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ABSTRACT

Observations of raindrop size distributions (DSDs) have validated the use of three-parameter distribution
functions in representing the observed spectra. However, dual-frequency radar measurements are limited to
retrieving two independent parameters of the DSD, thus requiring a constraint on a three-parameter
distribution. In this study, disdrometer observations from a variety of climate regions are employed to
develop constraints on the gamma distribution that are optimized for dual-frequency radar rainfall retriev-
als. These observations are composited by reflectivity, and then gamma parameters are fit to the composites.
The results show considerable variability in shape parameter between regions and within a region at
different reflectivities. Most notable is that oceanic regions exhibit maxima in shape parameter at 13.6-GHz
reflectivities between 40 and 50 dBZ, in contrast to continental regions. The shape parameter and slope
parameter of all composite DSDs are poorly correlated. Thus, constraints of a constant shape parameter or
shape parameter–slope parameter relationship are inadequate to represent the observed variability. How-
ever, the shape and slope parameters are highly correlated at a given reflectivity. Constraints of a fixed
shape parameter and relationships between a shape parameter m and slope parameter �, both of which are
given as functions of 13.6-GHz reflectivity, are applied to retrieve rain rate, liquid water content, and mean
mass diameter from the composites. The m–� relationships perform best at high reflectivity (dBZ13.6 � 35),
whereas the fixed shape parameter generally results in lower error at medium and low reflectivities (dBZ13.6

� 35). All calculations have been made under the assumption that the reflectivity measurements have been
corrected for attenuation.

1. Introduction

Knowledge of the raindrop size distribution (DSD) is
of fundamental interest to the atmospheric sciences
community in relation to modeling studies and radar-
rainfall estimation. Modelers seek realistic DSD repre-
sentation in microphysical parameterizations, where
DSD is critical for latent heating, radiative transfer, and
quantitative precipitation estimation. Radar meteo-
rologists require knowledge of the DSD to relate radar
reflectivity Z to rainfall rate R. Because there is not a
one-to-one correspondence between the two quantities,

a wide range of Z–R relations have appeared in the
literature (Battan 1973). For example, different rela-
tions are often prescribed either for different rainfall
processes, for example, stratiform versus convective
(Tokay and Short 1996), or in different climate regimes,
for example, continental versus maritime (Bringi et al.
2003), owing to the different microphysical processes
that contribute to DSD evolution.

Most of the earth’s rain falls over the oceans, espe-
cially in the tropics. For studies of the global hydrologic
cycle, it is therefore critical that rainfall measurements
be made here. Since its launch in November 1997, the
National Aeronautics and Space Administration
(NASA) Tropical Rainfall Measuring Mission
(TRMM) satellite estimates rainfall at tropical and sub-
tropical latitudes, employing a 13.8-GHz precipitation
radar (PR) and the TRMM Microwave Imager (TMI;
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Kummerow et al. 1998). However, because the PR op-
erates at a single frequency, it is subject to errors re-
sulting from the regional variability of DSD (Berg et al.
2006). The upcoming Global Precipitation Measure-
ment (GPM) mission will improve upon TRMM by em-
ploying a dual-frequency precipitation radar (Iguchi et
al. 2003). The dual-frequency radar offers an additional
measurement with the potential to reduce the uncer-
tainties in DSD estimation that are inherent with
single-frequency radar. In addition, microwave radiom-
eters on the core satellite and constellation satellites
will provide a global precipitation measuring platform
with high temporal frequency and spatial coverage.

The dual-frequency radar is one of several multipa-
rameter radar technologies developed to estimate DSD
more precisely. Other such technologies include po-
larimetric radar measurements (Bringi et al. 2002), ver-
tically pointed radars (Williams 2002), and a microwave
link (Rincon and Lang 2002). Of these, dual-frequency
radar is the most suitable for satellite-based observa-
tions (Kuo et al. 2004). The choice of frequencies is
subject to power and antenna size requirements as well
as attenuation (Iguchi et al. 2003). The frequencies
should also be sufficiently separated so that reflectivity
measurements have different dependencies on the
DSD (Meagher and Haddad 2006). In consideration of
these requirements, Ku- (13.6 GHz) and Ka-band (35
GHz) frequencies have been designated for the GPM
core satellite.

Previous studies involving dual-frequency radar have
attempted to improve upon single-frequency Z–R rela-
tions through a variety of techniques. Eccles and Muel-
ler (1971) employed 3- and 10-GHz frequencies to es-
timate liquid water content via differential attenuation,
which is more closely related to rain rate than reflec-
tivity. Goldhirsh and Katz (1974) advanced dual-
frequency techniques by deriving two parameters of an
exponential DSD function directly from the two radar
measurements, although their method was constrained
by the assumption of constant rain rate over a path.
Meneghini et al. (1992) pioneered the use of down-
ward-looking airborne dual-frequency measurements
of reflectivity and attenuation to formulate the retrieval
of DSD from spaceborne radar measurements. A cru-
cial element of this study was the use of frequencies
where non-Rayleigh scattering allowed the retrieval of
DSD parameters from attenuation-corrected reflectivi-
ties.

In general, the availability of two independent reflec-
tivity measurements allows for the retrieval of only two
parameters describing the DSD. This naturally poses
questions of how many parameters are sufficient to de-
scribe the range of DSDs observed in nature, and how

to optimally model the DSD with only two independent
parameters. These questions have been the subject of
extensive study since DSD measurements have been
available. Although there has been a recent study in
Bayesian techniques where no a priori distribution is
prescribed (Haddad et al. 2006), the three-parameter
gamma distribution is mostly employed to retrieve the
DSD from reflectivity and/or attenuation measure-
ments. In this study we use a form of the gamma dis-
tribution expressed as

N�D� � N0Dme��D, �1�

where N0 is the intercept parameter, � is the slope
parameter, and m is the shape parameter. The expo-
nential distribution is a special form of the gamma dis-
tribution for which the shape parameter is equal to
zero. In an exponential distribution, the drop concen-
tration per unit diameter N(D) increases with decreas-
ing diameter at a rate that is determined by the slope
parameter. Marshall and Palmer (1948) introduced a
special form of the exponential size distribution where
N0 is constant and � is a function of rain rate. Since
their pioneering study, both surface and airborne mea-
surements of the DSD have illustrated that the shape of
the spectra deviates from the exponential distribution
at small and large drop sizes. There is often some de-
gree of curvature around a peak concentration near
1-mm diameter. The gamma distribution with a positive
shape parameter may accurately represent this curva-
ture as shown in Tokay and Short (1996).

