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ABSTRACT

An algorithm for retrieving snow over oceans from combined cloud radar and millimeter-wave radiom-
eter observations is developed. The algorithm involves the use of physical models to simulate cloud radar
and millimeter-wave radiometer observations from basic atmospheric variables such as hydrometeor con-
tent, temperature, and relative humidity profiles and is based on an optimal estimation technique to retrieve
these variables from actual observations. A high-resolution simulation of a lake-effect snowstorm by a
cloud-resolving model is used to test the algorithm. That is, synthetic observations are generated from the
output of the cloud numerical model, and the retrieval algorithm is applied to the synthetic data. The
algorithm performance is assessed by comparing the retrievals with the reference variables used in synthe-
sizing the observations. The synthetic observation experiment indicates good performance of the retrieval
algorithm. The algorithm is also applied to real observations from the Wakasa Bay field experiment that
took place over the Sea of Japan in January and February 2003. The application of the retrieval algorithm
to data from the field experiment yields snow estimates that are consistent with both the cloud radar and
radiometer observations.

1. Introduction

Snow is an important component of the earth’s hy-
drological cycle. Over land, in some regions and sea-
sons, snow may be the only form of precipitation, and
therefore it is very important for water resources man-
agement and planning. Also, over land, snow may be
associated with severe weather that impacts human
lives. Over land or oceans, snow is important because it
influences the atmosphere’s thermal structure through
release of latent heating and radiative cooling. For
these reasons, snow has been systematically studied
from hydrologic, severe-weather, and climate stand-
points.

The advent of spaceborne radars provides new op-
portunities for studying snow. Although spaceborne

precipitation radars have difficulties detecting snow be-
cause of sensitivity limitations, spaceborne cloud radars
operating at the W band are instruments that can pro-
vide unprecedented insight into various aspects of snow
formation, global distribution, and interaction with
other atmospheric or land processes. Such an instru-
ment is the 94-GHz cloud-profiling radar (CPR) aboard
the Cloud Satellite Mission (CloudSat). Although the
CloudSat CPR itself can provide valuable information,
it is expected that in conjunction with observations
from other instruments (such as microwave radiom-
eters) better interpretations of the CPR observations
can be achieved.

Radar observations cannot be uniquely converted
into snow contents because the size distribution of par-
ticles in the radar’s observing volumes cannot be ex-
pressed as functions of single variables and usually at
least two variables are necessary to describe the size
distributions of snow particles. This makes the relation-
ships of reflectivity versus snow content variable in time
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and space and the snow content estimates from radar-
only observations subject to uncertainties. Coincident
radiometer information can be used to reduce these
uncertainties.

Precipitation estimates consistent with both radar
and radiometer observations are preferable to radar-
only estimates also because they facilitate the develop-
ment of better radiometer-only algorithms. Methods to
retrieve solid-phase hydrometeors from high-frequency
radiometer-only observations have been developed by
Evans et al. (2005), Seo and Liu (2005), and Noh et al.
(2006). The existence of a realistic a priori database of
hydrometeor profiles is crucial to the success of radi-
ometer-only retrievals of solid-phase hydrometeors.
This is clearly stated in the work of Evans et al. (2005),
Seo and Liu (2005), and Noh et al. (2006). To construct
a priori databases of hydrometeor profiles, these au-
thors use radar-only observations. However, as has
been demonstrated by Grecu and Olson (2006) for rain,
it is possible to use combined radar–radiometer retriev-
als to construct a priori databases for radiometer-only
retrievals of hydrometeors. Databases derived from
combined radar–radiometer observations are poten-
tially more compact and easier to explore than those
derived from radar-only observations because the use
of coincident radiometer observations limits the num-
ber of solutions that can be associated with a given
reflectivity profile.

The objective of this paper is the development and
the evaluation of an overocean algorithm for snow re-
trieval from coincident cloud radar and microwave mil-
limeter-wavelength radiometer observations. The algo-
rithm is developed and preliminarily tested using nu-
merical simulations. That is, a cloud-resolving model
(CRM) is used to simulate a specific snow process
(lake-effect snow). Radar and radiometer observations
are synthesized from the CRM output. The variables
that significantly affect the synthesized radar and radi-
ometer observations are identified, and a mathemati-
cally rigorous algorithm to retrieve them is formulated
based upon the optimal estimation theory (Gelb 1974).
The algorithm is applied to the synthesized observa-
tions, and its performance is assessed. The algorithm is
also applied to actual observations from the Wakasa
Bay experiment, which took place in Japan in January
2003, and the results are analyzed. Note that Skofron-
ick-Jackson et al. (2003) developed a retrieval algo-
rithm applicable to coincident radar and high-fre-
quency radiometer observations. However, their algo-
rithm is not based on the optimal estimation theory and
may be less robust.

The paper is organized as follows: the next section
describes the method used in the paper to determine

the scattering properties of snowflakes. The numerical
simulation of satellite cloud radar and radiometer ob-
servations is described in section 3. The retrieval algo-
rithm formulation and its evaluation based on the nu-
merical experiment are described in section 4. Section 5
contains results from the application of the algorithm to
data from the Wakasa Bay experiment. Conclusions are
provided in section 6.

