and 25th of the month. [2] Calculate model prediction of
GRACE observation—MT[Xi

T�]—by converting stored catchment deficit values into basin-
scale, time-average TWS. [3] Use Eq. (1) to compute analysis increments for catchment
deficits on the 1st of the month (state vector Xi

T). [4] Integrate CLSM again from the 1st of
the month and apply analysis increments evenly distributed over all days of the month.
[5] Proceed with ensemble forecast and repeat process.
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same time, CLSM parameters of soil depth, drainage,
and porosity inform the dynamic range of hydrologic
prognostic variables in each catchment, adding addi-
tional spatial structure to CXM. Taken together, meteo-
rologically justified perturbations to forcing and catch-
ment-specific limits on ensemble variability in TWS
provide a statistically and physically informed basis for
distributing GRACE increments at scales smaller than
the observation.

Finally, assimilation requires water storage updates
to be distributed between snow and subsurface water.
For catchments that were modeled to be snow-free at
the time of an assimilation update, the entire increment
was applied to the catchment deficit and root zone ex-
cess moisture. Surface excess moisture was neglected,
due to its transience and small volume relative to the
other reservoirs. For catchments with snow cover, posi-
tive increments (i.e., “wetting”) were applied entirely
to snow. Negative increments (“drying”) were applied
first to snow water equivalent and then, if all snow was
removed, to the catchment deficit. This rule-based
scheme was adopted as a simple, physically reasonable
approach to updating snow fields, which were zero for
most of the domain for the majority of the simulation.
Alternative methods for updating snow fields in cold
regions are the subject of continued research.

In summary, the GRACE EnKS has two distinguish-
ing characteristics relative to other EnKS assimilation
schemes described in the literature (e.g., Dunne and
Entekhabi 2005; van Leeuwen 2001). First, we have
fixed the smoother window at one month, a period
comprising several GRACE overpasses that are used to
inform a single, monthly estimate of TWS. One could
describe this as a modified EnKF update, in that YT

includes only a single value, but we believe that the use
of an aggregated set of satellite overpasses to inform a
temporally distributed application of assimilation incre-
ments is best described as an ensemble smoother. It
would be possible to extend the smoother to a period
longer than one month in order to utilize multiple
GRACE estimates in each update. However, doing so
would delay the availability of the TWS estimates from
the assimilation system and hence diminish their value
for operational applications such as drought monitoring
and forecast initialization, both of which are primary
motivations for the present work.

The second distinctive element of the GRACE EnKS
is that it is iterative, with assimilation increments ap-
plied during the second model pass. This approach
takes full advantage of the observation’s potential to
inform all model states and fluxes, while avoiding the
spurious modification of fluxes that can arise in the

context of a retroactive smoother update (Dunne and
Entekhabi 2006).

4. Results

a. Terrestrial water storage

As seen in Fig. 2, the open-loop simulation with the
CLSM captured the general seasonal cycle of TWS for
the four major subbasins of the Mississippi. All four
basins experience a wintertime peak in TWS followed
by a summer trough (see also Fig. 6). The open-loop
simulation differed substantially from GRACE esti-
mates, however, with respect to the magnitude and
(more subtly) the phase of the seasonal water cycle, and
its interannual variability. Notably, the seasonal ampli-
tude of TWS in the Missouri basin was only 20–40 mm
in the open-loop simulation, but varied from 70 to 130
mm in GRACE retrievals. In the Ohio–Tennessee ba-
sin, the open-loop simulation returned a large and vari-
able annual TWS cycle, while GRACE indicated that it
was smaller and more stable across years.

