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ABSTRACT

Anomalous atmospheric conditions can lead to surface temperature anomalies, which in turn can lead to
temperature anomalies in the subsurface soil. The subsurface soil temperature (and the associated ground
heat content) has significant memory—the dissipation of a temperature anomaly may take weeks to
months—and thus subsurface soil temperature may contribute to the low-frequency variability of energy
and water variables elsewhere in the system. The memory may even provide some skill to subseasonal and
seasonal forecasts.

This study uses three long-term AGCM experiments to isolate the contribution of subsurface soil tem-
perature variability to variability elsewhere in the climate system. The first experiment consists of a standard
ensemble of Atmospheric Model Intercomparison Project (AMIP)-type simulations in which the subsurface
soil temperature variable is allowed to interact with the rest of the system. In the second experiment, the
coupling of the subsurface soil temperature to the rest of the climate system is disabled; that is, at each grid
cell, the local climatological seasonal cycle of subsurface soil temperature (as determined from the first
experiment) is prescribed. Finally, a climatological seasonal cycle of sea surface temperature (SST) is
prescribed in the third experiment. Together, the three experiments allow the isolation of the contributions
of variable SSTs, interactive subsurface soil temperature, and chaotic atmospheric dynamics to meteoro-
logical variability. The results show that allowing an interactive subsurface soil temperature does, indeed,
significantly increase surface air temperature variability and memory in most regions. In many regions,
however, the impact is negligible, particularly during boreal summer.

1. Introduction

An anomalous atmospheric event—heavy rains, for
example, spanning several days or a reduced monthly
solar radiation owing to persistent cloudiness—can in-

duce substantial anomalies in moisture and energy res-
ervoirs below the land–atmosphere interface. Depend-
ing on the nature of the various physical processes un-
derlying moisture and heat transfer, dissipation of such
anomalies may take weeks to months. Anomalies with
such time scales are of critical importance to subsea-
sonal and seasonal prediction since it is through such
anomalies and their links to atmospheric processes that
predictive skill is realized.

The lifetime of land surface anomalies is shorter than
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that of ocean anomalies. Largely because of this, stud-
ies of land moisture impacts on forecasts (e.g., Del-
worth and Manabe 1988; Fennessy and Shukla 1999;
Liu and Avissar 1999a,b; Dirmeyer 2000; Douville 2003;
Mahanama and Koster 2003; Koster et al. 2004) have
lagged behind those of ocean impacts [e.g., Kumar and
Hoerling 1995 and Shukla 1998), and the initialization
of the land surface in operational seasonal forecast sys-
tems is generally considered much less important than
ocean initialization. Even so, land moisture initializa-
tion is beginning to receive more attention, particularly
given its potential importance in regions and seasons
for which the ocean has little impact (Koster et al. 2000a).

Although studies of land moisture variability and its
effects on climate are still somewhat immature, they are
much further along than corresponding studies of the
climatic impacts of changes in subsurface heat content.
Only a few published studies have addressed the latter
problem. For example, Xue et al. (2002) demonstrated
in a modeling study that subsurface soil temperatures
over the western United States in late spring have an
impact on U.S. summer precipitation. Hu and Feng
(2004a,b) analyzed subsurface soil data from about 300
stations in the contiguous United States covering 30
years and found time scales for soil temperature
anomalies of about 2–3 months. They also found evi-
dence of a connection between the late spring tempera-
ture and summer precipitation. After analyzing ob-
served soil moisture data and simulated soil tempera-
ture data, Amenu et al. (2005) concluded that the
persistence of soil moisture at all soil layers is almost
twice that of soil temperature.