2. Electromagnetic scattering properties of
snowflakes

The relationships between the scattering properties
of snowflakes (i.e., extinction and scattering efficien-
cies, and the asymmetry factor) and their sizes can be a
major source of uncertainty in snow estimation from
satellite observations. This is because snowflakes have
highly complex and variable geometries (habits), and
the solution of Maxwell’s equations is difficult to deter-
mine for such particles. However, appropriate numeri-
cal techniques to solve Maxwell equations for complex
ice geometries, although computationally expensive,
exist. The discrete dipole approximation (DDA) of
Draine and Flatau (1994) is such an approach. Using
the DDA approach, Kim (2006) determined the scat-
tering properties of ice crystals with different habits
over a range of millimeter-wave frequencies and plot-
ted them against the effective size parameter defined as

xeff � 2�reff ��, �1�

where reff is the effective radius, that is, the radius of a
sphere of pure ice with the same mass as that of the
actual ice crystal. She concluded that the electromag-
netic scattering properties do not significantly depend
on the ice habit for size parameters that are smaller
than 2.5. Here, using the same DDA approach of
Draine and Flatau (1994), we analyze the scattering
properties of ice crystals with two geometries: single
cylinders and two orthogonal cylinders joined at their
centers. The analysis suggests that a subtle dependency
of scattering properties on the ice habit in fact exists.
This finding is consistent with those of Weinman and
Kim (2007) who postulated that the electromagnetic
properties depend on the ice habit and also on the ef-
fective dimension �, defined as the ratio of the ice crys-
tal volume to its average projected area.

To investigate further the dependence of scattering
properties on the ice habit, we use an additional nu-
merical tool to solve Maxwell’s equations: the general-
ized multiparticle Mie (GMM) approach of Xu and
Gustafson (2001). The GMM approach is based on ad-
dition theorems for vector spherical wave functions and
allows a quasi-analytical solution of Maxwell’s equation
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for multiple spheres. For a certain class of problems
that involve the scattering from a relatively small num-
ber (e.g., 30) of spheres, the GMM approach is compu-
tationally more efficient than the DDA. Here, various
types of ice particles are approximated by spheres and
the GMM approach is applied. These types consist of
single cylinders, two orthogonal cylinders joined at
their centers, and aggregates. For cylinders, a relatively
small number of spheres, not exceeding 30, are aligned
along a single axis to approximate the single cylinder or
along two orthogonal axes to approximate the two or-
thogonal, joined cylinders. For aggregates, although nu-
merical simulations based on the coalescence equation
can be used to generate snowflakes as clusters of oscu-
lating spheres (Maruyama and Fujiyoshi 2005), we use
a simple statistical algorithm (Filippov et al. 2000) to
generate ice crystals consisting of osculating spheres.

Herein, because of computational considerations, we
limit the number of spheres that form the aggregates
to 30.

Representations of the scattering properties as a
function of the effective size parameter from the DDA
and the GMM approaches are shown in Fig. 1. Note
that the scattering properties of single cylinders from
both the DDA and GMM approaches do not signifi-
cantly differ for size parameters of less than 2.5, irre-
spective of their densities. The effective density of the
cylinder, defined as the mass divided by a spherical
volume with a diameter equal to the maximum dimen-
sion of the cylinder, specified in the DDA calculations
is 0.125 g cm�3. The density of the two-cylinder habit
used in the DDA calculations is also 0.125 g cm�3. One
of the approximated cylinders in the GMM approach
has the same density (cylinder 1 in Fig. 1), and the other

FIG. 1. Electromagnetic scattering properties determined using the GMM and the DDA approaches. The density is 0.125 g cm�3 for
both the single-cylinder and the two-orthogonal-cylinder habit used in the DDA calculations. The densities of the GMM-approximated
cylinders are 0.125 and 0.065 g cm�3, respectively.
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(cylinder 2) is characterized by a density of 0.065 g
cm�3. It is apparent in Fig. 1 that the single-scattering
properties of the two-orthogonal-cylinder habit deter-
mined from the DDA approach differ from those of the
single cylinder also determined from the DDA ap-
proach. Moreover, the single-scattering properties of
the multisphere aggregate determined from the GMM
approach are similar to those of the two-orthogonal-
cylinder habit and different from those of the single
cylinder. Based on these calculations, we conclude that,
although some of the scattering dependence on density
may be parameterized through the use of the effective
size parameter, there is also a dependence on the ef-
fective dimension (Weinman and Kim 2007) that is
more difficult to parameterize. Because an exhaustive
investigation of all types of possible particles is prohibi-
tive from the computational standpoint, we will assume
here that the properties of the two-orthogonal-cylinder
habit are representative of the properties of snow par-
ticles in general. Therefore, given a certain snow par-
ticle with a known maximum diameter, its density is
estimated using the Magono and Nakamura (1965) re-
lationship (see section 3), and the effective size param-
eter is determined from the particle’s mass. The scat-
tering properties are then set based on the two-ortho-
gonal-cylinder DDA calculations as a function of the
effective size parameter.

In the future, we intend to use a more realistic ag-
gregation model (e.g., Westbrook et al. 2004) to gener-
ate snow particles and then to calculate their scattering
properties using the DDA approach. Given that aggre-
gation models have been shown to reproduce realisti-
cally the properties of snow particles observed in nature
[e.g., density–size relationships and particle size distri-
bution; Westbrook et al. (2004)], the single-scattering
properties derived from such an approach are poten-
tially more realistic than those derived in the current
study.

