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ABSTRACT

This study provides a comprehensive intercomparison of instantaneous rain rates observed by the two
rain sensors aboard the Tropical Rainfall Measuring Mission (TRMM) satellite with ground data from two
regional sites established for long-term ground validation: Kwajalein Atoll and Melbourne, Florida. The
satellite rain algorithms utilize remote observations of precipitation collected by the TRMM Microwave
Imager (TMI) and the Precipitation Radar (PR) aboard the TRMM satellite. Three standard level II rain
products are generated from operational applications of the TMI, PR, and combined (COM) rain algo-
rithms using rain information collected from the TMI and the PR along the orbital track of the TRMM
satellite. In the first part of the study, 0.5° � 0.5° instantaneous rain rates obtained from the TRMM 3G68
product were analyzed and compared to instantaneous Ground Validation (GV) program rain rates gridded
at a scale of 0.5° � 0.5°. In the second part of the study, TMI, PR, COM, and GV rain rates were
spatiotemporally matched and averaged at the scale of the TMI footprint (�150 km2). This study covered
a 6-yr period (1999–2004) and consisted of over 50 000 footprints for each GV site. In the first analysis, the
results showed that all of the respective rain-rate estimates agree well, with some exceptions. The more
salient differences were associated with heavy rain events in which one or more of the algorithms failed to
properly retrieve these extreme events. Also, it appears that there is a preferred mode of precipitation for
TMI rain rates at or near 2 mm h�1 over the ocean. This mode was noted over ocean areas of Kwajalein
and Melbourne and has been observed in TRMM tropical–global ocean areas as well.

1. Introduction

The Tropical Rainfall Measuring Mission’s (TRMM)
Ground Validation (GV) program was established
early in the prelaunch phase of the mission with the
principal long-term goals of determining the accuracy
of the satellite rainfall measurements and the system-
atic biases stemming from application of the rainfall
algorithms. More specifically, the GV program was
structured around two validation strategies: 1) deter-
mining the quantitative accuracy of the integrated
monthly rainfall products at GV regional sites over
large areas of about 500 km2 using integrated ground
measurements and 2) intercomparing–validating in-
stantaneous satellite and GV rain-rate statistics at spa-
tiotemporal scales optimized to the various resolutions
of the satellite and GV sensors (Simpson et al. 1988;
Thiele 1988). This study will address both parts of the

validation problem, but will primarily be concerned
with validating the instantaneous satellite rain prod-
ucts.

The GV program was originally designed around
validating the TRMM Microwave Imager (TMI), Pre-
cipitation Radar (PR), and Combined (COM) standard
rain products on monthly scales over the regional GV
sites. Prior to launch, instantaneous validation was still
considered somewhat intractable because of statistical
uncertainties stemming from the spatiotemporal mea-
suring characteristics of the satellite and GV observa-
tions. Direct instantaneous comparisons between coin-
cident measurements are difficult to achieve without a
sufficient number of regional overpasses. But empiri-
cally verifying the accuracy on monthly time scales us-
ing independent datasets at the surface has also posed
logistical challenges due to the existence of temporal
sampling errors in the integrated rain estimates.

The TRMM satellite retrieves rain information be-
tween roughly 35°N and 35°S while orbiting over the
surface of the earth. The satellite collects between one
and three estimates per day over any given location
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within its sampling domain depending on the latitude of
the orbit. Monthly rain estimates on regional scales are
subsequently determined statistically from the mean
rain rate inferred from all the observations collected in
a given month at the resolution of the gridded level III
rain products. This sampling strategy results in a statis-
tical mixing of the sampling and retrieval errors in the
integrated rainfall products (Bell and Kundu 1996; Bell
and Kundu 2000; Bell et al. 2001; Steiner et al. 2003;
Fisher 2007).

Various studies have shown that the sampling errors
explain at least 8%–12% of the variance between
monthly satellite and GV rain estimates (Laughlin
1981; Shin and North 1988; Bell et al. 1990; Oki and
Sumi 1994; Fisher 2004, 2007). This significant contri-
bution to the total error budget at monthly scales com-
plicates our determination of the accuracy of the satel-
lite rain algorithms, since the connection between the
instantaneous measurement and the rain estimate is to
some extent lost in the statistical integration.

This study uses 6 yr (1999–2004) of satellite over-
passes of the GV site for comparison with coincident
TRMM rain intensity estimates. The data are pixel
matched in both time and space, and statistics are pro-
vided for comparing GV rain intensities (derived via
ground-based radars and rain gauges) to the three prin-
cipal estimates from the TRMM satellite (PR, TMI, and
COM algorithms). The instantaneous matching is per-
formed at 0.5° � 0.5° using a gridded level-III product
(3G68) and at 150 km using TRMM level-II products
that provide rain rates along the orbital track. By per-
forming these comparisons on an instantaneous scale,
we are able to remove a large source of uncertainty in
the satellite estimates.

2. Data sources

a. TRMM GV

The GV program operationally produces quality con-
trolled rainfall products for four primary sites: Darwin,
Australia (DARW); Houston, Texas (HSTN); Kwaja-
lein, Republic of the Marshall Islands (KWAJ); and,
Melbourne, Florida (MELB). These sites were estab-
lished during the premission phase of TRMM, provid-
ing researchers with a quasi-continuous, long-term time
series of rainfall measurements at a higher spatiotem-
poral resolution than can be observed with the satellite
sensors alone. The GV data provide an empirical sur-
face reference needed to independently verify the ac-
curacy of TRMM measurements of rainfall (Thiele
1988).

The GV program is documented in Wolff et al.
(2005), including site and product descriptions, as well

as algorithms and data processing techniques. For this
study, we used the TRMM 2A53 instantaneous rain
maps that are distributed to the scientific community
through the Goddard Earth Sciences Data and Infor-
mation Services Center (GES-DISC). The 2A53 data
provide instantaneous rain rates at a resolution of 2 km
� 2 km and cover a continuous region extending 150
km from the given GV radar. Each rain map thus con-
sists of a 151 � 151 pixel grid with the GV radar located
at the center pixel.