In the present paper, we investigate further the im-
pact of land heat content variations on climate variabil-
ity with an atmospheric general circulation model
(AGCM). We address in particular the question of
whether interannual variations in land heat content and
associated temperature affect the variability of the
overlying atmosphere (in particular, near-surface air
temperature) on monthly to seasonal time scales. While
one might expect a strong impact of land heat content
on air temperature, air temperature can also be af-
fected strongly by remote influences (e.g., sea surface
temperature variations) and by chaotic atmospheric dy-
namics. The relative roles of local, external, and chaotic
controls in determining near-surface air temperature
variability on monthly to seasonal time scales has never
before been quantified on a global scale through either
model or observational analysis. We attempt to quan-
tify the relative roles here. Note that such an analysis is
a critical first step toward establishing the usefulness of
subsurface temperature initialization for subseasonal to
seasonal forecasts. If we learn, for example, that the

subsurface heat reservoir has no impact on air tempera-
ture variability, we can conclude that its initialization
will probably not lead to improved forecasts.

Our analysis focuses on three AGCM simulations. In
the first, the model’s subsurface soil temperature was
free to vary in response to variations in atmospheric
forcing at the surface and, in the second, the subsurface
soil temperature at each grid cell was prescribed to a
climatological seasonal cycle. In effect, variations in
subsurface temperature were allowed to feed back on
climate only in the first simulation. Comparing these
first two simulations thus allows us to isolate the impact
of the subsurface heat reservoir on air temperature
variability. A third simulation with prescribed climato-
logical SSTs is examined to isolate the impact of SSTs
on air temperature variability.

Section 2 provides a brief description of the AGCM
and its component land surface model (LSM); this sec-
tion also describes the setup of the experiment. An
evaluation of the AGCM’s ability to represent ob-
served air temperature variability is provided in section
3. Section 4 presents our results.

2. Experiment description

a. Models used

The NASA Seasonal-to-Interannual Prediction
Project-1 (NSIPP-1) forecasting system produced the
simulations examined in this paper. The atmospheric
component of the system has a finite-differenced,
primitive equations dynamical core that allows arbi-
trary horizontal and vertical resolution. It uses a finite-
difference C-grid on latitude–longitude coordinates in
the horizontal and a generalized sigma coordinate in
the vertical (Suarez and Takacs 1995). Model physics
includes penetrative convection with the relaxed Ar-
akawa–Schubert scheme (Moorthi and Suarez 1992),
Richardson-number-dependent fluxes in the surface
layer, and a sophisticated treatment of radiation includ-
ing the Chou and Suarez (1994) parameterization of
longwave radiation and the calibration of the cloud pa-
rameterization scheme with Earth Radiation Budget
Experiment (ERBE) and International Satellite Cloud
Climatology Project (ISCCP) data.

The Mosaic LSM (Koster and Suarez 1992, 1996)
constitutes the land component of the NSIPP-1 fore-
casting system. It separates each grid cell into subgrid
“tiles” based on vegetation class and then performs
separate energy and water balance calculations over
each tile. Following the approach of Sellers et al.
(1986), vegetation explicitly affects the balance calcu-
lations within a tile in several ways: (i) stomatal resis-
tance increases during times of environmental stress,
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thereby reducing transpiration; (ii) vegetation phenol-
ogy helps determine the albedo and thus the net radia-
tion; and (iii) the “roughness” of the vegetation affects
the transfers of both momentum and turbulent fluxes.
All of the tile diagnostic quantities are aggregated to
grid cell averages prior to analysis.

Subsurface heat storage is represented by two state
variables: the land surface temperature and the subsur-
face soil temperature, associated with heat capacities of
7 � 104 and 4.74 � 106 J m�2 K�1, respectively. (This
roughly corresponds to layer thicknesses of 3 cm and
2 m.) Fluxes of heat between the two reservoirs are
computed using a variant of the force–restore formula-
tion of Deardorff (1978). In essence, the flux, GD, of
heat from the surface reservoir to the subsurface soil
reservoir at a given time step is computed as

GD � �
�dc

��2�
�TD � TC�, �1�

where � is the frequency of the diurnal temperature
cycle, d is the depth over which a diurnal temperature
wave is felt, c is the volumetric heat capacity, TD is the
subsurface soil temperature, and TC is the surface tem-
perature. Although simple, this approach captures, to
first order, the interannual variation of soil heat storage
(see section 2c).

b. Simulations performed

Three separate experiments were used to analyze
temperature variability in AGCMs (Table 1). First, an
AGCM simulation with a fully interactive land surface
model (the Mosaic LSM) allowed both SST variability
(prescribed from observations) and land surface pro-
cesses to influence the atmosphere (experiment CTRL,
considered as the control for this study). A total of 600
years of AGCM data were produced for CTRL by a
10-member ensemble of AGCM simulations, each
simulation spanning about 60 years (1930–89) on a 2°
latitude � 2.5° longitude grid. The different ensemble
members ran in parallel and were identical except for
their initial conditions, which were taken from ran-
domly chosen years of an archived simulation.