When dual-frequency measurements are applied to
the three-parameter gamma distribution, the lack of a
third radar measurement introduces a challenge, and
the number of independent parameters must be re-
duced. This reduction can be achieved either by assum-
ing a value for one of the parameters, or by specifying
relationships among some of the parameters. Indeed,
there have been several studies in regard to empirical
relations between the gamma parameters. Haddad et
al. (1996) argued that the parameters given in Eq. (1)
are not independent and introduced a new set of three
parameters. Ulbrich (1983) illustrated that the shape
and intercept parameters of the gamma distribution can
be related. Zhang et al. (2001) and Brandes et al. (2003)
introduced a constrained gamma distribution where a
relationship between the slope and shape parameters
was specified for use in polarimetric radar-rainfall re-
trievals. Although high correlation coefficients in these
studies confirm the existence of such relations between
the gamma parameters, the relations do not necessarily
hold at all rain intensities and for all precipitation
events.
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In this study, we seek to develop optimal constraints
on the three-parameter gamma distribution that allow
for accurate DSD retrieval from dual-frequency reflec-
tivity measurements. The framework for these mea-
surements is described in section 2. In section 3, we
describe the disdrometer datasets we employed to de-
velop the constraints. The gamma parameters are fit to
these measurements by a process described in section 4,
and the results of this process are given in section 5.
Relationships between the shape and slope parameter
from these fits are derived in section 6 and evaluated in
section 7. In the final section, we offer both a summary
and concluding remarks.

2. Dual-frequency radar framework

Numerous algorithms (e.g., Meneghini et al. 1992;
Mardiana et al. 2004; Iguchi 2005; Liao and Meneghini
2005) have been proposed to retrieve rainfall estimates
from dual-frequency radar measurements. These algo-
rithms aim to estimate the DSD at each range gate once
the attenuation correction has been applied from pre-
vious range gates. In this study, we focus on DSD esti-
mation and assume that the reflectivity measurements
have been corrected for attenuation. These measure-
ments of effective reflectivity Ze are the integral prod-
uct of backscattering cross section �b and the DSD. In
general, Ze is expressed as

Ze �
�4

�5|K|2
�

0

�

N�D��b�D, �, T � dD, �2�

where 	 is the radar wavelength and |K|2 is the dielectric
factor, which is related to the complex index of refrac-
tion of the target and is sensitive to its temperature and
the radar frequency. The backscattering cross section is
a function of both the size and temperature of the drop
and the radar frequency. The general solution to the
backscattering cross section of a homogeneous sphere
interacting with an electromagnetic plane wave is given
by Mie theory. For drops much smaller than the radar
wavelength, where the size parameter (
D/	) is much
less than 1, the backscattering cross section is well ap-
proximated by Rayleigh theory. At 13.6 and 35 GHz,
however, the size parameter nears or exceeds 1 for
drops larger than about 1 mm in diameter. At these
drop sizes, the full Mie theory must be used to calculate
the backscattering cross section at these two frequen-
cies, which diverges from Rayleigh scattering (Fig. 1).
As a result, the effective reflectivity of a DSD contain-
ing these drops is frequency dependent, a property that
is exploited in the dual-frequency radar retrieval tech-
nique described in this study.

The DSD dependence of Ze can be shown by substi-
tuting the gamma distribution [Eq. (1)] into Eq. (2),

Ze �
�4

�5|K|2
�

Dmin

Dmax

N0Dme��D�b�D, �, T � dD.

�3�

The difference between the reflectivity measurements
is described by the dual-frequency ratio (DFR). This
quantity is independent of the intercept parameter and
is defined as

DFR �
Z13.6

Z35
�

�13.6
4 |K35|

2�
Dmin

Dmax

�b,13.6�D, T�Dme��D dD

�35
4 |K13.6|

2�
Dmin

Dmax

�b,35�D, T�Dme��D dD

.

�4�

The DFR may be examined in shape parameter–slope
parameter space (Fig. 2) where both gamma param-
eters are bound by the limits suggested by Tokay and
Short (1996), who found that the slope parameter
ranged between 1 and 20, while the shape parameter
remained between �2 and 30. This upper limit on the
shape parameter was lowered to 20 because subsequent
research has shown that high shape parameters are a
nonphysical product of biases in the method of mo-
ments (Smith and Kliche 2005). For a given DFR, an
infinite number of solutions exists for the shape and
slope parameters within these bounds. To reduce this
set to a single solution, a constraint, such as a constant
shape parameter (Liao and Meneghini 2005) or a rela-

FIG. 1. Reflectivity and dual-frequency ratio of a single drop per
cubic meter as a function of drop diameter for two different radar
frequencies. The dielectric constant and backscattering cross sec-
tions were calculated for a temperature of 20°C.
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tionship between the shape and slope parameters
(Brandes et al. 2003), must be imposed, even though
DSDs that deviate from these constraints could lead to
retrieval errors.

Where the DFR is less than 1, the contours in Fig. 2
are hyperbolic curves. This characteristic represents a
well-known ambiguity (Meagher and Haddad 2006)
that is an obstacle for dual-frequency radar DSD re-
trievals. This ambiguity manifests itself in dual solu-
tions for the slope parameter when a constraint of con-
stant shape parameter is given. This is because the DFR
of a single drop does not increase monotonically with
drop size, but decreases from 1 at the limit of a small-
drop diameter to a minimum of 0.53 at 1.8-mm diam-
eter before increasing to values greater than 1 at larger
drop diameters (Fig. 1). Thus, a DSD consisting of
drops smaller than 1.8 mm may have the same DFR as
a DSD including larger drops. This ambiguity can be
reduced to some extent because the distribution con-
taining only the small drops will, in all likelihood, have
a lower reflectivity than the DSD with both small and
large drops (Liao and Meneghini 2005), but then it is
necessary to prescribe a threshold reflectivity at which
the solutions switch over.