Geographical maps of the gauge and radar networks
at DARW, HSTN, KWAJ, and MELB are provided in
Fig. 1. The maps in Fig. 1 illustrate one of the key
operational dilemmas of TRMM GV: principally ocean
sites, such as KWAJ, that provide the most physically
robust comparisons for passive microwave (PM) re-
trievals provide only limited real estate for deployment
of gauges that can be used for calibration and validation
of the GV radar rainfall estimates. On the other hand,
sites with substantial gauge coverage such as DARW,
HSTN, and MELB lack extensive ocean coverage and
contain significant coastal areas over which it is inher-
ently difficult, if not impossible, for PM algorithms to
robustly estimate rain intensities. Although it is well
known that there are problems with current PM physi-
cal algorithms in coastal areas, we will show that the
full-GV-area probability distributions of rain rates are
dominantly affected by coastal algorithm uncertainties,
and comparison to or validation of TRMM estimates
without removing estimates near coastlines are doomed
to failure, or at the very least, misinterpretation.

Figure 2 provides another depiction of the GV sites,
illustrating the land–coast–ocean 1/6° terrain mask used
by the version-6 TMI algorithm to delineate geographi-
cal type: dark gray is “ocean,” medium gray denotes
“coast” (both coastal land and coastal water), and light
gray denotes “land.” Also shown are the more subjec-
tively classified terrain types within each of the 0.5° grid
locations of the TRMM 3G68 product, employed in this
study. In these figures, “L” is for land, “C” for coast,
and “O” for ocean. Additionally, a GV coverage nota-
tion is provided (“F” for full coverage and “P” for par-
tial). The purpose of the coverage flag is to identify
pixels that are both fully observed by the GV radar (i.e.,
ranges between 15 and 150 km) and that contain a su-
permajority of one geographical type (i.e., mostly
ocean, coast, or land, subjectively set at about 60%).
For this study, only the F pixels were considered.

b. TRMM satellite: TMI and PR rain sensors

The TRMM satellite was launched on 27 November
1997 into a sun-asynchronous, low-earth orbit at an al-
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titude of 350 km. In August 2001, the satellite was re-
positioned from an average altitude of 350 km to 402
km. This orbital adjustment was made in order to con-
serve fuel and to extend the life of the mission. Global
analyses of instantaneous TMI and PR rain rates indi-
cate that the boost only had a marginal effect on the
TMI rain rates, but on average, PR rain rates appear to
have been lowered. Systematic changes in the PR rain
rates due to the boost are still being investigated (J.
Kwiatkowski, NASA GSFC, 2006, personal communi-
cation).

The satellite instrument package described by Kum-
merow et al. (1998) includes a dual complement of pas-
sive and active rain sensors—the TMI and PR—that
collect rain information using different remote sensing
techniques. The TMI passively collects rain information
using nine channels at five microwave frequencies: 10.7,
19.4, 21.3, 37.0, and 85.5 GHz. The 21.3-GHz channel is
the only one that is not dually polarized (only the ver-

tical channel is available at 21.3 GHz). The PR is the
first space-borne radar used in the collection of rain
observations. The PR operates at a frequency of 13.8
GHz and has a minimum sensitivity of about 17 dBZ
(�0.25 mm h�1). The sensor’s horizontal and vertical
resolutions near nadir are about 4.3 km and 250 m,
respectively. Its superior vertical and horizontal resolu-
tion allows the PR to observe smaller-scale precipita-
tion features that cannot be unambiguously resolved by
the TMI (Kummerow et al. 1998).

At 13.8 GHz (2.17-cm wavelength), the PR is
strongly attenuated by intervening rain. To account for
this reduction in the observed return signal, a path at-
tenuation correction is applied to the measured reflec-
tivity using the surface reference technique (SRT). This
methodology generates an effective reflectivity factor
that is used in the subsequent estimation of surface and
near-surface rain rates (Iguchi et al. 2000; Meneghini et
al. 2000). The SRT naturally constrains the PR field of

FIG. 1. Map illustrating the gauge and radar networks at the GV sites: Darwin, Australia
(DARW); Houston, TX (HSTN); Kwajalein, Republic of the Marshall Islands (KWAJ); and
Melbourne, FL (MELB). Rings show distances from GV radar at increments of 50 km. The
symbols in the figures correspond to the operational gauge networks shown below each panel.
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view (FOV) to a narrow cross-track swath of 250 km
(i.e., cross-track scanning angles within 17° of nadir).
The attenuation correction can be a significant source
of error in heavy rainfall.

c. TMI rain algorithm with respect to ocean, land,
and coastal classification

The TMI operational algorithm is well documented
in the literature and a complete physical description is
considered beyond the scope of this paper, but for the
purpose of this study it is important to note some of the
differences that exist between the land, coastal, and
ocean algorithms in the generation of rain rates from
microwave radiances. Also, unless otherwise stated, we
will utilize the TRMM version 6 data in our compari-
sons with GV data. While there are inherent differ-
ences in the actual distribution of rainfall over land and

ocean, much of the intrasatellite variance between the
TRMM estimates over ocean and land is due to the
physical assumptions and intrinsic uncertainties of the
retrieval algorithms.

The Goddard profiling (GPROF) algorithm esti-
mates instantaneous TMI rain rates over the ocean,
land, and coast using precipitation information ob-
tained remotely from the observed emissions and scat-
tering of hydrometeors in the atmosphere. The infor-
mation collected in all nine channels provides a radio-
metric temperature sounding at different depths of the
precipitating cloud (Kummerow et al. 1998). To esti-
mate the cloud liquid water content, the rain signal
needs to be distinguished from the microwave back-
ground upwelling from the surface. This is most easily
accomplished over the radiometrically cold oceans,
which cover three-quarters of the earth’s surface. Over

FIG. 2. Illustration of land–coast–ocean 1/6° mask used by the v6 TMI algorithm for each
GV site. Shaded regions show the TMI v6 surface masks of land (dark gray), coast (medium
gray), and ocean (light gray). Also shown are the more subjectively classified 0.5° � 0.5° grids
used for comparison of the GV data with the TRMM 3G68 product. The first letter in each
grid box designates the GV coverage (F denotes full GV coverage, P is for partial), and the
second letter designates the terrain type: L, land; C, coast; and O, ocean. Only areas with full
GV coverage are used in this study.
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the oceans, GPROF applies a physical algorithm utiliz-
ing the radiometric information of all nine TMI chan-
nels (Kummerow et al. 1996, 2001).