3. Simulation of a lake-effect snow

Here, the Advanced Regional Prediction System
(ARPS; Xue et al. 2000) is used to simulate a lake-
effect snowstorm. This kind of snowstorm is preferred
to others because realistic results can be obtained with
a relatively modest computational effort. The mecha-
nism responsible for the production of lake-effect snow
has been documented and numerically simulated in
various studies (e.g., Cooper et al. 2000) and is only
briefly described herein. The lake-effect snow is a con-
sequence of a cold-air outbreak over a large body of
relatively warm water (such as the Great Lakes of
North America). The warm water provides the energy

and moisture to produce an internal boundary layer
and to initiate moist convection. As the cold air moves
across the body of water, the boundary layer grows and
the convection intensifies, yielding substantial snowfall
over the downwind (lee) shore of the lake.

The ARPS model is set up for a 2D simulation as
follows. The simulation domain is 30 km in the hori-
zontal plane and 10 km in the vertical direction, and it
is assumed that the domain is oriented along the direc-
tion of the prevailing wind. Using this limited horizon-
tal domain, it is only possible to simulate the develop-
ment of snow in a limited area over the lake surface
near the lee shore, where the development of the con-
vective boundary layer is greatest. The grid spacing uti-
lized is 100 m in the horizontal plane and varies from 10
to 50 m in the vertical direction, with the finest grid
spacing near the surface and becoming gradually
coarser with altitude. In this simulation, the Goddard
Cloud Ensemble (GCE) microphysical scheme (Tao
and Simpson 1993) is used, and a 1.5-order turbulent
kinetic energy closure is employed to account for tur-
bulence. The surface sensible heat and moisture fluxes
are determined as functions of the surface air and water
temperatures using bulk formulas employing constant
drag coefficients. A minimum speed of 2 m s�1 is speci-
fied in the surface flux bulk formulas to ensure that
moisture and heat are transferred from the surface into
the atmosphere despite the simple formulations of sur-
face fluxes.

The model is initialized using a cold sounding ob-
served in the vicinity of Lake Michigan in January 1998.
The sounding is very similar in terms of moisture and
temperature to the sounding recorded during the Lake-
Effect Snow Study Storm Project (Kristovich 1993) at
Green Bay, Wisconsin, at 1200 UTC 17 December
1983. The initial sounding, surface wind speed, and lake
surface temperature are prescribed uniformly over the
model domain, but the atmosphere is modified by sur-
face fluxes as it would be if the domain followed the
airflow over the lake in a Lagrangian sense. The model
is run for 6 h of simulation time, which is a typical time
for the flow of cold air to traverse Lake Michigan. Al-
though the simulation is 2D, the basic model setup and
initialization roughly follow the investigation by Coo-
per et al. (2000). However, our purpose here is not to
perform a case-study simulation of a particular lake-
effect snow event, but rather to produce physically
plausible lake-effect convective snow and hydrometeor
distributions for the purpose of testing a snow remote
sensing algorithm.

The GCE microphysical scheme features seven spe-
cies of water. Of these, only four—water vapor, cloud
liquid water, cloud ice, and snow—attain nonzero val-
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ues in this simulation. The GCE microphysical scheme
is based on the assumption that precipitation (snow)
particle size distributions (PSDs) can be described by
exponential laws with fixed intercepts. This assumption
is not appropriate for studying the benefit of incorpo-
rating information from radiometer observations in a
radar retrieval algorithm, because both radar reflectivi-
ties and microwave radiances are sensitive to higher
moments of the PSDs. Therefore, in this study, it is
assumed that the snow PSDs can be properly described
as normalization gamma functions (Testud et al. 2001):

N�D� � N*
0 f���� D

D0
��

exp���3.67 � ��D�D0�, with

�2�

f��� �
6

3.674

�3.67 � ���4���

��3.67 � ��
, �3�

where N*0 is a generalized intercept, 	 is a shape pa-
rameter, D is the particle diameter, and D0 is median
diameter. Testud et al. (2001) found that relationships
between the electromagnetic properties of hydromete-
ors integrated over their size distributions and the hy-
drometer content depend mainly on N*0 and only
weakly on 	. The generalized intercept N*0 varies hori-
zontally as well as vertically. However, its altitude de-
pendence can be parameterized as shown by Heyms-
field et al. (2002) and Field and Heymsfield (2003).
Thus, the intercept at altitude z, N*0 (z), can be expressed
as a function of scaling intercept at altitude z0 as

N*
0�z� � N*

0�z0� exp
�0.374�T�z� � T�z0���, �4�

where T(z) is the temperature at height z. Relationship
(4), although formulated in terms of temperatures, ex-
presses the dependence of N*0 on altitude and micro-
physical processes in the vertical direction.