To further interpret Fig. 2, it is useful to draw upon
relations between the gamma parameters and physical
DSD parameters. The mean mass diameter (Dm) is the
ratio of the fourth to third moments of the DSD and is
related to the slope parameter of the gamma distribu-
tion (Ulbrich and Atlas 1998):

Dm �
4 � m

�
. �5�

Many dual-frequency DSD retrieval studies (e.g., Me-
neghini et al. 1997; Kuo et al. 2004; Liao and Meneghini

2005) cite the median volume diameter D0 instead,
which is closely related to Dm:

D0 �
�11�3� � m

4 � m
Dm. �6�

The relationship between DFR and mean mass diam-
eter is illustrated in Fig. 2. The Dm contours are nearly
parallel to the DFR contours except at the apex of the
DFR contours, indicating that DFR is a good proxy for
Dm in most of the shape and slope parameter space. In
general, mean mass diameter decreases with increasing
slope parameter and decreasing shape parameter. This
means that the smallest mean mass diameter is associ-
ated with a nearly exponential distribution with a steep
slope. Conversely, the largest mean mass diameter is
associated with a downward-curved spectrum where
the slope is shallow, allowing the peak concentration to
be at relatively large drop sizes.

When the peak concentration is at 1–2-mm diameter,
the DFR is at a minimum because the lowest dual-
frequency ratio is at these sizes (Fig. 1). The value of
this minimum depends on the width of the distribution,
which is related to the shape parameter. As shape pa-
rameter increases, the distribution becomes narrower
and the minimum DFR decreases (Fig. 2). Therefore,
the DFR provides a lower bound on the shape param-
eter, although this information is only useful when the
limit is higher than a physically realistic lower bound of
�2 (Ulbrich 1983). Likewise, the physically realistic up-
per bound of 20 on a shape parameter will give no
solution for a slope parameter with an extremely low
(�0.6) DFR measurement.

In summary, parameters of the gamma distribution
are related to drop concentration (intercept param-
eter), the proportionality of large and small drops
(slope parameter), and the variance of drop size (shape
parameter). The DFR is a function of the latter two
physical quantities, but with only two reflectivity mea-
surements, an additional constraint is needed on the
gamma distribution to provide a solution for all three
parameters. For global rainfall measurements, it is criti-
cal that these assumptions are physically realistic and
accommodate the wide variety of DSDs observed in
nature. In this study, we employ disdrometer measure-
ments to develop constraints that are optimized for
dual-frequency radar DSD retrieval algorithms.

3. Datasets and instrumentation

The DSD measurements used in this study were ob-
tained at various NASA TRMM satellite validation
sites and from field campaigns related to TRMM

FIG. 2. Contour plot of DFR as a function of shape and slope
parameter. Mean mass diameter, which is also a function of shape
and slope parameter only, is illustrated by the shading.
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(Table 1). These sites represent a variety of precipita-
tion regimes, allowing examination of the sensitivity of
our proposed dual-frequency radar DSD retrieval algo-
rithm to regional variations in drop spectra. The
datasets were classified into nine regions based on pre-
vious studies of DSD characteristics. The observations
from two different islands of the Kwajalein atoll, lo-
cated in the central tropical Pacific Ocean (CTP), con-
tained similar DSD features. These islands are located
near the intertropical convergence zone (Houze et al.
2004), and are thus representative of oceanic precipita-
tion in the deep Tropics. Likewise, datasets from three
consecutive summers showed nearly identical charac-
teristics in deep convective rainfall in the Florida Keys
(FK; Tokay et al. 2003a), and they were also merged. In
contrast, the data from Brazil and Darwin, Australia,
showed different characteristics depending on wind re-
gime. The rainfall in the easterly wind regime in Brazil
was found to be similar to rain during the break period
in Darwin (Tokay et al. 2002); thus, these datasets are
combined for our analysis (BE). However, the Brazil
westerly regime (BW) and Darwin monsoon period
(DM) DSDs were distinct and are treated separately in
this study. Data from Wallops Island, Virginia (Tokay
et al. 2005), were classified by storm type via examina-
tion of archive radar imagery. The resulting datasets
represent precipitation from tropical cyclones (WT)
and cellular convection (WC). We also include DSD
measurements from the western tropical Pacific warm
pool during the Tropical Ocean and Global Atmo-
sphere Coupled Ocean–Atmosphere Experiment
(TOGA COARE; Tokay and Short 1996) and the
South China Sea Monsoon Experiment (SCSMEX) as
stand-alone datasets. These final two regions are des-
ignated as TC and SCS, respectively.

Prior to deriving DSD parameters and bulk descrip-
tors of rainfall from DSD observations, it is essential to
be aware of the limitations of the instrument that was

used to obtain them, in this study the Joss–Waldvogel
disdrometer (JWD; Joss and Waldvogel (1967). The
JWD is an impact-type disdrometer that transforms the
vertical momentum of a raindrop impacting the 50 cm2

sampling area into an electric pulse of which the am-
plitude is a function of the drop diameter. Drop diam-
eters ranging from 0.3 to 5.3 mm are detected in 127
bins, which are aggregated by the disdrometer software
into 20 bins so that a sufficient number of drops are
present in each bin during a 1-min sampling period to
represent the DSD at a wide range of rainfall intensi-
ties.

Like any other disdrometer, the JWD has shortcom-
ings. These include dead time, which hinders the instru-
ment’s ability to detect more than one drop at a time,
and background noise, which limits the detection of
very small drops. The small disdrometer sampling area
is a compromise between sampling a sufficient number
of drops at low rainfall rates while minimizing the dead-
time problem at high rainfall rates. The assumption of
terminal fall speed is necessary to determine drop con-
centrations per unit volume from a surface-based mea-
surement, but drop velocities can diverge from their
theoretical terminal fall speed in stagnant air, resulting
in under- or overestimates of drop diameter (Salles and
Creutin 2003). Also, the impact method cannot distin-
guish the size of drops larger than 5.3 mm in diameter
because of the insignificant increment in terminal fall
speeds beyond this size.

These errors in the JWD measurements may lead to
biases in derived quantities. For example, reflectivity is
particularly sensitive to large-drop concentrations and
the truncation at 5.3 mm could result in a negative re-
flectivity bias in heavy rainfall. To overcome these limi-
tations, data from optical disdrometers (e.g., Hauser et
al. 1984; Löffler-Mang and Joss 2000; Kruger and Kra-
jewski 2002; Barthazy et al. 2004), which measure the
size and velocity of hydrometeors, have been compared

TABLE 1. Precipitation regions and corresponding period and number of 1-min DSD observations for the disdrometer datasets used
in this study. Some datasets were combined and others were split based on DSD characteristics. The regions will be referenced by the
given abbreviations in subsequent tables and charts.