The algorithm first applies a radiative transfer model
to compute an observed brightness temperature profile
from the rain information in each of the channels. The
observed brightness temperature profile is next com-
pared to a large database of cloud radiation model
simulations, which locates the simulated cloud profile
that results in the best match (Tau and Simpson 1993;
Olson et al. 2006). The algorithm then employs a simple
inversion methodology using Bayes’s probabilistic
theorem to determine the rain-rate profile, R, given a
brightness temperature profile Tb:

Pr�R|Tb� � Pr�R� � Pr�Tb|R�, �1�

where Pr(R) is the probability that a certain profile R
will be observed and Pr(Tb|R) is the probability of ob-
serving the brightness temperature vector Tb, given a
particular rain-rate profile.

The rain retrievals are considerably more compli-
cated over the radiometrically warm land surface due to
variations in soil moisture, vegetation and transpira-
tion, and surface roughness and topography. So far, the
difficulty in handling the microwave background over
land has precluded the usage of the lower-frequency
emission channels. Spencer et al. (1989) showed that at
85.5 GHz a reduction in the detected signal related to
the scattering of radiation from frozen hydrometeors
above the freezing level can be used as an empirical
estimator of rain rate. Rain rates over land are subse-
quently determined empirically from the scattering in-
formation in the two 85.5-GHz channels (Spencer et al.
1989; Ferraro 1997; Conner and Petty 1998; McCollum
and Ferraro 2003). However, brightness temperature–
rain-rate relations are not directly related to surface
rainfall, since they characterize scattering processes in
the higher regions of the cloud (Wilheit et al. 2003).
Currently, GPROF applies an empirically based rain
algorithm originally developed by Ferraro (1997) and
McCollum and Ferraro (2003).

The problems over land are further exacerbated
around coastal regions due to the sharp contrast be-
tween land and ocean surfaces of the TMI footprint. In
this case, the radiometrically warm land and cold ocean
surfaces are both present in the TMI footprint. Coastal
pixels are treated using a decision tree that first deter-
mines whether rain exists in the pixel. If a determina-
tion of rain existence cannot be made, then the pixel is
classified as ambiguous and a rain rate is not assigned.
If rain exists, then the rain rate is determined using
empirical relations described in McCollum and Ferraro
(2005) and others.

d. The Combined (COM) algorithm

A full and complete description of the COM algo-
rithm is beyond the scope of this paper, but generally
the algorithm estimates the mean rain rate and confi-
dence bounds by combining the rain information from
both the TMI and PR. The COM algorithm is based on
the idea that combining the rain information from both
sensors would result in a more accurate product than
either of the two sensors alone by taking advantage of
the relative strengths of each measurement.

The COM algorithm also takes a Bayesian approach
to produce the best estimates of the mean rain rate and
the variance (i.e., uncertainty in the estimate). The
methodology is performed in three steps. Using a joint
probability distribution for the drop size distribution
(DSD) and shape parameters, the first step of the pro-
cedure applies the radar inversion equation to generate
an estimate of the mean rain rate and variance for the
PR. The joint probability distribution conditionally
based on the radar measurements is then used to pre-
dict a corresponding mean brightness temperature for
the TMI. A joint probability distribution conditioned
on both radar and TMI is then generated. The condi-
tional mean of the distribution quantifies the best esti-
mate of the rain rate, while the standard deviation pro-
vides an estimate of the uncertainty.

e. TMI, PR, and COM datasets

For this study, we used two different datasets for
comparison, both representing version 6 TRMM data.
The first, a gridded product known as 3G68, provides
area rain averages in 0.5° � 0.5° latitude–longitude
boxes for the TMI, PR, and COM algorithms. For the
second set of comparisons, we utilized the TRMM level
II footprint data obtained from the satellite-coinci-
dence subsets of the 2A12 (TMI), 2A25 (PR), and
COM (2B31) products, and then calculated all statistics
at the scale of each individual footprint observed by the
TMI that was within the PR- and GV-viewable ranges
of the respective GV site.

Table 1 provides the percentage of land, coast, and
ocean areas for different geographical regions, along
with the four primary TRMM GV sites. The “TRMM”
area is defined as being from 35°N to 35°S and repre-
sents the satellite’s sampling domain, while the “deep
tropics,” a subset of this region, is defined as being
between 10°N and 10°S. Table 1 shows that all of the
GV sites listed, except KWAJ, contain significant
coastal areas; the rain rates inferred for the pixels clas-
sified as coast have the greatest amount of uncertainty,
for reasons that were described previously. For brevity,
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we will provide detailed comparisons of our GV esti-
mates over KWAJ and MELB.

KWAJ is essentially an open-ocean site and most
suitable for validating the TMI ocean estimates in
which all rain information is utilized from the nine TMI
channels. MELB, in contrast, is located in the subtrop-
ics and has a rain climatology that is dominated by
isolated convection and tropical cyclones. As can be
seen in Table 1, MELB has a good distribution of land,
ocean, and coastal pixels.

3. Comparisons of 0.5° � 0.5° gridded data

In section 3a, TMI, PR, and COM rain rates are in-
tercompared over monthly, annual, and 5-yr time peri-
ods at a grid resolution of 0.5° � 0.5° to GV rain rates
over the GV sites of KWAJ and MELB. Probability
density functions (PDF) of the instantaneous rain rates
are then constructed in section 3b using all of the data
collected over 5 yr for each of the four estimates.