To complete the information needed to simulate
brightness temperatures and radar reflectivities rigor-
ously, intercepts N*0 (z0 � 0, x) are generated at random
for each bottom boundary grid cell in the computa-
tional domain. The intercepts are generated from a log-
normal distribution with parameters similar to those in
Testud et al. (2001). Then, using (4), vertical profiles of
scaling parameter N*0 (z, x) are determined as a function
of N*0 (z0 � 0, x). Note that although the surface inter-
cepts are generated randomly from grid cell to grid cell
in the horizontal plane, any spatial correlations of simu-
lated snow water contents in the horizontal plane lead
to correlations of median particle sizes in the horizontal
plane as well. The snow particle ice/air density is deter-
mined as a function of particle maximum diameter us-

ing the following parameterization (Magono and Naka-
mura 1965):

� � 0.07D�1, �5�

where � (g cm�3) is the density and D (cm) is the maxi-
mum diameter of the snow particle.

The electromagnetic scattering properties of snow
are determined based on the DDA calculations de-
scribed in the previous section as a function of the snow
content. The shape parameter 	 is arbitrarily set to 0
everywhere in the computational domain, given that its
value affects only weakly the relationships between the
electromagnetic scattering properties and the snow
contents. The scattering properties of cloud ice are de-
termined based on the relationships of Heymsfield and
Platt (1984), as described by Olson et al. (2001). The
cloud water and water vapor extinction efficiencies are
determined as described in Grecu and Anagnostou
(2002), and the brightness temperatures at various mil-
limeter-wave frequencies are calculated using an Ed-
dington approximation (Grecu and Anagnostou 2002)
for an angle of incidence of 0.0°. For the surface emis-
sivity, we use the model implemented in the Goddard
Profiling Algorithm (Kummerow et al. 2001). The ra-
diometer frequencies consist of 89, 150, 183.3  1,
183.3  3, 183.3  7, and 220 GHz, which are the fre-
quencies of the millimeter-wave imaging radiometer
(MIR), deployed in various field campaigns.

Shown in Fig. 2 are the simulated brightness tem-
peratures and the simulated attenuated radar reflectivi-
ties at 94 GHz (W band). Note in Fig. 2 that the 89-GHz
radiances exhibit both emission (positive excursions)
and scattering (negative excursions), relative to a back-
ground brightness temperature of approximately 205 K,
although preponderantly emission is seen. The 150-
GHz radiances exhibit mainly scattering (negative ex-
cursions relative to a background of about 230 K), al-
though some emission signatures are still evident. Two
of the water vapor absorption channels, that is, 183.3 
3 and 183.3  7, exhibit scattering signatures, and the
183.3  1 GHz brightness temperatures are essentially
constant. The 183.3  1 GHz is mostly sensitive to the
relative humidity in the atmospheric layer extending
from 5.0 to 12.0 km, an atmospheric layer that does not
exhibit notable variation in the numerical model.
Therefore, the 183.3  1 GHz brightness temperatures
are invariant in this simulation. The 220-GHz bright-
ness temperatures are similar to those at 183.3  7 GHz
and are strongly correlated with the path-integrated at-
tenuation (PIA). The PIA is the total attenuation of a
radar pulse as it passes down through the atmosphere,
is reflected off the earth’s surface, and passes upward
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FIG. 2. Brightness temperatures, PIA, radar reflectivities, and cloud liquid water contents derived from a cloud-model simulation of
lake-effect snow.
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through the atmosphere again to the receiver. The total
PIA due to all atmospheric constituents, as well as the
PIA contribution from cloud liquid water alone, is
shown in the figure. Also shown in Fig. 2, in the bottom
panel, are the simulated cloud liquid water contents.
Although the simulated cloud liquid water contents are
somewhat dependent on the particular microphysical
scheme used in this study, cloud water is nonetheless an
important constituent that participates in ice micro-
physical processes (Lin et al. 1983). Radiometer obser-
vations from field campaigns (as apparent in section 5)
suggest nonnegligible quantities of liquid water in pre-
cipitating snow clouds. As seen in Fig. 2, cloud liquid
water accounts on average for 30% of the total PIA in
the simulated snow clouds. Therefore, cloud liquid wa-
ter should be taken into account explicitly in algorithm
development, because it affects both the radar obser-
vations through attenuation and the 89.0-GHz bright-
ness temperatures through emission, in particular,
which makes the synthetic data in Fig. 2 suitable for
testing combined radar–radiometer snow retrieval al-
gorithms.

4. Retrieval method: Formulation and application
to synthetic observations

As apparent from Fig. 2, attenuation of the observed
reflectivity may be severe, which makes the retrieval
difficult. This is because the attenuation correction us-
ing the analytical approach of Hitschfeld and Bordan
(1954) may be unstable when the attenuation is large
(Iguchi and Meneghini 1994). Moreover, the presence
of cloud liquid water, which is responsible for some of
the attenuation of the observed reflectivities, can make
it impossible to express the attenuation as a function of
reflectivity alone, in the way it is assumed in the
Hitschfeld–Bordan approach. The Hitschfeld–Bordan
approach requires that the attenuation k be related to
reflectivity Z through a power-law relationship of the
type k � �Z�. The parameter � has to be constant with
range for the analytical solution to be valid. However,
because the fraction of cloud liquid water varies in time
and space (and possibly independent of Z), � is not
constant with range. Therefore, in this study, in a de-
parture from previous work on the development of a
combined precipitation retrieval algorithm by Grecu
and Anagnostou (2002), the Hitshfeld–Bordan solution
is not used at all. Instead, a set of unknown variables X
consisting of the PSD intercept at the surface N*0 (z0 �
0), a cloud-scaling parameter xc, snow equivalent water
contents at the levels at which radar observations are
available ws, and three relative humidity principal com-
ponents RHPC is defined. In our formulation, cloud ice

is not explicitly retrieved. Instead part of the snow is
assumed to be cloud ice. The cloud water profile is
determined by multiplying a generic cloud water profile
(the average of all cloud water profiles in the compu-
tational domain) by xc. The PSD intercepts at heights
different from zero are determined using (4). The rela-
tive humidity profile is determined from the RHPC
using