By design, data assimilation produced TWS time se-
ries that were intermediate between the open-loop
simulation and GRACE observations (Fig. 6). Only
during the 4-month data gap in the summer of 2004 did
the assimilation and open-loop simulation results
match. There was also one systematic exception in
which CLSM assimilation output did not track GRACE
estimates of TWS. During observed dry periods in the
Missouri basin none of the simulations dried as much as
GRACE observations indicated they should, because
the dry anomaly observed by GRACE exceeded the
maximum possible catchment deficit of the CLSM, and
hence the increments were truncated. One possible ex-
planation of this discrepancy between model and ob-
servation is that the GRACE observation captures
TWS components not included in the CLSM, such as
surface water. Another interpretation is that GRACE
has revealed a potential flaw in the CLSM, and that
model parameters should be adjusted to allow greater
drying in this region. In either case, it is clear that data
assimilation provides information that is potentially
valuable for refining models and observing systems.

b. Vertical disaggregation

One of the strongest motivations for assimilating
GRACE data is the need to separate the contributions
of the TWS components, which individually are more
useful for scientific and social applications. Figure 7
plots anomalies of simulated shallow groundwater, soil
moisture, and snow from the open-loop and assimila-
tion runs, alongside the GRACE TWS and indepen-
dently derived groundwater time series. GRACE data
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assimilation brought the seasonal cycle of TWS over
the Mississippi basin into closer agreement with the
GRACE anomalies (relative to the open-loop simula-
tion), particularly in 2005. As a result, GRACE data
assimilation shifted the annual peak in basin-average
groundwater levels to later in the season, improving
agreement with observational groundwater data. As-
similation had no detectable impact on soil moisture’s
phase, but the magnitude of annual soil moisture vari-
ability was reduced relative to open-loop simulations,
primarily in the Ohio–Tennessee basin (not shown).
Hence the assimilation of monthly GRACE data has a
greater influence on groundwater, which varies slowly,
than it does on soil moisture, which responds more
quickly to atmospheric forcing.

Table 1 quantifies the agreement between estimated
and observed groundwater for the Mississippi River ba-

sin as a whole and for its four subbasins. GRACE data
assimilation significantly improved estimates of the am-
plitude and phase of the seasonal cycle of groundwater.
In all cases, the GRACE DA integration exhibited
smaller RMS errors than OL relative to measured
groundwater variability, resulting in positive skill scores.

To assess the phase of the seasonal cycle, Table 1
shows time series correlations between modeled and
observed groundwater. Averaged over the entire Mis-
sissippi River basin, correlations were larger for
GRACE DA than for OL. This result was statistically
significant at the 5% level [Fisher Z-transform test for
correlation coefficients, applied to daily data (n �
1247)]. The Missouri and Ohio–Tennessee subbasins
also experienced statistically significant improvements.
Improvement in the combined Red–Arkansas and
Lower Mississippi basins was marginally significant.

FIG. 6. Daily average TWS (mm), January 2003–May 2006, from OL and GRACE DA CLSM simulations, for
(clockwise from the upper left) the Missouri, Upper Mississippi, Ohio–Tennessee, and Lower Mississippi/Red–
Arkansas subbasins. Also shown are monthly GRACE TWS anomalies, shifted to the CLSM mean.
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Assimilation did not improve CLSM’s poor correla-
tion with observed groundwater in the Upper Missis-
sippi subbasin. This result is consistent with the fact that
the observed seasonal cycle of groundwater in the Up-
per Mississippi is out of phase with GRACE-derived
TWS as well as (not shown) soil moisture simulated by
the four LSMs included in the GLDAS suite of models.
There is no obvious explanation for this discrepancy,
but interestingly, observed groundwater correlates well
with variations in the elevation of Lake Michigan (not
shown), despite the fact that none of the piezometers
was closer than 100 km from the lake shore. As dis-

cussed in the following section, CLSM performs much
better when evaluated against gauged discharge of the
upper Mississippi River.