The TMI, PR, and COM rain rates were obtained

FIG. 3. Mean monthly rain intensities (mm h�1) for GV, PR, COM, and TMI using 0.5° resolution for the period 1999–2004 at
KWAJ.

TABLE 1. The number of 1/6° pixels and percentages (in parentheses) of geographical types, via the TRMM TMI v6 algorithm, as a
function of sampling area: global represents �70° latitude, TRMM area is �35° latitude, and deep tropics is �10°. Also shown are the
respective percentages of the geographical types at the four GV sites. Note that all GV sites except KWAJ have a significant percentage
of coastal pixels, limiting the usefulness of the comparisons to passive microwave estimates.

Area Ocean Land Coast Other Total

Global 952 643 (40.8) 682 813 (29.3) 154 289 (6.6) 543 055 (23.3) 2 332 800
TRMM 646 298 (71.2) 217 582 (24.0) 43 044 (4.7) 276 (0.0) 907 200
Deep tropics 191 754 (74.0) 51 275 (19.8) 16171 (6.2) — 259 200
KWAJ 441 (100.0) — — — 441
MELB 112 (41.5) 72 (26.7) 86 (31.9) — 270
HSTN 90 (27.8) 153 (47.2) 81 (25.0) — 324
DARW 104 (27.5) 104 (27.5) 170 (45.0) — 378
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from the 3G68 instantaneous rain product. This special
satellite rain product provides instantaneous, area-
averaged rain rates for the TMI, PR, and COM along
the orbital track of the TRMM satellite at a grid reso-
lution of 0.5° � 0.5° (Stocker et al. 2001). For this grid
spacing, satellite and GV rain rates were matched in
both time and space, which effectively mitigated the
temporal sampling errors as a source of uncertainty
with respect to the noncontiguous sampling of the
TRMM satellite. The GV 0.5° � 0.5° gridded rain rates
were obtained by averaging the rain rates obtained dur-
ing TRMM overpasses from the gridded 2A53 product
described in section 2.

To provide a more detailed comparison, the data
from MELB was further subdivided into land, coast,
and ocean categories as defined by the TMI terrain
mask (see Fig. 2). We note that only pixels with a cov-
erage type of full (F) were used, and thus the subsets
consisted of all pixels designated as either full ocean
(FO), full coast (FC), or full land (FL) types. For
KWAJ, there are no land or coast pixels: for algorith-
mic purposes, it is treated as solely oceanic. However,
the version 5 (v5) TRMM algorithms considered
KWAJ as nearly 40% coast, given the coarse surface-

type mask (0.25°) used at that time. The finer-
resolution version 6 (V6) TMI surface mask of �0.166°
was also manually modified to exclude classification of
small islands and atolls as coastal, prior to the imple-
mentation of the V6 algorithm (Olson et al. 2006). In
this analysis, all GV rain maps (2A-53) from 1999 to
2004 were used for comparison to the TRMM esti-
mates.

a. Comparison of monthly means of instantaneous
rain rates

Figures 3–6 display the mean monthly area rain rates
at KWAJ and MELB for each rain-rate product (TMI,
PR, COM, and GV) over the period from 1999 to 2004.
Table 2 lists the mean rain rates on annual and 6-yr
time periods; the last three columns of the table report
the associated biases, in percent, for each of the satellite
rain rates relative to GV.

The biases in Table 2 are defined via Eq. (2) using the
mean GV rain rate as an empirical reference:

Bias �
�E � G�

G
� 100, �2�

FIG. 4. As in Fig. 3, but for MELB over ocean only.
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where E is the mean rain rate of the satellite estimate
(PR, TMI, or COM) and G is the mean rate from GV.
All biases are hereafter referred to in percentages.

The TMI, PR, and COM FO estimates for KWAJ are
shown in Fig. 3 and are seen to be in good agreement
with GV, with a few notable exceptions observed dur-
ing August 2000, May–June 2003, and several months in
2004. Refer to Table 2 for specific values of the annual
means and the resultant biases. It is observed that the
biases reported in Table 2 for KWAJ are predomi-
nantly negative. The 5-yr satellite-inferred rain biases
were �13.7% (PR), �7.9% (TMI), and �5.7% (COM).

The negative satellite biases at KWAJ are attributed
to two systematic sources of error: 1) known calibration
issues in the GV radar at KWAJ and 2) an underesti-
mation of the higher rain rates by the satellite algo-
rithms (�20 mm h�1). The variations in the calibration
of the KWAJ radar are considered the largest contribu-
tor to the monthly biases reported in Table 2. The cali-
bration issues related to the performance of the KWAJ
radar are reported by Houze et al. (2004), Marks et al.
(2005), and Silberstein et al. (2008). Houze et al. (2004)
and Marks et al. (2005) identified sudden changes in the
radar’s calibration and related them directly to me-
chanical and engineering issues (e.g., replacement of

parts) that arose during the study period. These cali-
bration offsets were not taken into account in the v5
2A53 rain products. In conjunction with ongoing re-
search and development for TRMM GV, Silberstein et
al. (2008) have developed and tested a new methodol-
ogy for correcting these problems, known as the rela-
tive calibration adjustment (RCA). The RCA uses a
large sample of points in the radar’s clutter field to both
identify when calibration changes occur and determine
the magnitude of the change; the methodology is cur-
rently undergoing final testing for use in the generation
of the version 7 (v7) 2A53 products.

The systematic underestimation of the higher rain
rates by the TMI and PR, in the case of KWAJ, is not
as significant as the calibration offsets, but also contrib-
utes to the negative biases observed in Table 2. More-
over, an underestimation of rain rates at the high end of
the rain-rate spectrum was also observed in the case of
MELB where the calibration has been stable over time.
The algorithm issues associated with the determination
of higher rain rates by the TMI and PR for KWAJ and
MELB will be investigated in more detail in section 4 in
conjunction with the footprint analysis of the instanta-
neous rain rates.