The second experiment (ClimTD) was designed to

prevent subsurface soil temperature variability from af-
fecting the atmosphere. Aside from its shorter duration
(ClimTD covered a single 60-yr period from 1930 to
1989), this experiment differed from CTRL in only one
way: in ClimTD, the subsurface soil temperature (TD)
at each grid cell was reset once each day to the CTRL
climatological value for that day at that grid cell. Be-
cause the prescribed climatology was derived directly
from CTRL, experiments CTRL and ClimTD have
identical climatological seasonal cycles of TD, while TD

varies interannually only in CTRL. (Note that in
ClimTD, the evolution of TD away from climatology
over the 24 h following its prescription each day is, for
this problem, negligible.). We anticipate that near-
surface atmospheric variability will generally be de-
creased in ClimTD. In regions where it is not de-
creased, we can speculate that initializing subsurface
temperatures to realistic values, for example, will not
add skill to subseasonal or seasonal forecasts.

In the third experiment (ClimSST), the SST variabil-
ity was disabled by prescribing the climatological sea-
sonal cycle of SST from Reynolds and Smith (1995).
The subsurface soil temperature, however, was allowed
to interact with the climate system, as in CTRL. Ex-
periment ClimSST consisted of a single 200-yr simula-
tion. (Because a climatological SST simulation does not
need to be forced with a multidecadal time series of
observed SSTs, we can derive the statistics we need
from a single simulation.)

c. Issues regarding experimental design

Given the overall goal of our study—quantifying the
degree to which climate variability is affected by soil
heat storage—ClimTD could have been designed to
eliminate land effects in a more radical way. We could
have prescribed all land surface temperatures (both
surface and subsurface) to climatology so that the im-
pact of all soil temperature variability on the climate
system was removed. Such a strategy, at first glance,
might seem optimal. Prescribing the surface (skin) tem-
perature to climatology, however, would have a distinct
disadvantage: it could lead to unusual surface air gra-
dients and associated singular latent and sensible heat

TABLE 1. Summary of experiments performed.

Expt

Number of
simulations
in ensemble

Length of each
simulation

(years)
Total
years Experiment description

CTRL 10 60 600 Interactive land, interannually varying ocean
ClimTD 1 60 60 Interactive land, interannually varying ocean, prescribed daily deep soil

temperature climatology
ClimSST 1 200 200 Interactive land, climatological ocean
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fluxes that would overwhelm the signals that we seek.
Thus, we employ a slightly modified strategy: a thin
near-surface layer is allowed to respond to the atmo-
sphere (thereby maintaining reasonable surface air gra-
dients) while fixing the deeper soil temperature, which
reflects the bulk of the memory in the system, to cli-
matology.

Again, we use a variant of the force–restore algo-
rithm for subsurface heat transfer in our simulations.
This rather simplistic algorithm is undoubtedly inferior
to many existing heat transfer formulations. Neverthe-
less, at least in one sense, its structure is well suited to
our particular problem. Almost by definition, the for-
mulation provides a reasonable “depth” for the thin
surface layer that interacts with the atmosphere—the
depth of the diurnal temperature signal (several centi-
meters). The effective depth of the lower layer is much
larger and captures, as required, the bulk of the
memory in the subsurface heat content—the memory
relevant to seasonal prediction.