Region Period Obs Mean R (mm h�1) Mean dBZ13.6

Central tropical Pacific (CTP) May–Dec 2003–04 47 633 3.97 34.28
Florida Keys (FK) Jul–Sep 2001–03 11 316 4.85 38.75
Amazon Basin of Brazil (westerly; BW) Jan–Feb 1999 2885 3.53 37.56
Wallops Island, VA (tropical cyclones; WT) 2003–04 1840 4.50 34.49
Wallops Island (cellular convection) (WC) 2003–04 1620 14.67 45.51
Darwin, Australia (break) � Brazil (easterly; BE) Jan–Mar 1994 923 5.08 39.33

Jan–Feb 1999 759
Darwin (monsoon; DM) Jan–Mar 1994 5506 2.96 32.85
West Pacific (warm pool; TC) Nov 1992–Feb 1993 8631 3.79 33.96
South China Sea (SCS) Jul 1998 4251 5.29 37.39
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with JWD measurements. Tokay et al. (2001) compared
JWD-derived reflectivity, rain rate, and gamma param-
eters with the same quantities derived from video dis-
drometer (2DVD) measurements, which have the abil-
ity to measure drop sizes beyond 5.3 mm. The 2DVD
also measured more small drops than the JWD in heavy
rainfall as a result of the noise problem, but the impact
on calculated rain rate was within 3%, and calculated
reflectivities were within 1 dB. The ability of both JWD
and 2DVD disdrometers to represent the reflectivity
from the much larger sampling volume of radar profil-
ers has been shown by Gage et al. (2000), who found
good agreement between the two in stratiform rain.

Another significant issue is the sensitivity of derived
gamma parameters to instrument errors. Tokay et al.
(2001) showed that the gamma parameters derived
from the average coincident spectra from both dis-
drometers were nearly identical, although subsets with
fewer samples indicated a positive bias in the param-
eters derived from the 2DVD. While instruments such
as the 2DVD promise to improve DSD measurements
in the future, the current widespread deployment of the
JWD in field experiments (Tokay et al. 2003b) makes it
well suited to compare long-term records of DSD char-
acteristics in different climate regimes.

The DSD, which is expressed in units of concentra-
tion per diameter interval in each bin (m�3 mm�1), is
derived by normalizing the raw disdrometer drop
counts in each bin (Ci),

Ni �
Ci

��	t,i
Di
, �7�

where Ni is the drop concentration in the ith bin
(m�3 mm�1), � is the time period (60 s) over which
drops were counted,  is the disdrometer sampling
area, �t,i is the terminal velocity of the midsize drop in
the ith bin (m s�1), following Beard (1976), and �Di is
the width of the ith bin (mm).

4. Analysis procedure

The goal of this study is to develop constraints on the
three-parameter gamma distribution that results in the
optimal retrieval of rain rate, liquid water content, and
mean mass diameter from disdrometer-calculated dual-
frequency radar measurements. To achieve this goal,
we first address the potential sampling problems of the
JWD, which can lead to biases in the parameters de-
rived from the observations (Smith et al. 1993; Smith
and Kliche 2005). To reduce errors related to under-
sampling, some form of averaging is usually performed
on the disdrometer observations. Lee and Zawadzki
(2005) have advocated compositing DSDs over reflec-

tivity intervals, rather than averaging over time inter-
vals or random samples, because reflectivity-based
composites result in the most consistent Z–R relations
when different regression techniques are used. How-
ever, it is possible that different rainfall physics may
occur at a given reflectivity interval, and in these cases
the average spectra cannot represent the underlying
true variability. An analysis of the variability of the
spectra in each reflectivity interval is given in appendix
A and shows that there is generally more variability at
reflectivities below 40 dBZ13.6, where both convective
and stratiform processes are common, and also in the
continental regions. This variability should be taken
into account when considering the parameters derived
from the composite DSDs.

The composites were made for each region in
2-dBZ13.6 intervals from 10 to 60 dBZ13.6. This bin
width resulted in sample sizes on the order of 100–1000
for most of the composite spectra. However, at the high
end of this reflectivity range, fewer samples were avail-
able for inclusion in each composite, raising the ques-
tion of whether or not these composites were truly rep-
resentative of the region. Thus, a cutoff was established
by examining the fitted gamma parameters for consis-
tency from one reflectivity interval to the next. A mini-
mum of 20 samples was found to be necessary under
this criterion, corresponding to maximum reflectivities
between 42 and 56 dBZ13.6 for each region.

The ability of the composites to represent regional
differences in DSD was evaluated by examining the
spectra at each reflectivity interval. The composites
from different datasets within the same climate region
tended to form distinct clusters when compared with
other regions, especially at reflectivities above 35
dBZ13.6. This demonstrates that the differences be-
tween composites from different regions are significant
relative to the differences within a region.

To develop constraints on the gamma distribution
from these composites, the gamma parameters are fit-
ted to each composite DSD using a method that incor-
porates the simulated dual-frequency radar measure-
ments. The success of this or any other fitting algorithm
depends on the degree to which the data resemble a
gamma distribution. If there are significant deviations,
such as multiple modes or inflection points, then some
information will be lost in the fitted distribution. For
applications to dual-frequency radar retrievals, the in-
formation contained in the DFR is primarily represen-
tative of the shape of the distribution at large drop
sizes. This is because the reflectivities are approxi-
mately sixth-moment quantities and are thus heavily
influenced by the concentration of larger drops. With
these radar measurements, we desire to retrieve a DSD
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that also accurately reproduces integral rainfall quanti-
ties, which are related to the third and fourth moments.
Therefore, the gamma distributions we derive should
reflect the shape of the distribution at larger drop sizes,
even if this comes at the expense of accurately repre-
senting the concentration of small drops.

The fitting procedure (Fig. 3) begins with the calcu-
lation of reflectivity at 13.6 and 35 GHz from a discrete
version of Eq. (2), where the numeric integration is
performed from the minimum to maximum diameter.
We also calculate integral rainfall quantities—rain rate
R (mm h�1), liquid water content W (g m�3), and mean
mass diameter Dm (mm)—for each composite DSD us-
ing Eqs. (8)–(10):

R �
1 � 10�6 � 3600�

6 �
i�1

�

Di
3	t,iNi
Di, �8�

W �
1 � 10�3�w�

6 �
i�1

�

Di
3Ni
Di, and �9�

Dm �

�
i�1

�

Di
4Ni
Di

�
i�1

�

Di
3Ni
Di

, �10�

where � is the number of bins (20, for our datasets), �b

is the backscattering cross section (mm2) calculated for
each frequency at a temperature of 20°C, Di is the drop
diameter (mm) at the middle of the ith bin, �t is the
terminal velocity (m s�1) as described in section 3, Ni is
the drop concentration (m�3 mm�1) defined in Eq. (7),
and �w is the density of liquid water (g cm�3).