For MELB, the data were stratified into ocean (FO),

FIG. 5. As in Fig. 3, but for MELB over land only.
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land (FL), and coast (FC) categories. The monthly rain
rates for each case are displayed in Figs. 4–6, respec-
tively. The FO satellite and GV mean monthly rain
rates shown in Fig. 4 exhibit good agreement but there
are some notable disagreements, especially during peak
rainfall months. In Table 2, the PR annual bias, relative
to GV, is positive in 5 out of 6 yr while the COM is
positive in all 6 yr. The TMI FO biases, on the other
hand, are negative for each of the 6 yr. In general, the
peak rainfall months contribute the bulk of the annual
biases shown in Table 2.

In contrast with the FO case, the PR biases over coast
and land are predominantly negative. The TMI land
bias, on the other hand, is more variable and was posi-
tive in 4 out of 6 yr, whereas it was negative for all 6 yr
in the ocean case. This observation is also consistent
with the overall 6-yr biases, which in the FL case were
	10.2% and �8.1% in the FO case. Over the coast, the
TMI FC bias tended to be negative, but with year-to-
year results covering a broad range between �34.9%
and 	18.5% over the 6-yr study period. These results
pointedly reflect the differences in the TMI algorithm
for each of the three terrain cases.

The COM bias is positive in 5 of 6 yr for both FL and

FC, with 5-yr biases of 18.4% and 13.9%, respectively.
An examination of Figs. 5 and 6 reveals that the bulk of
the annual biases displayed in Table 2, as noted earlier,
can be related to contributions during the peak rain
periods, most notably during the months of May–
September. The rainfall climatology of central Florida
is an important factor in evaluating the performance of
the satellite algorithms. The rainfall budget during the
summer months is dominated by sea-breeze-generated
isolated convection, as well as mesoscale and synoptic-
scale rain systems and tropical cyclones. A more de-
tailed examination of the instantaneous rain-rate spec-
trums for the TMI, PR, COM, and GV will be pre-
sented in section 4.

b. Probability distributions of instantaneous rain
rates

The PDFs of the TMI, PR, COM, and GV estimates
constructed at the 0.5° scale are difficult to compare
due to the inherent noise given the somewhat limited
sample size; however, the cumulative distribution func-
tions (CDF) do provide additional insight into the com-
parisons. Figure 7 illustrates the PDF and CDF plots for
KWAJ. In Fig. 7, the GV, PR, TMI, and COM distri-

FIG. 6. As in Fig. 3, but for MELB over coast only.
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butions are provided. Also shown are the upper and
lower quartiles and median rain rates for the estimates
(thin horizontal dotted lines). At KWAJ, the COM
rates are consistently lower than the other estimates,
with a median of about 0.55 mm h�1, while the TMI
rain rates are generally higher than the other esti-
mates with a median of about 0.7 mm h�1. The PR and
GV distributions agree well with medians of about 0.6
mm h�1.

Figure 8 provides the PDFs and CDFs at MELB for
FO, FC, and FL pixels, in the left, middle, and right
panels, respectively. Over ocean, the CDFs agree quite
well, with median rain rates differing by less than 1 mm
h�1. Over coastal pixels, the scatter among the CDFs is
more evident, showing better agreement between the
PR and TMI estimates, which are both lower than the
GV and COM estimates. In general, the GV distribu-
tions fall within the bounds of the other distributions.
Over land, there is better agreement between the esti-
mates than over coast areas. Also, over land, the PR
rain rates are less than the other estimates, while the
TMI and GV rates are quite similar.

In summary, our 0.5° gridded comparisons of the
data show that there is good agreement between the

TABLE 2. Statistics for the 3G68 comparison of KWAJ and MELB showing site, year, and mean rain rates (GV, PR, TMI, and
COM), as well as the GV-relative biases. All bias values are expressed in percentages.

Site Year Type GV mean PR mean TMI mean COM mean PR bias TMI bias COM bias

MELB 1999 FL 0.1923 0.1806 0.2069 0.2239 �6.1 7.6 16.4
MELB 2000 FL 0.0838 0.068 0.0743 0.0822 �18.9 �11.3 �1.9
MELB 2001 FL 0.0971 0.093 0.0993 0.1175 �4.3 2.2 21.0
MELB 2002 FL 0.1814 0.1582 0.1766 0.2052 �12.8 �2.6 13.1
MELB 2003 FL 0.2194 0.2142 0.2778 0.2769 �2.4 26.6 26.2
MELB 2004 FL 0.1266 0.1228 0.1538 0.1592 �2.9 21.5 25.8
MELB 1999–2004 FL 0.1516 0.1409 0.167 0.1795 �7.0 10.2 18.4
MELB 1999 FC 0.1541 0.1426 0.1232 0.1705 �7.4 �20.0 10.7
MELB 2000 FC 0.1038 0.0817 0.0675 0.0956 �21.2 �34.9 �7.8
MELB 2001 FC 0.1256 0.1034 0.1054 0.1366 �17.7 �16.1 8.7
MELB 2002 FC 0.1542 0.1454 0.1412 0.181 �5.7 �8.4 17.4
MELB 2003 FC 0.1079 0.1106 0.1279 0.144 2.5 18.5 33.4
MELB 2004 FC 0.1135 0.1113 0.1136 0.1336 �1.9 0.1 17.7
MELB 1999–2004 FC 0.1263 0.1161 0.1139 0.1439 �8.1 �9.9 13.9
MELB 1999 FO 0.1369 0.1254 0.1164 0.1506 �8.4 �15 10.1
MELB 2000 FO 0.0873 0.089 0.0774 0.1046 2.0 �11.4 19.9
MELB 2001 FO 0.1199 0.1232 0.1118 0.1504 2.7 �6.8 25.4
MELB 2002 FO 0.13 0.1363 0.1194 0.164 4.9 �8.1 26.2
MELB 2003 FO 0.1098 0.1153 0.1071 0.1426 5.0 �2.5 29.8
MELB 2004 FO 0.0918 0.1115 0.087 0.1058 21.5 �5.1 15.4
MELB 1999–2004 FO 0.1124 0.117 0.1032 0.1364 4.1 �8.2 21.3
KWAJ 1999 FO 0.1651 0.1392 0.1459 0.1603 �15.7 �11.6 �2.9
KWAJ 2000 FO 0.2881 0.2571 0.2536 0.2817 �10.8 �12.0 �2.2
KWAJ 2001 FO 0.2149 0.1816 0.2071 0.1884 �15.5 �3.6 �12.3
KWAJ 2002 FO 0.2807 0.2621 0.2804 0.2744 �6.6 �0.1 �2.3
KWAJ 2003 FO 0.2379 0.2039 0.2431 0.2268 �14.3 2.2 �4.6
KWAJ 2004 FO 0.2269 0.174 0.1642 0.2027 �23.3 �27.6 �10.7
KWAJ 1999–2004 FO 0.2383 0.2055 0.2194 0.2247 �13.7 �7.9 �5.7