In a sense, the main simplification in our subsurface
heat transfer algorithm, relative to more complex algo-
rithms, is the use of a single bulk reservoir to store heat
rather than a series of stacked reservoirs. The lack of
evolving temperature profiles in our formulation may
affect the realism of the surface temperature variations
produced in the control experiment. Of course, all mod-
els rely on simplifying assumptions, and the point at
which a particular simplification invalidates a result is
rarely precisely known. We proceed here on the as-
sumption that the bulk heat storage approach will rea-
sonably capture, to first order, interannual variations in
heat storage and their effects on the climate system.
Our model results need to be interpreted in light of this
assumption.

As support for this assumption, we provide in Fig. 1
a comparison of the ground heat flux anomalies pro-
duced by the Mosaic land surface model (the model
used in this work) and the “Catchment” land surface
model (Koster et al. 2000b), a more complex model that
uses a sophisticated heat transport scheme and seven
temperature layers in the vertical. The 3-yr time series
were produced offline (i.e., disconnected from an
AGCM) using an experimental framework akin to that
of the Global Soil Wetness Project (GSWP) (Dirmeyer
et al. 2005). The ground heat flux quantifies the heat
transport from the near-surface soil layer to all layers
underneath; it thus quantifies the flux relevant to this
study.

The Mosaic and Catchment LSMs do show some dif-
ferences in their computation of ground heat flux
anomalies. To first order, however, the simpler model
(Mosaic) captures the interannual variability produced

by the more complex model (though perhaps with a
slight positive bias in amplitude). This is particularly
true in the Amazon and the Sahara. The agreement
increases when the ground heat fluxes themselves are
plotted (not shown) rather than just their anomalies;
that is, the Mosaic LSM captures well the seasonal
variation of ground heat flux produced by the more
complex model. We note in addition that the interan-
nual variability of other surface energy fluxes produced
by the more complex LSM is also captured, to first
order, by the Mosaic LSM; a plot equivalent to Fig. 1
but for latent heat flux (not shown) shows that the in-
terannual variations of latent heat flux for the two mod-
els are similar and that these variations are generally
larger than the intermodel differences, particularly for
the U.S. Great Plains and the Amazon.

A further limitation of the force–restore algorithm is
that it does not allow heat capacity and thermal con-
ductivity to vary with soil moisture content. To address
this, we actually ran the Catchment LSM twice with the
GSWP framework, once using heat capacity and ther-
mal conductivity associated with a dry soil (degree of
saturation � 1/3) and once using the properties associ-
ated with a wet soil (degree of saturation � 2/3). (Note,
however, that soil moisture itself varied with time in
both simulations.) Both time series for the Catchment
LSM appear in each panel of Fig. 1. Clearly the inter-
annual variations of ground heat flux, of direct rel-
evance to this study, dominate the differences associ-
ated with the differing thermal properties. (The same
can be said for the interannual variations of latent heat
flux, not shown.)

An offline analysis like this has its limitations since
feedback processes are ignored; perhaps model differ-
ences would be amplified under feedback. Neverthe-
less, these results support our assumption that the
force–restore algorithm provides, to first order, an ad-
equate description of subsurface heat transport for the
problem addressed here.

3. Overall evaluation of AGCM simulations

Because this paper focuses on air temperature vari-
ability, it makes sense to evaluate simulated air tem-
perature means and variances against available obser-
vations. Figures 2a and 2d show, respectively, the mean
annual temperature and the monthly temperature stan-
dard deviation (computed for each month separately
and then averaged over the year) produced by the con-
trol simulation, CTRL, for the period 1946–89. Figures
2b and 2e show the corresponding statistics inherent in
an established observational dataset: the Climate
Anomaly and Monitoring System (CAMS) global grid-
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ded dataset, which is based on meteorological station
data and covers the same period. Differences are shown
in Figs. 2c and 2f.

Although not perfect, the AGCM annual mean tem-

peratures in the CTRL ensemble are in reasonable
agreement with the CAMS data. The model also cap-
tures the magnitudes of interannual temperature vari-
ability and the general increase in this variability from

FIG. 1. Monthly time series of ground heat flux anomalies for a 3-yr period as produced by
three offline experiments at three different locations. The thick solid line refers to the Mosaic
LSM, which uses the force–restore formulation; the thin solid (dashed) line refers to the
Catchment model with heat transfer properties corresponding to soil moisture at 2/3 (1/3) of
saturation. (Note that the Catchment model uses a complex ground heat transfer scheme with
seven soil layers.)
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low to high latitudes. The model does, however, have
some notable deficiencies. In particular, it appears to
underestimate variability throughout the tropics.