It should be noted that the correlations shown in
Table 1, and in all subsequent tables, are calculated
from area-averaged time series data that contain a sea-
sonal cycle. The magnitude of the correlation coeffi-
cient is determined primarily by the accuracy with
which the model reproduces the timing of seasonal
groundwater variability. The value of reported signifi-
cance tests should not be overstated, as data are tem-
porally autocorrelated and spatially aggregated. The
purpose of reporting these results is simply to demon-
strate the detectable improvement in CLSM provided
by the assimilation of GRACE data. The brevity of the
GRACE data period (less than 4 yr) makes it difficult
to assess the impact of assimilation on CLSM’s perfor-
mance with respect to interannual variability. We found
that correlations calculated for anomalies of monthly
groundwater (after removing the seasonal cycle) were
statistically indistinguishable for all simulations (not
shown).

c. Hydrologic fluxes

Comparisons with groundwater are useful but do not
constitute a complete evaluation. Despite improved
simulation of hydrologic states, data assimilation may
in fact degrade simulated hydrologic fluxes because of
the way in which simulated processes were calibrated
during model development. For example, increasing
soil moisture via data assimilation may cause an LSM to
compensate by overestimating drainage or evaporation
(Walker and Houser 2005). Here we consider the im-
pact of GRACE assimilation on runoff and evapotrans-
piration in CLSM simulations. Table 2 shows that ac-
cumulated runoff in GRACE DA was slightly less than
that in OL in the Ohio–Tennessee subbasin, due pri-
marily to drier wintertime conditions, and slightly wet-
ter in the Missouri and combined Red–Arkansas/Lower
Mississippi basins, due to wetter wintertime conditions.
It is difficult to assess the relative accuracy of the simu-
lations in this regard, as CLSM does not include a run-
off routing scheme that would allow for direct compari-
sons with river gauge data, but it is reassuring that as-
similation did not lead to massive changes in total
simulated runoff.

With respect to hydrologic variability, GRACE DA
exhibits significantly stronger correlation between TWS
and monthly accumulated gauged river flow in all three
of the closed major subbasins and for the Mississippi
River on the whole (Table 2). TWS was chosen as the
variable of comparison because it is expected to corre-
late with total basin runoff and the correlation does not

TABLE 1. Evaluation of groundwater estimates from open-loop
and assimilation integrations against measured groundwater. Cor-
relation coefficient r and RMSE (mm) are calculated with respect
to daily average groundwater storage based on observations from
58 piezometers. Skill due to assimilation is calculated relative to
the open-loop simulation (“skill” � 1 � RMSAssim/RMSOL). Bold
font indicates a significant increase in r relative to OL at the 5%
significance level. Italics indicate increase in r at the 10% signifi-
cance level. Significance was assessed using a Student’s t test.

OL GRACE DA

Skillr RMSE r RMSE

Mississippi 0.59 23.5 0.70 18.5 0.21
Ohio–Tennessee 0.78 62.8 0.82 40.4 0.36
Upper Mississippi 0.29 42.6 0.27 39.6 0.07
Red–Arkansas/Lower

Mississippi
0.69 30.9 0.72 26.4 0.15

Missouri 0.41 24.5 0.66 19.7 0.20

FIG. 7. Groundwater, soil moisture, and snow water equivalent
for the Mississippi River basin for (a) OL and (b) GRACE DA
simulations. Also shown are area-averaged daily groundwater ob-
servations and monthly GRACE-derived TWS anomalies.
GRACE and modeled TWS are adjusted to a common mean, as
are observed and modeled groundwater.
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involve a routing-dependant time lag. Correlations with
simulated runoff are shown as well, though the lack of
a routing scheme in CLSM limits the interpretation of
this comparison. Taken in combination, the data in
Table 2 indicate that the assimilation of GRACE data
produced no major artifacts in CLSM simulation of
runoff quantity, and that it did improve the phase of the
annual cycle.

Assimilation had a detectable effect on simulated
evapotranspiration (ET) in some regions. It is difficult
to evaluate this effect quantitatively, as the difference
between OL and GRACE DA simulations is small rela-
tive to the differences between ET produced by run-
ning differing land surface models or changing atmo-
spheric forcing datasets (Kato et al. 2007). Over the 41
months of simulation, differences between OL and