FIG. 7. PDFs (curves with peaks near 0.04 mm h�1) and CDFs
of instantaneous rain rates (0.5° resolution) for GV, PR, COM,
and TMI as inferred from 3G68 products using 0.5° resolution for
the period 1999–2004 at KWAJ.
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various estimates, and that there are no systematic bi-
ases shown between one estimate versus the others.
The discrepancies that do occur are associated with spe-
cific (heavy) precipitation events; however, overall the
near-decade-long TRMM products, and the GV esti-
mates to which they are compared, are quite robust and
provide a unique dataset for future study of precipita-
tion physics and climate analyses.

4. Validation at the TMI footprint scale

a. Description of analysis

The primary emphasis of the GV validation program
in the early years of TRMM was on verifying the accu-
racy of the level-III monthly products at planned GV
sites using well-calibrated surface-based rain sensors.
The validation strategy employed was to characterize
the errors in the satellite rain products used in climate-
scale applications at an averaging scale that minimized
the space–time uncertainties between surface and sat-
ellite sensors (Thiele 1988). In addition to the obvious
interest in quantifying the error bounds in the higher-
level TRMM products, there was also interest in using
the GV data to assess the accuracy of the TRMM level-
II instantaneous rain products at the fundamental reso-
lution of the satellite sensors (i.e., the footprint scale),
for instantaneous validation provides a more direct
physical probe of the systematic errors in the opera-
tional rain algorithms.

Validation at instantaneous scales, perhaps most im-
portantly, eliminates the temporal sampling error from
consideration. Previous studies of the temporal sam-
pling error—the error associated with the discreet re-
gional sampling of the satellite—have shown that it can
account for up to 25% of the variance between satellite
and ground estimates on monthly scales (Laughlin
1981; Oki and Sumi 1994; Bell and Kundu 1996; Bell et
al. 2001; Steiner et al. 2003; Fisher 2004, 2007). But even

given coincident, instantaneous observations on larger
scales (e.g., TRMM 3G68), small-scale discrepancies
between satellite rain products due to interalgorithmic
differences can become “smoothed out” in the averag-
ing process, limiting the usefulness of such compari-
sons. Random errors, in turn, increase substantially as
the time–space averaging scale is reduced to the foot-
print scale, due to navigational uncertainties between
GV and satellites and differences in the measuring
characteristics of the sensors.

In this part of the study, level-II TMI, PR, and COM
instantaneous rain rates were matched at the scale of
the TMI footprint and were statistically compared with
the level-2A53 GV radar-rain rate spectrums at both
KWAJ and MELB. Six years of regional TRMM over-
pass data were used (1999–2004). As seen in Table 3,
the available data provided a large sample of more than
50 000 TMI footprints for each GV site, with each TMI
footprint covering an area of about 150 km2. Though
the TMI “footprint” used in this study provides a con-
venient scale for analysis, it does not represent a fun-
damental physical scale since the size is determined
based on an empirical optimization of rain information
spanning a broad spectrum of physical scales and 13.9-
km along-track sampling resolution (Kummerow et al.
1998; Olson et al. 2006). The effective field of view at 10
GHz for example is 67 � 37 km2, whereas at 85 GHz
the field of view is 7 � 5 km2 (the level-II TMI foot-

TABLE 3. Number of TRMM overpasses and associated TMI
footprints available for this study over the period 1999–2004, for
each GV site.

GV site
No. of

overpasses

No. of footprints

All Ocean Land Coast

KWAJ 257 70 993 70 993 0 0
MELB 236 54 943 16 875 16 618 21 450

FIG. 8. As in Fig. 7, but for MELB over (left) ocean, (middle) coast, and (right) land.
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print, in effect, undersamples the low-frequency chan-
nels and oversamples the high-frequency channels).
The TMI footprint here represents a kind of maximum
sample spacing; in other words, if one lay 14 km � 14
km boxes centered on each TMI radiance footprint,
they would be spatially contiguous from scan to scan,
but overlap along the scan line.

The swaths of the TMI and the PR sensors along
TRMM’s orbital track represent the sampling domain
of the satellite. The GV sampling domain of the radar
encompasses a circular domain extending 150 km from
the radar location. For this analysis, the instantaneous
rain-rate information was restricted to the geographical
intersection of the TMI and PR orbital track within the
GV radar domain. Figure 9 displays four instantaneous
snapshots for the GV, TMI, PR, and COM rain-rate
estimates for TRMM orbit 01707 on 7 October 1999
over KWAJ, in the top-left, top-right, bottom-left, and
bottom-right panels, respectively. These images illus-
trate the rain rates at the characteristic or native reso-
lution of each of the respective estimates. The red and
blue dashed lines illustrate the edges of the orbital track
of the PR.

To simplify the procedure, we matched the TMI, PR,
COM, and GV at the scale of the TMI footprint by
considering a 7-km radius around the center of the TMI
pixel location. Unconditional mean rain rates (i.e., rain
rate � 0) were then computed for the GV, PR, and
COM at the TMI footprint scale by locating all of the
pixels (rainy and nonrainy) found within this circular
region. Figure 10 illustrates the same instantaneous
snapshots as Fig. 9, but after the GV, PR, and COM
rain rates were averaged within the respective TMI
footprint areas.