Next, we fit the slope and intercept parameters for
a given shape parameter using the simulated dual-

frequency reflectivity values. The slope parameter is
calculated by numerically solving Eqs. (4) with the
given shape parameter. This produces either one, two,
or no solutions, depending on the DFR and value of the
shape parameter imposed. The intercept parameter N0

is then calculated by solving Eq. (3) for N0 and substi-
tuting the previously obtained solutions for m and �:

N0 �
Ze

�
i�1

�

�b��, Di, T�Di
me��Di
Di

, �11�

where Ze is either the 13.6- or 35-GHz reflectivity cal-
culated from the disdrometer measurement. These de-
rived gamma parameters correspond to a distribution
that exactly reproduces both of the reflectivity mea-
surements.

We derived these distributions for the same range of
shape parameter used in Fig. 2, from �2 to 20, and
incremented by 0.1. To complete the fitting process, the
optimal shape parameter is selected by minimizing the
sum of the absolute values of relative error E for rain
rate, liquid water content, and mean mass diameter:

E �
Qretr � Qobs

Qobs
, �12�

where Qretr and Qobs are the gamma-retrieved and dis-
drometer-observed integral rainfall quantities, respec-
tively. The magnitude of this error is lowest for the
distribution that provides the closest estimate of that
integral rainfall quantity. By summing the error magni-
tude from different integral rainfall quantities, we seek
the gamma parameters that not only reproduce the
DFR exactly, but also offer the best approximation of
lower-moment integral rainfall quantities.

During the application of this fitting algorithm to the
composite DSDs, two regimes were identified regard-
ing the behavior of these errors and the corresponding
optimal solution. At reflectivities less than 36–42
dBZ13.6, depending on region, the DFR is less than 1,
and thus two sets of solutions for slope parameter exist
for a given shape parameter. This ambiguity is a direct
result of the dual roots to Eq. (4). At higher reflectivi-
ties, the DFR is greater than 1, and thus only one so-
lution exists. The DFR was sufficiently high in all cases
to ensure the existence of one or two solutions.

For the dual-solution cases, the correct solution was
determined by seeking the simultaneous minimization
of integral rainfall quantity errors. This occurs for the
second solution at reflectivities less than 22 dBZ13.6

(Fig. 4a), and for the first solution at reflectivities
greater than 28 dBZ13.6 (Fig. 4e). The superiority of one

FIG. 3. Flowchart of the algorithm by which optimal shape
parameter is determined.
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solution over the other in these intervals is illustrated in
Figs. 4b,f.

The reflectivity at which the optimal solution
switched from second to first varied among different
regions, but was always between 22 and 28 dBZ13.6. For
some composites in this intermediate range, second-
solution error magnitudes for each integral rainfall

quantity reached absolute minima at widely separated
values of shape parameter (Fig. 4c). In these cases, rela-
tive error minima were also observed at the lowest
shape parameter. Here, both the first and second solu-
tion fit the observed DSD well (Fig. 4d). This is not
surprising because these solutions are close to one an-
other in shape parameter–slope parameter space near

FIG. 4. Relative errors for the Kwajalein (a) 10–12-, (c) 20–22-, and (e) 30–32-dBZ13.6 fitted vs observed DSDs
as a function of shape parameter. (b), (d), (f) Best-fit gamma distributions from the first and second solutions for
slope parameter are plotted for each of these DSDs, respectively.
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the minimum shape parameter on a DFR curve (Fig. 2).
Thus, this minimum shape parameter was considered
optimal in these cases.

The curves in Figs. 4a,c,e also provide an indication
of the errors that can be expected if a nonoptimal shape
parameter is applied. Everywhere, except for a small
range near the transition from the second to first solu-
tion for slope parameter, a lower-than-optimal shape
parameter is associated with an overestimate of rain
rate and liquid water content and an underestimate of
mean mass diameter, and vice versa. Near the transi-
tion, however, these trends reverse. This can be ex-
plained by examining the DFR curves in Fig. 2. In the
linear branches of these curves, Dm increases with
shape parameter, but at the apex, Dm decreases with
increasing shape parameter along the curve. The oppo-
site sign of the Dm error with respect to rain rate and
liquid water content errors is a result of the bias in
dual-frequency retrievals toward higher moments of
the DSD. For a lower-than-optimal value of shape pa-
rameter, the retrieved DSD will be flatter than the ob-
served DSD. Thus, in order to reproduce the shape of
the DSD at larger drop sizes, concentrations will be
overestimated at the small drops, with the reverse being
true for higher-than-optimal shape parameters.

5. Regional variability of optimal shape parameter

We obtained optimal shape parameters from the
composite DSDs for all reflectivity intervals at each

region. The behavior of the optimal shape parameter
with respect to reflectivity and climate region reflects
physical differences in the DSD among these regions.
All regions showed a similar progression from the sec-
ond to first solution with increasing reflectivity, but the
values of the optimal shape parameter vary consider-
ably between regions and between different reflectivity
intervals within a region.

The optimal shape parameters at each reflectivity in-
terval for all datasets, shown in Fig. 5 and appendix B,
represent the different DSD characteristics in each re-
gion. Recall that the optimal shape parameter is more
representative of the change in slope for mid- to large-
sized drops than the curvature of the distribution im-
mediately around the peak concentration at small drop
sizes. Additionally, the slope parameter is calculated
directly from the DFR and is also largely a measure of
the exponential decay of the DSD at the large drops
(D � 3 mm). Therefore, it is not surprising that the fitted
gamma DSDs match observed DSDs very well at large-
drop bins (Fig. 4). Although this fitting procedure can
lead to significant concentration errors for the small-
sized drops (D � 1 mm), particularly in DSDs with a
wide range of drop sizes, these errors are of minimal
importance to the quantities we seek to retrieve.