GRACE DA were also small relative to differences
between model simulation and point-scale surface mea-
surements available from flux towers. Nonetheless,
variability in soil moisture and in groundwater are
known to cause changes in surface energy partitioning
that are relevant to climate (Fan et al. 2007; Koster et
al. 2004). As such, it is worth noting that data assimi-
lation influenced the spatial patterning of both soil
moisture and surface fluxes throughout the simulation.
Figure 8 shows an example of this for April 2005, a
month that was typical of springtime differences be-
tween OL and GRACE DA integrations. Data assim-
ilation led to wetter conditions for much of the Ohio–
Tennessee, Upper Mississippi, and combined Red–
Arkansas/Lower Mississippi subbasins, and produced
somewhat drier conditions for portions of the Missouri
subbasin. These changes in moisture led to substantial
differences in latent heat flux for all subbasins except
the Ohio–Tennessee, where evaporation was not mois-
ture limited during this period. For portions of the
Southern Great Plains, the mean monthly difference in
latent heat flux was as large as 20.6 W m�2. Previous
studies have indicated that a change in energy parti-
tioning on the order of 15–20 W m�2 can have a signif-
icant impact on boundary layer processes and precipi-
tation (Schar et al. 1999), and the Southern Great
Plains is known as a region with strong land–atmo-
sphere coupling.

d. Horizontal disaggregation

While the CLSM represents subcatchment partition-
ing between saturated, unsaturated, and wilting frac-

FIG. 8. Influence of assimilation on (a) root zone moisture (%) and (b) latent heat flux (W m�2), plotted as
GRACE DA � OL for the month of April 2005.

TABLE 2. Mean runoff (mm yr�1) and coefficient of linear cor-
relation between CLSM TWS, CLSM runoff (R), and monthly
average gauged river flow. Gauged runoff is derived from mea-
surements at USGS and Army Corps of Engineers gauging sta-
tions. TWS was used for correlations because CLSM lacks a rout-
ing module, reducing the power of the direct runoff comparison.
Correlations were not calculated for the Red–Arkansas/Lower
Mississippi basin because of upstream contributions to gauged
flow. Bold font indicates significance at the 5% level.

OL GA

Mean rTWS rR Mean rTWS rR

Mississippi 34.1 0.75 0.67 34.0 0.79 0.68
Ohio–Tennessee 120.2 0.66 0.83 113.7 0.71 0.86
Upper Mississippi 7.6 0.61 0.75 8.7 0.69 0.74
Red–Arkansas/Lower

Mississippi
47.1 — — 49.0 — —

Missouri 2.8 0.43 0.71 3.6 0.57 0.75
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tions, as described in section 3, there is no physical
interaction between different catchments. The horizon-
tal distribution of GRACE-derived assimilation incre-
ments, then, is controlled entirely by the EnKS, which
uses the variance in the ensemble to determine the
horizontal disaggregation of information from GRACE
observations. Equations (1) and (2) specify that the as-
similation increments are based on (i) the difference
between the observation and the corresponding model
estimate at the observation scale, (ii) the error vari-
ances of the observation and of the corresponding
model estimate, and (iii) the modeled (error) cross co-
variance between the observed variable (at the obser-
vation scale) and the model states at the finescale
model resolution (in tile space). This means that the
increment for a given tile will be large if (i) the model
and GRACE disagree at the subbasin scale of the ob-
servation, (ii) the confidence in the model (at the ob-
servation scale) is low relative to the observation, and
(iii) there is a strong (error) correlation between the
observed variable (at the coarse scale) and the model
states in the given tile. There is no deterministic hydro-
logical basis for the distribution of increments at scales
finer than the observations, so care must be taken to
represent model and observation error characteristics
as accurately as possible (section 3). Because it is im-
possible to do that perfectly, errors at the tile scale may
increase at some locations even as errors at the subba-
sin scale of the GRACE observations are reduced.

To evaluate the effects of assimilation at subobser-
vational scales, we assessed the correlation between
simulated TWS variability and gauged river flow in
eight smaller watersheds within the Mississippi (Fig. 1).
For five of eight watersheds, GRACE DA yielded sig-
nificantly higher correlation than OL (Table 3). For
these smaller basins, correlations between simulated
runoff and gauge data can be viewed with greater con-
fidence, as the absence of a routing scheme is less im-
portant. The comparison is imperfect, but the fact that
correlations between simulated and gauged runoff were
greater for GRACE DA than OL in seven of eight
basins (marginally significantly in two) is encouraging.
Based on these comparisons, it appears that the assim-
ilation of spatially coarse GRACE observations into a
higher-resolution CLSM simulation has the potential to
disaggregate the observations with a fair degree of skill.