The numbers of GV, PR, and COM pixels associated
with each TMI footprint vary from case to case, but
tend to average about 8 for PR and COM (native reso-
lution of approximately 4.3 km � 4.3 km ≅ 18.5 km2

resolution) and about 36 for the GV (native resolution
of 2 km � 2 km � 4 km2 resolution). The TMI surface
flag was also recorded for each set of matching pixels
according to whether the TMI pixel was labeled ocean,
land, or coast, as described previously. Table 3 gives a
summary of the number of overpasses and the number
of footprints for each of the four GV locations and lists
both the total number of footprints and the number of
footprints in each terrain category (O, L, C) used in this
analysis.

b. Footprint statistics: Mean rain-rate profiles

Using the GV matching rain rates as an empirical
reference, mean rain-rate profiles were generated for

the TMI, PR, and COM spanning a dynamic range be-
tween 0 and 40 mm h�1. The profiles were constructed
by first binning the instantaneous rain rates matched at
each TMI pixel for all four products at 1 mm h�1 in-
tervals with respect to the GV rain rate. For example, if
the GV rain rate for a given TMI pixel was 5.5 mm h�1,
the TMI, PR, and COM rain rates were included in the
5–6 mm h�1 bin. The satellite rain-rate information was
therefore sorted with respect to the GV rain-rate con-
tinuum. The GV profile in subsequent comparisons has
by definition a slope of 1. The data in each separate bin
were then averaged, after which a 3 mm h�1 (� 1 mm
h�1) mean filter was applied across the entire spectrum.
The application of a mean filter was mainly required to
increase the effective sample sizes in the higher bins
(�20 mm h�1).

Figures 11 and 12 show mean rain-rate profiles con-
structed for KWAJ and MELB, respectively. In Fig. 12,
for MELB, in addition to plotting a mean profile for all
the data combined (top left), three additional profiles
are shown that subdivide the data according to the TMI
terrain surface flag (O, L, or C).

A regression analysis was carried out on each of the
profiles shown in Figs. 11 and 12 by splitting the rain-
rate spectrum into two equal sectors, designated as high
and low rain-rate regimes. The “low” and “high” re-
gimes were defined from 0 to 20 mm h�1 and from 21 to
40 mm h�1, respectively. The regression parameters
listed in Tables 4 and 5 will be referred to in the fol-
lowing analysis to help illustrate the differences be-
tween the two parts of the spectrum.

In general, Figs. 11 and 12 for KWAJ and MELB
show good correspondence between the TMI, PR, and
COM with GV, in the lower regions of the rain-rate
spectrum. The correspondence is considerably less in
the higher region of the spectrum, with the COM show-
ing the best agreement with respect to GV. Although
the higher rain rates represent an important region of
the spectrum—because of their association with con-
vective rain processes—the sample sizes in each bin are
considerably smaller and, thus, to some extent their
contribution to the total integrated rainfall is lessened.
Of course, since the data were spatially averaged at the
scale of the TMI footprint, it is not surprising that there
are significantly fewer rain-rate samples in the high re-
gime in the cases of the PR and COM (�20 mm h�1).

In the lower rain-rate regime, the linear correlation
coefficients between GV and the satellite rain products
presented in Tables 4 and 5 are seen to be consistently
high (
 � 0.95) for both KWAJ and MELB. In the high
rain-rate regime, the correlations drop off substantially
with large nonzero intercepts along with lower slope

2226 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 47



FIG. 9. Illustration of a TRMM overpass of the KWAJ GV sites on 7 Oct 1999 showing the level-II rain data at each instrument’s
native resolution: (top left) GV 2 km � 2 km, (top right) TMI �150 km2 resolution, (bottom left) PR 4 km at nadir, and (bottom right)
COM 4 km at nadir.
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values. Even in the low regime, the slopes of each sat-
ellite profile reveal systematic differences in the mean
rain-rate statistics that provide some explanation for
the observed biases in Table 2. Further examination of

Figs. 11 and 12 also shows greater variance between the
three satellite estimates. It is in the high-rain-rate re-
gimes where the differences between the rainfall algo-
rithms are most apparent. With respect to GV, the

FIG. 10. As in Fig. 9, except that the GV, PR, and COM data have been averaged within each TMI footprint.
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COM rain-rate profile shows the best overall agree-
ment across both the high and low regimes. The PR and
COM profiles interestingly appear quite similar in the
ocean case for both KWAJ and MELB, but in the

land and coast cases, the PR noticeably underestimates
the higher rain rates relative to both GV and COM.
This behavior dominates the overall profile for MELB
shown in Fig. 12 (top left).

The TMI–GV rain-rate profile comparisons reveal
the most discrepancies, especially in the high rain-rate
regime, and for all terrain categories. Even in the low
regime, however, the TMI estimates trends distinctly
lower with respect to the GV, PR, and COM estimates.
The low slope value observed in the high regime, which
is evident in all the panels shown in Figs. 11 and 12, is
attributed to the saturation of the TMI signal in the
lower channels. The highest TMI rain rates are ob-
served in the land case, which in an examination of
Table 2 was the only case where the TMI showed an
overall positive bias (	10.2). In every other case, the
overall bias was negative. In the MELB land case the
determination of the TMI rain rate is empirically de-
termined based on the high-frequency 85-GHz channel
and is not dependent on the physical saturation of the
signal that naturally occurs in the lower channels.

In the TMI ocean case, mean rain rates rarely exceed
30 mm h�1. The saturation of the lower-frequency TMI
channels (10.7, 19.4, 21.3 GHz) was addressed in the
original design of the TMI sensor. Based on prior ex-

FIG. 12. Comparisons of the TMI, PR, and COM mean rain intensities vs the mean rain
intensities of the GV radar at MELB. Rain-rate profiles for (top left) all matched data points;
(top right) ocean only, (bottom left) land only, and (bottom right) coast only.