At the lowest reflectivity range we examined (10–20
dBZ13.6), many regions exhibit a minimum shape pa-
rameter near 15 dBZ13.6, indicating DSDs that are ap-
proaching exponential. The increase of shape param-
eter on either side of this minimum occurs for different

FIG. 5. Optimal shape parameter vs 13.6-GHz reflectivity for all datasets. Note the divergence of shape
parameter from continental (solid) and oceanic (dashed) regions at reflectivities above 35 dBZ13.6. The
abbreviations for regions are given in Table 1.
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reasons on each side. On the low-reflectivity end the
largest drop diameters are approximately 1.5 mm and
the shape parameter represents the curvature of the
concentration peak that occurs near 0.5 mm. On the
high-reflectivity side of this minimum, the optimal
shape parameter is more representative of the change
in slope of medium-sized (1 � D � 3 mm) drop con-
centrations than the curvature around the peak.

At 22–35 dBZ13.6, corresponding to both light and
moderate rainfall, the optimal shape parameter is fairly
steady at each region, but varies considerably from re-
gion to region. The steadiness of the shape parameter
within each region, along with the increase of DFR with
increasing 13.6-GHz reflectivity, indicates that the
mean drop size increases with reflectivity in this range.
The variability of the shape parameter between regions
is a result of the differences in the shape of the DSD at
drop sizes larger than 1.5 mm. The high shape param-
eters were associated with spectra that curve downward
toward larger drop sizes, whereas the slopes of low
shape parameter spectra were nearly constant at these
drop sizes. Even though we did not explicitly separate
convective and stratiform rainfall in our datasets, it is
noteworthy that the higher shape parameters come
from datasets that are dominated by convective rainfall
(WT and WC).

At reflectivities above 35 dBZ13.6 the results from
oceanic and continental regions diverged, with shape
parameters increasing for oceanic regions while re-
maining approximately constant for continental re-
gions. The oceanic datasets reached a maximum shape
parameter of 10–12 around the 40–45-dBZ13.6 intervals
before decreasing to 6–9 at 50 dBZ13.6. This disparity in
optimal shape parameter is caused by physical differ-
ences between continental and oceanic rainfall in deep
convective precipitation and has been observed previ-
ously (Bringi et al. 2003). The higher value of the shape
parameter in oceanic rainfall indicates a narrower dis-
tribution of drop sizes in oceanic rainfall relative to
continental rainfall. At a given reflectivity, the oceanic
spectrum has a smaller mean drop size than continental
rainfall. This leads to significant differences in rain rate
at a given reflectivity; for example, at 42 dBZ13.6, rain
rate varied from 9.9 mm h�1 in the Wallops convection
dataset to 20.7 mm h�1 in the Darwin monsoon dataset.

6. Relationships between the shape and slope
parameters

The variability of the shape parameter from region to
region corresponds to significant variation in rain rates
at a given reflectivity. This suggests that the use of a
fixed shape parameter for dual-frequency rainfall re-

trievals will result in systematic regional biases. How-
ever, if the shape and slope parameters are correlated,
then a relationship between the two, hereinafter de-
noted as an m–� relationship, may be employed during
these retrievals to account for some of the observed
variability. Such a relationship has been developed
from disdrometer datasets by Zhang et al. (2001) and
subsequently employed in dual-polarimetric radar-
rainfall retrievals (Brandes et al. 2003) and radar data
assimilation (Zhang et al. 2006). Although this relation-
ship is supported by the work of Seifert (2005) via rain
shaft model simulations, the video disdrometer datasets
from which it was derived were limited to rainfall from
Florida and Colorado, which is primarily continental in
origin. Additionally, a minimum rain rate of 5 mm h�1

was imposed. Our data points that adhere to these cri-
teria are in general agreement with the relationship of
Zhang et al. (2001). However, the oceanic datasets have
higher shape parameters and the light rainfall (R � 5
mm h�1) DSDs have lower shape parameters than this
relationship would suggest (Fig. 6a). These deviations
are sufficiently significant to preclude a single m–� re-
lationship from being used for all retrievals.

When only the m–� pairs from a particular dBZ13.6

interval are considered (Fig. 6b), a strong linear rela-
tionship among the points from different regions
emerges. For each reflectivity interval i, a least squares
linear fit was made of the form

� � aim � bi. �13�

The coefficients ai and bi and the correlation coefficient
are given for each reflectivity interval in appendix C.
Positive values of ai and bi at all intervals indicate that
at a given reflectivity, a higher shape parameter is as-
sociated with a higher slope parameter. This has the
first-order effect of damping variations in Dm, but
through combining Eqs. (5) and (13), it can be shown
that Dm will increase with m if 4a � b. Conversely, Dm

decreases with m if 4a � b. The first case is true for all
reflectivity intervals below 36 dBZ13.6, but above this
level, the m–� relationships give a Dm that decreases
with m. This is consistent with the higher rain rates we
find in the regions with a high shape parameter at a
given reflectivity.

The strength of each m–� relationship is given by the
squared correlation coefficient, which averaged 0.934
for all reflectivity intervals. This coefficient was near 0.9
at low-reflectivity intervals, but greater than 0.97 at all
intervals above 36 dBZ13.6, indicating strong m–� rela-
tionships at high rainfall rates. This is significant be-
cause the greatest regional variation of shape param-
eter is found for these high rainfall rates, but an m–�
relationship at the appropriate reflectivity interval ac-
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counts for this variation and could potentially result in
more accurate DSD retrievals.

The parameters of the m–� relationships also evolve
systematically with respect to reflectivity. The coeffi-
cients ai and bi both decrease with increasing 13.6-GHz
reflectivity, which can be seen by the progression of the
best-fit lines in Fig. 6b. As reflectivity increases this
trend results in a smaller slope parameter for a given
shape parameter, which is consistent with the presence
of more large drops in high-reflectivity DSDs. This
finding is also consistent with the results of Zhang et al.

(2003), who determined that although statistical error
in fitting methods can create m–� relationships, the
coefficients represent a true relationship between DSD
parameters. The following second-order polynomials fit
the coefficients in Eq. (13) as functions of 13.6-GHz
reflectivity Z:

a � 1.007 � 10�4Z2 � 1.462 � 10�2Z � 0.989 and

�14�

b � 3.827 � 10�3Z2 � 4.007 � 10�1Z � 11.78. �15�

FIG. 6. (a) Scatterplot of (m–�) pairs for each reflectivity interval from all of our regions
overlaid on the DFR contours from Fig. 2. (b) The (m–�) pairs from selected dBZ13.6 intervals
along with their best-fit lines; (from left to right) linear fits are for the 10-, 20-, 30-, 40-, and
50-dBZ DSDs.
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The correlation coefficients are 0.68 and 0.93 for Eqs.
(14) and (15), respectively.