5. Discussion

To date, variability in terrestrial water storage has
not been well defined by traditional observation tech-
niques or land surface models (Dirmeyer et al. 2006).
As the only remote sensing system capable of measur-

ing water storage changes at all levels on and below the
land surface, GRACE provides an unprecedented op-
portunity to improve quantification, understanding,
and simulation of TWS variability. Yet the fact that
GRACE measures water at all depths simultaneously is
also a challenge, and its spatial and temporal resolu-
tions are coarse by any standard of earth science data.
Data assimilation shows much promise for effective
vertical, horizontal, and temporal disaggregation of the
monthly, basin-scale, integrated water column observa-
tions provided by GRACE, and thus adds value to
these unique observations for research and applica-
tions.

In this study, GRACE-derived TWS anomalies were
assimilated to the Catchment LSM by means of an en-
semble Kalman smoother. The results were encourag-
ing, including (i) decreases in RMS errors and signifi-
cant increases in correlation between simulated and
measured groundwater in the Mississippi River basin,
(ii) improved simulation of hydrologic variability at the
subobservation scale, and (iii) a small increase in cor-
relation between simulated runoff and gauged river
flow in the majority of test watersheds. Evaluation of
the assimilation results at scales finer than the GRACE
products revealed no degradation of model perfor-
mance due to the assimilation of the coarse data.

These results indicate that a GRACE data assimila-
tion system can contribute to large-scale drought moni-
toring. Drought monitors at the national and continen-
tal scale currently suffer from a paucity of data on
groundwater variability. Data on soil moisture variabil-
ity is also limiting. GRACE DA results provide esti-
mates of both components, and, using observation-
based forcing data, these fields can be extended to

TABLE 3. Gauged discharge (m3 s�1) for eight smaller water-
sheds in the Mississippi River basin (locations mapped in Fig. 1).
Also shown are correlations between gauged discharge and both
TWS and runoff (R) in the OL and GRACE DA CLSM simula-
tions, calculated using daily data for January 2003 through May
2006. Bold font indicates improvement in correlation relative to
open-loop simulation at the 5% significance level. Italics indicate
improvement at the 10% significance level.

River Discharge

rTWS rR

OL GA OL GA

Kanawha 537 0.41 0.42 0.53 0.53
Wabash 1001 0.55 0.63 0.31 0.32
Illinois 527 0.68 0.71 0.40 0.41
Minnesota 160 0.61 0.68 0.44 0.45
Arkansas 240 0.19 0.28 0.37 0.39
Ouachita 83 0.37 0.35 0.04 0.04
Yellowstone 212 0.24 0.26 0.34 0.41
Kansas 107 0.4 0.49 0.63 0.68
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near–real time. The power of data assimilation to dis-
aggregate, downscale, and extrapolate spatially coarse
GRACE observations has the potential to improve the
accuracy and objectivity with which drought conditions
are identified.

Another potential application of GRACE assimila-
tion pertains to the influence of data assimilation on
simulated evapotranspiration. Recent studies (Bierkens
and van den Hurk 2007; York et al. 2002) have dem-
onstrated that variability in groundwater can be rel-
evant to simulations of weather and climate, largely due
to its influence on soil moisture and evapotranspiration.
At present, GRACE is the best technology available
for near-real-time, global monitoring of TWS, and the
assimilation algorithm presented here skillfully parti-
tions the GRACE measurement into components of
groundwater and soil moisture. The application of the
assimilation scheme to coupled land–atmosphere mod-
eling systems would be expected to modify surface
fluxes at a magnitude relevant to climate in some re-
gions. Integration with coupled models will require
more rigorous evaluation of surface water and energy
fluxes produced by the GRACE–CLSM assimilation
system. This evaluation is the subject of ongoing re-
search.
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