Another aspect of temperature variability relevant to

this paper is the “memory” of temperature, as mea-
sured by its 1-month-lagged autocorrelation. The top
rows of Figs. 3 and 4 provide comparisons for boreal
summer [June–August (JJA)] and winter [December–

FIG. 2. Annual mean Tair (a) from the ensemble CTRL, (b) from CAMS data, and (c) the difference CTRL �
CAMS mean; standard deviations of monthly Tair (d) from the ensemble CTRL and (e) from CAMS data and (f)
the difference CTRL � CAMS std dev. Only the overlapping period of simulations and observations, 1946–89, was
used. For the CAMS plot, whited-out areas indicate a lack of data. Units are kelvin.
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February (DJF)] of observed and simulated 1-month-
lagged autocorrelation of air temperature Tair. For both
seasons, the model performs reasonably well, capturing
the observed tropical/extratropical distinction in
memory and generally reproducing the correct magni-
tudes of the autocorrelations—again, though, the
model has some distinct deficiencies. The simulated
memory, for example, is too high in the Great Plains of
North America during JJA, undoubtedly due to the
hydrological land–atmosphere coupling in this model,
which is known to be excessive (Guo et al. 2006).
Across the globe, memory in the model generally ap-
pears to be biased slightly high. Simulated 1-month-
lagged autocorrelations of TD [not shown], which can-
not be evaluated against observations, are approxi-
mately twice those of simulated Tair.

4. Results

Variability of near-surface air temperature

We can take advantage of the design of the experi-
ments to characterize the interannual variance of

monthly-mean near-surface air temperature (�2
T�air) in

terms of three separate controls: SST variability, cha-
otic atmospheric dynamics, and subsurface soil tem-
perature. Here we use the analysis approach of Koster
et al. (2000a), who performed an analogous study of
precipitation variance. The approach rests on the as-
sumption of a linear framework for expanding (�2

T�air)
of the control experiment; that is,

�T�air,CTRL
2 � �T�air,ClimTD

2

� 	Xo 
 �1 � Xo��
�T�air,CTRL

2

�T�air,ClimTD
2 . �2�

This equation, of course, is a tautology. The right-hand
side of the equation, however, can be interpreted in
terms of the three aforementioned controls, allowing us
to illustrate their separate contributions to the total
variance (�2

T�air,ClimTD). We interpret the first term,
�2

T�air,CTRLTD, as the air temperature variance a climate
system would achieve in the absence of subsurface soil
temperature variability; this term is computed directly
from the ClimTD experiment. The terms X� and 1 � XO

FIG. 3. One-month-lagged autocorrelation of Tair (
) for boreal summer (JJA) from (a) CAMS, (b) the ensemble CTRL, and (c)
the ensemble ClimTD, and (d) differences CTRL � ClimTD. For the CAMS plot, whited-out areas indicate a lack of data.
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are the fractional contributions of oceanic and random
atmospheric processes, respectively, to �2

T�air,CTRL; in
analogy to Koster et al. (2000a), we compute:

XO �
�T�air,CTRL

2 � �T�air,ClimSST
2

�T�air,CTRL
2 . �3�

Finally, we interpret the term �2
T�air,CTRL/�2

T�air,ClimTD

as the amplification of the variance �2
T�air,ClimTD ob-

tained through interactions of the climate system with
the subsurface soil temperature.

Koster et al. (2000a) verified that the linear frame-
work assumption is reasonably valid for the analysis of
precipitation variance. A corresponding verification for
air temperature variance is not possible here. Because
of limitations in computational resources, we lack a
critical fourth simulation—one in which climatologies
of both SSTs and subsurface soil temperatures are
specified. We proceed, then, on the assumption of lin-
earity, pointing to its validity for precipitation and to
the idea that temperature statistics are more likely to be
well behaved than precipitation statistics.