RH�z� � �
i�1

3

RHPCi � RHEOFi�z�, �6�

where RHEOFi are the first three empirical orthogonal
functions (EOFs) of the relative humidity. Equation (6)
provides a reduction in the number of variables needed
to represent the vertical variation in relative humidity.
Because the relative humidity is an autocorrelated vari-
able (i.e., its value at a certain location in space is par-
tially correlated with its values at other locations in
space), a transform exists (North 1984) that makes it
possible to approximate relative humidity profiles as a
combination of a small number of profiles called em-
pirical orthogonal functions (EOFs). The advantage of
using relative humidity EOFs resides in the fact that
only a few of them need to be considered to approxi-
mately reconstruct any relative humidity profile. In our
simulation, the first three principal components explain
more than 90% of the variability of all relative humidity
profiles. In addition to using principal components to
describe relative humidity profiles, to make the re-
trieval problem well posed we limit the principal com-
ponent variability to within 10% of the values obtained
in clear-air retrievals. The temperature profiles are as-
sumed to be known and are set equal to their averages
over the computational domain. The snow density is
determined based on (5). (The sensitivity of the retriev-
als to the density assumption is examined below.) Thus,
the attenuated radar reflectivities, PIAs, and the radi-
ometer brightness temperatures can be determined as
functions of

X � {N*
0, xc, ws, RHPC}.

The retrieval problem is equivalent to minimizing the
following objective function:

F �
1
2

�Z
M

� Z�X��TWZ
�1�Z

M
� Z�X��

�
1
2

�PIAS � PIA�X��TWPIA
�1 �PIAS � PIA�X��

�
1
2

�TB
M � TB�X��TWT

�1�TB
M � TB�X��

�
1
2

�XN � X�TWN
�1�XN � X�, �7�
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where ZM and Z(X) are the observed and calculated
reflectivities, TM

B and TB(X) are the observed and cal-
culated brightness temperatures, and PIA(X) are the
calculated path-integrated attenuations. In practice, the
PIAS are PIA estimates that can be derived from the
surface reference technique (Meneghini et al. 2000),
but here they are derived directly from the simulated
attenuation. The vector XN represents an a priori esti-
mate of X, here assumed to be the average of the un-
knowns over the model domain. The average values of
{xc, ws, RHPC} are determined using the CRM simula-
tion, and the average of N*0 is set based on the study by
Testud et al. (2001). Likewise, the error covariance of
the a priori estimate WN is set based on the CRM simu-
lation and the findings by Testud et al. (2001). Vari-
ables WZ, WT, and WPIA are assumed to be diagonal
matrices. The diagonal elements of WZ are set to 1.0
dBZ2, which corresponds to a typical radar reflectivity
error of 1.0 dB. The WT diagonal elements are set to 1.0
K2, and a typical value for WPIA is 1.0 dB2 according to
Meneghini et al. (2000).

To minimize (7), the ideal Newton iterative method
(Gill et al. 1981) is used. To estimate the tangent linear
approximation of the observation operator, the en-
semble-based method of Evensen (2006) is employed.
That is, a number N of random solutions Xi, where 1 �

i � N, are generated. Let the vector Y represent the set
of observations Z, PIAS, and TB, and H(Xi) represent
the calculated observations. Based on Y and H(Xi),
each solution Xi of the ensemble is updated using the
following formula:

X�i � Xi � PHT�HPHT � R��1�Y � H�Xi��, �8�

where

PHT �
1

N � 1 �
i�1

N

�Xi � X��H�Xi� � H�X��T, �9�

HPHT �
1

N � 1 �
i�1

N

�H�Xi� � H�X���H�Xi�

� H�X��T, and �10�

R � �
WZ 0 0

0 WPIA 0

0 0 WT

�. �11�

The correct specification of R requires extensive CRM
and radiative transfer modeling and/or in situ observa-
tions. Given the limited amount of CRM and in situ
data available for this study, we chose to set R to a
diagonal matrix as explained above. This is a simplifi-
cation that might induce uncertainties in the retrievals

but is a good alternative to estimating the full structure
of R based on insufficient data (Marzano et al. 1999).