7. Evaluation of constraints

We compare two constraints on the gamma distribu-
tion for dual-frequency radar-rainfall retrieval. The
first constraint is a fixed shape parameter and the sec-
ond is a relationship between shape and slope param-
eters. The parameters of these constraints are allowed
to vary with reflectivity. For the fixed shape parameter
constraint, we use a mean shape parameter (see Table
B1) to calculate rain-rate error Ei for each reflectivity
interval at each site. The average magnitude of these
errors is shown in Fig. 7. We also calculate the total
error weighted by rain amount,

Total Weighted Error � �
i�1

NDSD

|Ei|wi, �16�

where NDSD is the number of composites over which
the weighted error is calculated, Ei is given by Eq. (12),
and wi is the contribution of rainfall in the ith reflec-
tivity interval to total rainfall,

wi �
Rini

�
j�1

NDSD

Rjnj

, �17�

where ni is the number of 1-min observations in the ith
reflectivity interval. Likewise, we use m–� relationships
(see Table C1) to calculate the same error statistics for
this constraint. The weighted rain-rate error averaged
over all regions for the fixed shape parameter con-
straint is 5.70%, as compared with 4.43% for the m–�
relationships. At high reflectivities the strong correla-
tion between shape and slope parameter contributes to
lower errors for the m–� constraint than for the fixed
shape parameter constraint (Fig. 7), which is reflected
in the total weighted error.

An alternative to using the tables in the appendices is
to apply polynomial relationships derived from them.
The second-order polynomial fit for mean shape pa-
rameter as a function of dBZ13.6 (Z) is

m � �4.64 � 10�4Z2 � 3.91 � 10�2Z � 4.57.

�18�

The polynomial fits for the coefficients of the m–� re-
lationships are given in Eqs. (14) and (15), respectively.
These fitted polynomials are used in place of the tables
to calculate the rain-rate error statistics. In terms of
total weighted error, the polynomial relationships show
some degradation of performance relative to that
shown in the tables in the appendices, and the Z13.6–m
relationship outperforms the m–� relationship.

As a final basis for comparison, a Z13.6–R relation-
ship was derived from the datasets with a linear least
squares fit to illustrate the advantage of dual- over
single-frequency rainfall retrievals,

Z13.6 � 225R1.54. �19�

The weighted error from the Z13.6–R relation is 9.81%,
about twice the amount resulting from the dual-
frequency methods. Figure 7 indicates comparable per-
formance of the single-wavelength Z13.6–R relationship
to the dual-frequency methods at low reflectivities (10–
20 dBZ13.6), but the dual-frequency methods outper-
form the Z13.6–R relationship at medium and high re-
flectivities (dBZ13.6 � 20), resulting in the lower
weighted errors for these methods.

The decreasing magnitude of the rain-rate error with
increasing reflectivity is noted for both constraints. The
advantage of the dual-frequency methods over the
Z13.6–R relation is also greatest at high reflectivities.
These trends are a consequence of the additional infor-
mation provided by the DFR, which is strongly related
to the shape of the large-drop end of the spectrum. As
reflectivity increases, these well-retrieved large drops
increasingly contribute to the total rain rate and hence
reduce the error magnitude. We also note that liquid
water content errors (not shown) are greater in magni-

FIG. 7. Percent rain-rate error as a function of dBZ13.6 for five
retrieval methods. For the mean shape parameter and m–� rela-
tionship constraints, the tables are approximated by second-order
polynomial relationships. An off-scale value of 89.4% in the poly-
nomial Z–m relationship at 20 dBZ13.6 is thought to be caused by
the dual-solution ambiguity. Here, the first-solution threshold of
22 dBZ13.6 results in the selection of the incorrect solution for
some DSDs.
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tude than rain-rate errors, a result of the stronger de-
pendence of the former quantity on the poorly re-
trieved small-drop end of the spectrum.

The fixed shape parameter constraint results in re-
gional biases that must be removed for applications
such as long-term climate studies. A possible solution is
to use different reflectivity–shape parameter relation-
ships in different regions, but this requires definition of
these regions, which cannot be done globally with our
limited datasets. Furthermore, even in the same region,
DSD characteristics may depend on wind regime
(Tokay et al. 2002). In these situations, a fixed shape
parameter would fail to capture this variability, possibly
resulting in seasonal biases.

The m–� relationships show the potential to over-
come the biases inherent in using a constraint of fixed
shape parameter. These relationships are strongest at
high reflectivities (dBZ13.6 � 35), where the regional
biases of fixed shape parameter are most problematic.
Another advantage of the m–� relationships is shown
at 20–25 dBZ13.6. Here, the two solutions for the fixed
shape parameter constraint are given by the double in-
tersection of a DFR contour. The m–� relationships we
derived only intersect each contour once, eliminating
this ambiguity. However, there are two reasons why an
m–� relationship might fail to provide accurate solu-
tions. A low correlation coefficient could give solutions
far from the optimal values. This occurs at 25–35 and
10–15 dBZ13.6, where even a single-frequency Z13.6–R
relation outperforms the m–� constraint. Another
problem is that even a highly correlated fit could fail if
it is nearly parallel to the DFR contours. This is because
only a small change in DFR, which might result from an
error in attenuation correction, could lead to a large
change in the retrieved DSD.

8. Summary and conclusions

The retrieval of a three-parameter gamma distribu-
tion representing DSD from dual-frequency radar mea-
surements requires an a priori constraint. In this study,
we have employed disdrometer observations from dis-
tinct climatic regimes to develop constraints that are
representative of the wide regional variation in drop
spectra. We derived two constraints—a fixed shape pa-
rameter and the shape parameter–slope parameter re-
lationship. The shape parameter–slope parameter rela-
tionships provide a slight advantage over the fixed
shape parameter terms of overall rain amount–
weighted rain-rate error, and both dual-frequency
methods are approximately twice as accurate as the
Z13.6–R relationship. However, each constraint has
strengths and weaknesses; the m–� relationships gen-

erally perform better than the fixed shape parameter at
high reflectivities, and vice versa at low reflectivities.
The regional DSD differences in shape parameter were
found to be most significant both in magnitude and in
the context of lower internal DSD variability (appendix
A) at high reflectivities (�40 dBZ13.6), which coincides
with the strongest m–� relationships, so it is at these
high reflectivities that our results are most significant
and applicable.