[Note that, even if the linear framework were not
valid (i.e., even if the subsurface temperature effects

were not truly separable from the SST effects so that,
e.g., the land amplification factor were different under
climatological SSTs compared to under interannually
varying SSTs), the simulations and associated figures
can still be interpreted in terms of how SST and surface
temperature variability contribute to air temperature
variability in the nonlinear system. This is because the
full climate system, with both time-varying SSTs and
subsurface temperatures, serves as the control for both
ClimTD and ClimSST and, in each of these latter ex-
periments, one source of variability is turned off. The
relevant underlying equation describing the results
would be more complicated than (2), but the figures
presented here would still illustrate the impacts of these
two climate elements.]

Thus, with this caveat about the linear framework,
Fig. 5 shows maps illustrating the contributions of
ocean, land, and atmospheric processes to the near-
surface air temperature variance during boreal sum-
mer. The top panel shows �2

T�air,ClimTD Even in the
absence of subsurface soil temperature interaction, the
air temperature variance is larger in midlatitudes than
in the tropics. The very high values in the midwestern

FIG. 4. As in Fig. 3 but for the winter (DJF).
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United States are associated with strong precipitation
and evaporation variances there, and the occasional
high value in polar latitudes may be related to interan-
nual variations in late-season snow cover.

The middle panel of Fig. 5 shows XO, the relative
contribution of ocean variability to the air temperature
variance. The contribution of chaotic atmospheric dy-
namics, 1 � XO, is, of course, the complement of this

FIG. 5. Breakdown of the contributions of oceanic and deep soil temperature variance to Tair variance,
assuming a linear framework for the boreal summer (JJA): (top) Tair variance (K2) from ClimTD, and
(middle) the fraction of the Tair variance induced by variable SSTs. [XO from Eq. (3). Note that the fraction
of Tair variance induced by chaotic atmospheric dynamics, 1 � XO, can be inferred from XO, not shown.]
(bottom) Amplification of variance due to deep soil temperature variance (�2

CTRL/�2
ClimTDfor Tair).
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map. The oceanic contribution is dominant only in the
tropics. It is lower, (of order 10%–30%) in the subtrop-
ics, and is close to zero throughout much of midlati-
tudes. Clearly, in this model, chaotic atmospheric dy-
namics has the largest impact on the interannual vari-
ability of near-surface air temperature over most of the
globe. Perfect predictions of SSTs would not provide
much skill in predicting midlatitude air temperature
over continents. This tropical–extratropical contrast in
the oceans’ impact, by the way, is not unique to this
model; it has been seen in various forms in several other
studies as well (e.g., Kumar and Hoerling 1995; Shukla
1998; Trenberth et al. 1998).

The bottom panel of Fig. 5 shows the amplification
factor, (�2

T�air,CTRL/�2
T�air,ClimTD). The interaction of

the subsurface soil temperature with the climate system
increases the air temperature variance significantly in
most areas, with increases of 50% or more in the Sahara
and in parts of western North America, southeastern
South America, central Asia, and northern Australia.
Increases are small or nonexistent, however, through-
out most of the tropics and in many high-latitude areas.
As noted above, the lack of an imprint of subsurface air
temperature variability on climate variability in these
regions suggests that realistic subsurface temperature
initialization will have little impact on forecast skill
there. Note that a (�2

T�air,CTRL/�2
T�air,ClimTD) ratio of

1.416 is significantly different from 1 at the 95% confi-
dence level.

Figure 6 shows the three corresponding plots for bo-
real winter. Variances produced in the absence of sub-
surface soil temperature interaction (upper left panel)
appear to have increased almost everywhere in the
Northern Hemisphere. Many of the higher values at
higher latitudes presumably result from interannual
variations in snow cover. The relative contributions of
ocean variability and chaotic atmospheric dynamics to
the air temperature variance look similar to the values
for boreal summer, although with a southward shift in
the ocean’s dominance in the tropics and a general re-
versal of the southwest–northeast ocean contribution
pattern in North America.