After the update, the error covariances (9) and (10)
are recalculated and (8) may be applied again until con-
vergence is achieved. The convergence criterion re-
quires that no significant change in the average value of
F (i.e., less than 5%) is obtained by a new iteration
(where the average is determined by evaluating F for all
the members of the ensemble). Equation (8) represents
a second-order approach and is derived from the con-
dition that the gradient of the objective function is zero,
that is, �F � 0, where F is the objective function (7).
Convergence is typically achieved in four iterations for
N � 30. The final estimate is given by the mean of the
ensemble:

X �
1
N �

i�1

N

Xi, �12�

and an estimate of its uncertainty is

sX � � 1
N � 1 �

i�1

N

�Xi � X��Xi � X�T�1�2

. �13�

In applying the ensemble-based retrieval method to
the synthetic radar–radiometer data, the 94-GHz radar
reflectivities and PIAs as well as the 89-, 183  1, and
183  7 GHz brightness temperatures are utilized. Sev-
eral variables retrieved from these synthetic observa-
tions are shown in Fig. 3. These include the liquid water
path, the relative PSD intercept (defined as the ratio of
the actual intercept N*0 to a nominal value of 0.08 cm�4,
the Marshall–Palmer value), the snow water content,
and the path-integrated attenuation. Good agreement
between the retrieved variables and the actual variables
derived from the model simulations is achieved. The
relative PSD intercept exhibits the largest errors. How-
ever, because the reflectivity snow water content rela-
tionships depend on a subunitary power (with an expo-
nent smaller than 0.5) of the relative PSD intercept
(Testud et al. 2001; Grecu and Anagnostou 2002), the
errors in the snow estimates are relatively smaller than
those in the PSD intercepts. The cloud liquid water
path also exhibits larger errors than the snow water
content, most likely because the cloud water-sensitive
89-GHz brightness temperatures depend also on the
surface wind speed, through its effect on water surface
emissivity. The surface wind speed cannot be reliably
retrieved from millimeter-wave observations and was
not treated as an unknown in the formulation of (7).
However, as is apparent from Fig. 3, this does not sig-
nificantly impact the retrieval of the other variables.

Shown in Fig. 4 are the actual snow and retrieved
snow contents. As described above, cloud ice is not
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explicitly retrieved but is assumed to be part of the
retrieved snow. To make the comparison consistent, the
cloud ice and snow are combined into a category ge-
nerically called snow in Fig. 4. It may be noticed in the
figure that, consistent with results presented in Fig. 3,
the actual and the retrieved values are highly corre-
lated. Also shown in Fig. 4 are the differences between
the retrieval using the correct snow density parameter-
ization and a retrieval in which the equivalent densities
are 2 times those estimated from (5). It is found that the
retrieved variables, although still highly correlated with
the actual variables, exhibit a bias of about �15%. This
is because, as is apparent from Fig. 1, the radar back-
scattering as well the extinction and asymmetry factor
for small particles increases with the density. This im-
plies that the calculated radar reflectivities, the PIAs,

and the scattering in the radiometer high-frequency
brightness temperatures are overpredicted when as-
suming a snow density of 2 times the actual snow den-
sity. As a consequence, the minimization technique
compensates by reducing the amount of snow in the
retrieval to produce a better agreement between the
actual observations and their optimized values. Be-
cause the estimation of snow density directly from ra-
dar and radiometer observations seems unfeasible, the
best strategy to minimize the errors caused by uncer-
tainties in snow density is to parameterize its values
based upon independent observations such as airborne
microphysical data.

In the next section the retrieval algorithm is applied
to remote sensing observations from the Wakasa Bay
experiment.

FIG. 3. Retrieved variables estimated from model-generated synthetic data, plotted against actual variables from
the model simulation.
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5. Application to airborne data

The Wakasa Bay field experiment took place over
the Sea of Japan from 3 January to 14 February 2003
(Lobl et al. 2007). The primary objective was to provide
data for the validation of shallow rain and snow retriev-
als from the Advanced Microwave Scanning Radiom-
eter—Earth Observing System (AMSR-E) observa-
tions. To achieve this objective, several instruments
were deployed in the experiment. These include a dual-
frequency precipitation radar (PR-2), an airborne cloud
radar (ACR), an airborne multichannel microwave ra-
diometer, and a MIR. Two of these instruments, that is,
the ACR and the MIR, provide radar and radiometer
observations that are useful for testing the retrieval al-
gorithm presented in the previous section. Although
many combinations of instruments and channels can be
used to estimate precipitating snow, the ACR data are

of particular interest because it operates at the same
frequency as the CloudSat radar (94 GHz).

Shown in Fig. 5 are millimeter-wave brightness tem-
peratures and ACR reflectivities collected during a
flight leg on 19 January 2003. Note that the airborne
observations in Fig. 5 are similar in many respects to the
synthetic observations presented in section 2. For ex-
ample, the 89- and 150-GHz data exhibit significant
emission (e.g., the peak near 37.25°N latitude), which
can be used to estimate the amount of liquid water in
clouds but cannot be used to provide additional infor-
mation on the precipitating snow. On the other hand,
the brightness temperatures at the higher frequencies,
such as 183.3  3, 183.3  7, and 220 GHz, exhibit
scattering signatures and can provide additional infor-
mation on the precipitating snow. Some differences
with respect to the model simulations are obvious as
well, the most obvious being that the observed precipi-

FIG. 4. Actual and retrieved snow contents and retrieval errors due to errors in the snow density parameterization.
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tating snow clouds are deeper than the simulated
clouds. This difference is the outcome of frontal dy-
namics that were active during the Wakasa Bay observ-
ing period, whereas the simulated snow clouds are pri-
marily controlled by boundary layer processes. Never-
theless, the overall similarity between the simulated
and airborne observations is remarkable, and this result
implies that the retrieval algorithm developed and
tested using the synthetic data can be applied to actual
data as well.