The performance of these constraints with polarimet-
ric radars or at different frequencies than those used
here should be similar to our results in principle be-
cause DFR at different frequencies and the polarimet-
ric differential reflectivity ZDR are both also weighted
toward the sixth moment of the DSD, and thus the
retrieved parameters will result in optimal rainfall esti-
mation. However, the slopes of the DFR curves may be
different than those shown in Fig. 2, and certain prop-
erties of our relationships, such as the elimination of
dual solutions near 20 dBZ13.6, may not be applicable at
other frequencies. The angle at which the DFR or ZDR

curves intersect the m–� relationships also determines
the susceptibility of DSD retrieval to measurement er-
ror, which may thus be different for other frequencies/
polarizations than in this study.

The constraints that have been developed in this
study may be incorporated into DSD profile retrieval
algorithms that are being considered for the dual-
frequency radar on the GPM core satellite. However,
while these constraints appear to be valid for DSDs
from a wide variety of climate regimes, they need to be
verified against independent DSD observations from
other regions. For validation of our constraints above
the ground, profiler observations of the vertical struc-
ture of DSDs in precipitation systems could be ana-
lyzed.

Regarding applications to GPM, it is important to
note that dual-frequency retrievals will be limited by
the sensitivity of the radar receiver. The 13.6-GHz ra-
dar will only be sensitive to reflectivities higher than
about 17 dB, whereas at 35 GHz, the minimum sensi-
tivity will be 12 dB, according to recent design specifi-
cations (Iguchi et al. 2003). The latter will allow GPM
to estimate rainfall that is currently undetectable by the
TRMM PR, which may contribute to disagreements be-
tween the PR and TMI (Berg et al. 2006), but these
retrievals will be done at a single frequency. In heavy
rainfall, attenuation will limit the range of 35-GHz mea-
surements, and in extreme cases the same may occur at
13.6 GHz. In these situations, DSD estimates at range
gates where both frequencies are available could be
used to formulate optimal Z13.66–R relations at subse-
quent attenuated range gates.
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In this study, we have investigated only one compo-
nent of satellite-based dual-frequency radar-rainfall re-
trieval algorithms. The effects of ice and snow, bright-
band interaction, and attenuation from atmospheric
water vapor, cloud water, and hydrometeors are not
considered herein. Despite these additional challenges,
our results show considerable promise for the ability of
dual-frequency radar measurements, augmented by op-
timal constraints, to accurately measure DSD.
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APPENDIX A

Variability within DSD Composites

In section 4 we aggregate DSDs by an observable
quantity (13.6-GHz reflectivity) with the implicit as-
sumption that DSD variability within a reflectivity in-
terval is primarily the result of random noise, which we
seek to minimize through averaging. However, this
variability may also be the result of different rain phys-
ics at a given reflectivity, which is retained in the larger
sampling volume of a radar. Therefore, the derived pa-
rameters may not be representative of all rain at a given
reflectivity. This issue could be particularly problematic
at low and intermediate reflectivities where precipita-
tion may be stratiform or convective in origin.

In this appendix, we briefly present some additional
statistics to characterize the variability within the com-
posites. One measure of this variability is the standard
deviation of drop concentration in each bin measured
by the JWD. However, drop concentrations vary over
many orders of magnitude and are not normally dis-
tributed because of the nonexistence of negative values.
A closely related measure of variability that is less sen-
sitive to extremes in the data is the spread between the
first and third quartile.

This spread was computed for each bin of each com-
posite DSD and normalized by the concentration in
each bin. The mean normalized concentration in each
drop size bin and reflectivity interval is shown in Fig.
A1. In each reflectivity interval, maxima are noted at
the largest drop-containing bins, with minima adjacent
to the left. This behavior is consistent with a set of
spectra containing members that have different propor-
tions of large and small drops, but are constrained
within a narrow reflectivity range. The result is that
drop concentrations pivot around the point of mini-
mum spread. The degree to which this pivot occurs is an
indication of the variability of the DSDs within a re-
flectivity interval.

FIG. A2. Mean normalized spread of drop concentration for
each region by reflectivity.

FIG. A1. Normalized spread of drop concentration in each dis-
drometer size bin, averaged over all regions at each reflectivity
interval.
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Another notable trend in Fig. A1 is the decrease in
spread that occurs at reflectivities higher than 40
dBZ13.6. This probably represents the point at which
rainfall transitions from a mixture of stratiform and
convective processes to being exclusively convective,
thereby reducing the variability of DSDs caused by dif-
ferent rain physics. This trend is also illustrated in Fig.
A2, where we note a decrease in normalized spread at
all regions near 40 dBZ13.6. Figure A2 also shows the
relative variability contrasted by region; for example,
WC and FK tend to have higher normalized spreads
than SCS and DM.

APPENDIX B

Optimal Shape Parameter Statistics

The derivation of optimal shape parameter is out-
lined in section 4. The resulting summary statistics of
mean, standard deviation, and extremes were calcu-
lated at each reflectivity interval for all available re-
gions and are given in Table B1. A polynomial fit for
the mean as a function of 13.6-GHz reflectivity is given
in Eq. (18). Note that above 40–42 dBZ13.6, some re-
gions did not have composite DSDs because of insuffi-
cient samples. Therefore, the statistics for the high-
reflectivity intervals are for a subset of all regions. The
following list gives the maximum reflectivity interval at

each site: TCP (52–54), WT (40–42), WC (54–56), FK
(52–54), BW (50–52), BE (48–50), DM (46–48), TC
(46–48), and SCS (50–52).

APPENDIX C

Shape Parameter–Slope Parameter Relationships

At each reflectivity interval, a linear least squares
relationship [Eq. (13)] was derived between the optimal
shape parameter and corresponding slope parameter of
each available composite DSD. Table C1 gives the co-
efficients of these linear relationships and the squared
correlation coefficient r2 at each reflectivity interval.
Note that the number of contributing data points de-
creased from 9 to 8 at 42–44 dBZ13.6, and then to 6 at
48–50 dBZ13.6, 5 at 50–52 dBZ13.6, and 3 at 52–54
dBZ13.6. Polynomial relationships between the linear
coefficients and 13.6-GHz reflectivity are given in Eqs.
(14) and (15).
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