The amplification of the air temperature variance
due to subsurface soil temperature interactions (bottom
panel) is particularly different during boreal winter.
Subsurface soil temperature interaction increases
�2

T�air by more than 50% in most midlatitude regions
and more than 200% in parts of northern Asia. Signif-
icant amplification is even seen in the tropics.

Overall, these results suggest a strong influence of
subsurface soil moisture variability on the variability of
air temperature. Of course, of particular relevance to
subseasonal-to-seasonal predictability is the closely re-

lated question of memory: does the subsurface heat
reservoir transfer significant memory to the air tem-
perature? This question is addressed in the bottom pan-
els of Figs. 3 and 4. The lower left panels show the
1-month-lagged autocorrelations of Tair for JJA and
DJF, and the difference maps in the lower right panels
show that in both seasons, prescribing the subsurface
soil temperature to climatology substantially reduces
the memory of Tair, particularly in the extratropics. In
other words, the subsurface heat reservoir does add
significant memory to the above-surface climate sys-
tem, though not everywhere. The much larger impact in
boreal winter is probably associated with the control of
the subsurface soil on the evolution, maintenance, and
ablation of snowpack; we cannot prove this, however,
without additional simulations generating more com-
prehensive diagnostics.

5. Summary

This paper provides an analysis of the impact of sub-
surface soil temperature variability on near-surface air
temperature variability in an AGCM. In particular, it
quantifies this impact relative to other controls on air
temperature variability, namely, remote SST variations
and the internal chaotic dynamics of the atmosphere.
Figures 5 and 6 show first that SSTs and chaotic dy-
namics have different regions of influence, with the
former acting mostly in the tropics. The figures then
show that subsurface soil temperature variability does
act to amplify air temperature variance in most parts of
the globe, particularly during boreal winter. This im-
pact implies a potentially positive benefit of realistic
soil temperature initialization in seasonal forecasts.
Subsurface temperatures, however, do not have a
strong impact everywhere, and, in the regions for which
the impact is low (e.g., the tropics), we can infer that
their realistic initialization would not add forecast skill.

Naturally, the results presented here are subject to
the many assumptions made in the design of the experi-
ment. One of our chief assumptions is that our simple
treatment of subsurface thermodynamics, involving a
thin surface reservoir and a bulk subsurface reservoir,
captures to first order the year-to-year variability of
heat storage in nature. A follow-on study with a more
complex approach may provide somewhat different re-
sults, although we suspect that any differences found
would be second order. In any case, this paper provides,
for the first time ever, global estimates of subsurface
temperature impacts on air temperature variability, in-
cluding an indication of where these impacts are negli-
gible. These results should, at the very least, be of direct
relevance to any model forecast system that uses a sim-
pler subsurface thermodynamics formulation.

AUGUST 2008 M A H A N A M A E T A L . 813



Acknowledgments. This research work was sup-
ported by funding from the Earth Science Enterprise of
NASA headquarters. The NASA Center for Computa-
tional Sciences provided computational resources. Ping
Liu was instrumental in submitting and processing the
ensemble ClimTD. Phil Pegion helped with insightful
discussions during the experiment. Mike Fennessy of

the Center for Ocean-Land-Atmosphere Studies pro-
vided the gridded CAMS station data. The comments
of four anonymous reviewers are greatly appreciated.

REFERENCES

Amenu, G. G., P. Kumar, and X.-Z. Liang, 2005: Interannual vari-
ability of deep-layer hydrologic memory and mechanisms of

FIG. 6. As in Fig. 5 but for the winter months (DJF).

814 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 9

Fig 6 live 4/C



its influence on surface energy fluxes. J. Climate, 18, 5024–
5045.

Chou, M.-D., and M. Suarez, 1994: An efficient thermal infrared
radiation parameterization for use in general circulation
models. NASA Tech. Memo. 104606, Vol. 3, 84 pp.

Deardorff, J. W., 1978: Efficient prediction of ground surface tem-
perature and moisture, with inclusion of a layer of vegetation.
J. Geophys. Res., 83, 1889–1903.