The retrieval algorithm is applied to the observations

shown in Fig. 5. The snow densities are determined
using the parameterization given by (5). The tempera-
ture profiles and the relative humidity EOFs are deter-
mined from National Centers for Environmental Pre-
diction–National Center for Atmospheric Research
reanalysis data (obtained online at ftp://ftp.cdc.noaa.
gov/). That is, reanalysis data from the Wakasa Bay
area on 19 January 2003 are used to determine an av-
erage temperature profile and the relative humidity
EOFs. As in the retrievals based upon the synthetic
data, only the 89-, 183.3  1, and 183.3  7 GHz bright-

FIG. 5. MIR brightness temperatures and ACR reflectivities observed on 29 Jan 2003.
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ness temperatures are utilized in the estimation
method, along with the radar observations and the
PIA estimates from the surface reference technique
(Meneghini et al. 2000). The 150-, 183.3  3, and 220-
GHz radiometer observations are used for validation.
In other words, the brightness temperatures at these
frequencies are calculated based upon the final re-
trieved variables, but the differences between the cal-
culations and observations are not used in the estima-
tion procedure itself. Instead, they are analyzed for the
retrieval assessment.

The calculated and observed brightness temperatures
at 89, 150, 183.3  1, 183.3  3, 183.3  7, and 220 GHz
are shown in Fig. 6, and one may note generally good
agreement between these two sets of brightness tem-
peratures. Even the calculated brightness temperatures
at frequencies not used in the retrieval, that is, 150,
183.3  3, and 220 GHz, agree well with the observed
brightness temperatures. Greater discrepancies be-
tween the calculated and observed brightness tempera-
tures are apparent in the region extending from ap-
proximately 37.7° to 37.9°N, for which the 183.3  1
GHz calculated brightness temperatures are generally
higher than the observed and the 183.3  7 GHz bright-
ness temperatures are generally lower than the obser-
vations. Simple changes in the estimated snow water
contents cannot remove these discrepancies—uncer-
tainties in the evaluation of the water vapor extinction,
or uncertainties in the snow density relationship (5),
could account for the biases in the calculated brightness
temperatures.

Shown in Fig. 7 are the snow water content, the rela-
tive PSD intercept, the cloud liquid water path (LWP),
and the PIA retrieved using the combined algorithm.
As expected, the retrieved snow content patterns are
well correlated with the radar reflectivity patterns. The
relative PSD intercept is usually smaller than 1.0 and
larger than 0.01. Lower values of the relative PSD in-
tercept appear to be associated in some regions with
large LWP values. Whether this is an artifact of the
solution or is a consequence of ice microphysical pro-
cesses remains to be investigated using CRMs employ-
ing explicit microphysics or through intensive field cam-
paign studies in which in situ microphysical data are
obtained. It is also apparent from Fig. 7 that the LWP
may be very large and contribute significantly to the
PIA. On the other hand, the retrieved LWP is not sim-
ply proportional to the total PIA. In other words, both
snow and cloud liquid water contribute to the total
PIA, and the combined radar and radiometer data pro-
vide enough information to distinguish their relative
effects on PIA.

From both Figs. 5 and 7, it may be noted that the

ACR reflectivities may be subject to severe attenua-
tion. In the retrieval algorithm, radiometer brightness
temperatures and a surface return–based estimate of
the PIA are used to correct for the attenuation. Nev-
ertheless, the attenuation correction is associated with
errors. To evaluate how these errors affect the retrieval,
the retrieval algorithm is applied to combined Ku-band
radar channel of the PR-2 and MIR observations. The
Ku-band radar observations of snow do not exhibit sig-
nificant attenuation and consequently can be used to
investigate the effect of attenuation in the cloud radar
observations on the combined retrievals. The Ku-band
PIA is negligible, and no reliable PIA estimate can be
obtained from the surface return. Therefore, surface-
return estimates of Ku-band PIA are not used in the
retrievals. This is achieved computationally by setting
WPIA to a large value (on the order of tens of squared
decibels). All other covariance matrices and assump-
tions are the same as in the previous applications of the
combined cloud radar–radiometer algorithm. The re-
trieved snow from the combined Ku-radar and MIR
observations is shown in Fig. 8. Also shown in Fig. 8 are
the differences between the combined W-band–MIR
retrievals and the combined Ku-band–MIR retrievals.
Note that the combined W-band–MIR retrievals are
usually larger than the Ku-band–MIR retrievals above
2.0 km and are smaller below. The low-level W-band–
MIR underestimation (relative to the Ku-band–MIR
estimates) in some regions (around 36.7° and 37.2°N) is
most likely caused by insufficient attenuation correc-
tion of the W-band observations. In these regions, the
retrieval technique appears to underestimate the W-
band effective (attenuation corrected) reflectivities
and/or the PSD intercept. In other regions (e.g., from
37.6° to 37.9°N), the differences may be caused by
lower sensitivity of the Ku-band radar to small particles
at the top of the cloud. The main mechanism that the
retrieval procedure uses to reconcile radar and radiom-
eter observations is the adjustment of the PSD inter-
cept. Through this mechanism, the insensitivity of Ku-
band observations to small ice particles can be compen-
sated through an increase in the PSD intercept.
However, the PSD intercept is parameterized, and this
may lead to an overestimation in regions of relatively
high reflectivities where the Ku-band radar low sensi-
tivity to small particles in not very important. As a
consequence, the Ku-band overestimate at low levels
may be not only an effect of the attenuation in the
W-band observations but also a consequence of the re-
duced sensitivity of the Ku-band radar reflectivities to
small ice particles. A rigorous quantification of the con-
tributions of these two potential sources of errors as
well as of other errors such those in the estimation of
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FIG. 6. Observed and simulated brightness temperatures for the 29 Jan 2003 flight leg. The simulated brightness
temperatures are derived from the combined cloud radar–millimeter-wave radiometer retrievals.
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the electromagnetic scattering properties is difficult
given the limited amount of information in the obser-
vations and the ill-posed nature of the retrieval prob-
lem. However, the ice water paths of snow from the two

retrievals appear to be in reasonably good agreement,
although the cause of systematic differences in the ver-
tical structures between the two types of retrievals
needs to be further investigated.

FIG. 7. Retrieved snow content, relative PSD intercept (dN ), LWP, and PIA.

JUNE 2008 G R E C U A N D O L S O N 1647

Fig 7 live 4/C



To study the combined algorithm’s sensitivity to un-
certainties in the snow density, the relationship (5) is
modified to yield densities that are 2 times as large, and
the retrieval algorithm is reapplied to the combined
cloud radar and radiometer observations. The agree-
ment between predicted and observed brightness tem-
peratures (not shown) is similar to that illustrated in
Fig. 5. However, as noted in the numerical experiment
based on synthetic observations, the overall snow con-
tent values decrease by about 12.5%. This is an indica-
tion that the snow density has to be specified in the
algorithm based on independent considerations, that is,
using parameterizations derived from microphysical
observations and/or simulations employing CRMs with
explicit microphysics.

6. Conclusions

In this study, an algorithm to retrieve snow from
combined cloud radar and millimeter-wave radiometer

observations is developed and investigated. The elec-
tromagnetic scattering properties of snowflakes are de-
termined based on calculations using the discrete dipole
approximation approach of Draine and Flatau (1994)
and the generalized multiparticle Mie approach of Xu
and Gustafson (2001). The scattering properties of
various ice crystal habits—namely, single cylinders, two
orthogonal cylinders, and aggregates of osculating
sphere—are calculated using the DDA and GMM ap-
proaches. Based on these calculations, electromagnetic
scattering properties deemed to be representative of
snowflakes in general are determined.

To develop and test the retrieval algorithm, a lake-
effect snowstorm is numerically simulated using a
CRM. Cloud radar and millimeter-wave radiometer ob-
servations are synthesized from the cloud-model out-
put. The retrieval problem is formulated as a minimi-
zation problem and is addressed through an iterative
Newton method based on the statistical estimation of

FIG. 8. Retrieved snow from combined Ku-band radar and MIR radiometer observations, and differences between combined
W-band–MIR retrievals and Ku-band–MIR retrievals.
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the objective function gradient. The application of the
retrieval algorithm to the synthetic data yields unbiased
results provided that the snow density is correctly pa-
rameterized. However, even if the assumed snow den-
sity is in error by a factor of 2, only a 15% bias of
estimated snow water contents results.

The application of the retrieval algorithm to actual
data from the Wakasa Bay field experiment yields snow
estimates consistent with both the cloud radar and ra-
diometer observations. Moreover, the estimates are,
overall, similar (although systematic differences in the
vertical structure are apparent) to estimates from the
same algorithm applied to combined Ku-band and mil-
limeter-wave radiometer observations. This is an indi-
cation that the attenuation correction, normally pro-
vided by radar-derived PIA estimates (but not available
at Ku band), can be performed with the addition of
millimeter-wave radiometer observations. However,
the snow estimates are somewhat sensitive to assump-
tions made about the snow density, with a 12.5% bias
resulting from a factor-of-2 error in the assumed snow
density.

Future studies must be conducted to determine the
most appropriate snow density parameterizations for
algorithm applications. The relationship between the
equivalent density and the PSD slope used in this study
is believed to apply to dry large snowflakes (Magono
and Nakamura 1965), but microphysical data from
snowstorms are necessary to confirm whether this rela-
tionship is applicable to snowfall retrievals in general.

The algorithm developed in this study is also appli-
cable to satellite data. High-resolution observations
from CloudSat cloud-profiling radar are readily avail-
able. However, given the low resolution of existing
spaceborne millimeter-wave radiometers, such as Ad-
vanced Microwave Sounding Unit (AMSU)-B, further
studies should be conducted to determine how the ra-
diometer information can improve CPR retrievals.
Other radiometers, such as AMSR-E, can also be used
to potentially enhance CPR snow estimates. The snow
and cloud water distributions derived from airborne ob-
servations in this study can be used to simulate CPR
and AMSR-E observations realistically, and a retrieval
algorithm similar to the one presented here can be de-
veloped and tested based upon these synthesized data.
The development of an algorithm to retrieve precipi-
tating snow from combined spaceborne radar and radi-
ometer observations would be extremely valuable for
the development of accurate radiometer-only method
for estimating snow: As shown in Shin and Kummerow
(2003), Seo and Liu (2005), Grecu and Olson (2006),
and others, accurate, high-resolution precipitation dis-
tributions can be used to create a priori datasets of

candidate solutions for radiometer-only estimation
techniques.
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