Delworth, T. L., and S. Manabe, 1988: The influence of potential
evaporation on the variabilities of simulated soil wetness and
climate. J. Climate, 1, 523–547.

Dirmeyer, P. A., 2000: Using a global soil wetness dataset to im-
prove seasonal climate simulation. J. Climate, 13, 2900–2922.

——, X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2005:
GSWP-2: Multimodel analysis and implications for our per-
ception of the land surface. Bull. Amer. Meteor. Soc., 87,
1381–1397.

Douville, H., 2003: Assessing the influence of soil moisture on
seasonal climate variability with AGCMs. J. Hydrometeor., 4,
1044–1066.

Fennessy, M. J., and J. Shukla, 1999: Impact of initial soil wetness
on seasonal atmospheric prediction. J. Climate, 12, 3167–
3180.

Guo, Z., and Coauthors, 2006: GLACE: The Global Land–
Atmosphere Coupling Experiment. Part II: Analysis. J. Hy-
drometeor., 7, 611–625.

Hu, Q., and S. Feng, 2004a: A role of the soil enathalpy in land
memory. J. Climate, 17, 3633–3643.

——, and ——, 2004b: Why has the land memory changed? J.
Climate, 17, 3236–3243.

Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface
boundary in climate models as a composite of independent
vegetation stands. J. Geophys. Res., 97, 2697–2715.

——, and ——, 1996: Energy and water balance calculations in the
MOSAIC LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp.

——, ——, and M. Heiser, 2000a: Variance and predictability of
precipitation at seasonal-to-interannual timescales. J. Hydro-
meteor., 1, 26–46.

——, ——, A. Ducharne, M. Stieglitz, and P. Kumar, 2000b: A
catchment-based approach to modeling land surface pro-

cesses in a general circulation model. 1. Model structure. J.
Geophys. Res., 105 (D20), 24 809–24 822.

——, and Coauthors, 2004: Realistic initialization of land surface
states: Impacts on subseasonal forecast skill. J. Hydrometeor.,
5, 1049–1063.

Kumar, A., and M. P. Hoerling, 1995: Prospects and limitations of
seasonal atmospheric GCM predictions. Bull. Amer. Meteor.
Soc., 76, 335–345.

Liu, Y., and R. Avissar, 1999a: A study of persistence in the
land–atmosphere system using a general circulation model
and observations. J. Climate, 12, 2139–2153.

——, and ——, 1999b: A study of persistence in the land–
atmosphere system with a fourth-order analytical model. J.
Climate, 12, 2154–2168.

Mahanama, S. P. P., and R. D. Koster, 2003: Intercomparison of
soil moisture memory in two land surface models. J. Hydro-
meteor., 4, 1134–1146.

Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert:
A parameterization of moist convection for general circula-
tion models. Mon. Wea. Rev., 120, 978–1002.

Reynolds, R. W., and T. M. Smith, 1995: A high-resolution global
sea surface temperature climatology. J. Climate, 8, 1571–
1583.

Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple
biosphere model (SiB) for use within general circulation
model. J. Atmos. Sci., 43, 505–531.

Shukla, J., 1998: Predictability in the midst of chaos: A scientific
basis for climate forecasting. Science, 282, 728–731.

Suarez, M. J., and L. L. Takacs, 1995: Documentation of the
ARIES/GEOS dynamical core: Version 2. NASA Tech.
Memo. 104606, Vol. 5, 45 pp.

Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C.
Lau, and C. Ropelewski, 1998: Progress during TOGA in
understanding and modeling global teleconnections associ-
ated with tropical sea surface temperatures. J. Geophys. Res.,
103, 14 291–14 324.

Xue, Y., L. Yi, M. Ruml, and R. Vasic, 2002: Investigation of deep
soil temperature–atmosphere interaction in North America.
Preprints, The Mississippi River Climate and Hydrology
Conf., New Orleans, LA, Amer. Meteor. Soc., 5.0.

AUGUST 2008 M A H A N A M A E T A L . 815