FIG. 11. Comparisons of the TMI, PR, and COM mean rain in-
tensities vs the mean rain intensities of the GV radar at KWAJ. For
the case of KWAJ, all TMI pixels are classified as ocean (i.e., ocean/all).
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perience with SSMI/I, the water vapor channel was
shifted from 22.235 to 21.3 GHz to avoid saturating the
signal, in which higher brightness temperatures in the
21.3-GHz channel are correlated with higher rain rates
(Kummerow et al. 1998), but this sensor modification
obviously did not eliminate the problem entirely and
TMI ocean rain rates at both KWAJ and MELB re-
vealed negative biases of �8.8% and �9.2%, respec-
tively. Ha and North (1999), moreover, point out that
above 20 mm h�1 the scattering of microwave radiation
becomes important and causes the relationship be-

tween rain rate and brightness temperature to become
double valued.

High rainfall gradients also pose a problem for the
TMI rain algorithm due to the physical assumption of
homogeneity across the rain area associated with the
sensor’s effective field of view (Wilheit et al. 1991;
Kummerow 1998; Kummerow et al. 2001). Kummerow
(1998) has noted that in many physical models, this
assumption is the largest component of the uncertainty
in inferred brightness temperature and leads to a sys-
tematic underestimate in the rain rate due to the non-
linear relationship between rain rate and brightness
temperature. Beam-filling errors, not surprisingly, are
most significant in cases where large brightness tem-
perature gradients exist—those found in association
with smaller-scale convection. Small-scale convective
systems are quite common across the Florida Peninsula
and account for a significant portion of the annual rain-
fall. In the latest version of GPROF (i.e., version 6), the
beam-filling problem for the TMI has been treated in
such a way that the uncertainty no longer depends on
the computation of a convective–stratiform ratio and
instead varies as a constant factor (Kummerow et al.
2001).

The PR rain-rate profile displays more consistency
than the TMI profile between the low and high rain-
rate regimes, but like the TMI, it also shows signs of
saturating at the higher rain rates over land. The v6 PR
appears in better agreement for the ocean case shown
in Figs. 11 and 12 (top right). With its 4 km2 resolution,
the PR is better able to resolve the small-scale struc-
tural features associated with convective rain systems,
and because it relates rain-rate observations to the rela-
tive amount of power backscattered from the resolution
volume, in principle, higher rain rates should be observ-
able. In the three stratified cases for MELB, PR coast
shows the best agreement at the high rain rates and the
smoothest transition between the low and high parts of
the rain-rate spectrum. Note that although the PR al-
gorithm does not depend on the TMI surface flag, it
does depend on its own determination of stratiform and
convective rain areas, which affects the DSD profile
used to convert reflectivities to rain rate.

A comparison of the v5 and v6 PR rain rates with GV
over the radar domain at MELB by Amitai et al. (2006)
showed significant changes in the PDF of rain rate.
Their results indicated that the v5 PR data were in
better agreement with GV than that of v6, and tended
to underestimate the higher rain rates. They further
showed that v6 changes resulted in a reduction of 26%
of the convective rainfall and a 13% increase in the
amount of stratiform rain. These changes had the effect

TABLE 4. Melbourne regression parameters (A, all; O, ocean; L,
land; C, coast).

Satellite
product

TMI
surface

flag
RR regime
(mm h�1)

Regression parameters

Intercept
(mm h�1) R Slope

TMI A 0–20 1.44 0.99 0.40
PR A 0–20 1.56 0.98 0.60
COM A 0–20 1.19 1.00 0.68
TMI O 0–20 2.32 0.98 0.40
PR O 0–20 1.30 0.99 0.64
COM O 0–20 1.12 0.99 0.63
TMI L 0–20 1.53 0.98 0.47
PR L 0–20 1.97 0.94 0.51
COM L 0–20 1.35 0.97 0.84
TMI C 0–20 1.37 0.99 0.58
PR C 0–20 1.41 0.99 0.58
COM C 0–20 1.14 1.00 0.70
TMI A 21–40 6.21 0.69 0.27
PR A 21–40 7.51 0.73 0.26
COM A 21–40 4.48 0.86 0.62
TMI O 21–40 6.93 0.36 0.18
PR O 21–40 9.08 0.45 0.26
COM O 21–40 �4.86 0.84 0.91
TMI L 21–40 13.21 0.27 0.14
PR L 21–40 12.36 0.11 0.05
COM L 21–40 16.08 0.25 0.21
TMI C 21–40 1.75 0.84 0.38
PR C 21–40 2.97 0.78 0.43
COM C 21–40 0.44 0.94 0.79

TABLE 5. KWAJ regression parameters (all pixels are classified
as ocean).

Satellite
product

TMI
surface

flag
RR regime
(mm h�1)

Regression parameters

Intercept
(mm h�1) R Slope

TMI O/A 0–20 1.65 0.97 0.46
PR O/A 0–20 0.0 1.00 0.74
COM O/A 0–20 0.39 1.00 0.61
TMI O/A 21–40 4.37 0.78 0.25
PR O/A 21–40 �4.50 0.91 0.87
COM O/A 21–40 �17.12 0.92 1.32
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of narrowing the v6 PDFs of the rain rate. Other groups
have found similar issues with the v6 rain estimates,
especially in convection over land areas, and investiga-
tions are currently under way to mitigate the problems.

Figure 13 compares rain-rate profiles for 150 over-
passes, also used by Liao et al. (2001), using both v5 and
v6 PR data. The version 6 of COM was included to
provide a further basis for comparison. The v5 PR rain-
rate profile shown in Fig. 13 is in much better agree-
ment with the COM and GV in the high rain-rate part
of the spectrum.

The COM–GV regressions in general exhibit less
decorrelation at higher rain rates for KWAJ and
MELB, and the rain rates at both the high and low
regimes tend to increase monotonically with respect to
the matching GV rain rates. The slopes in Tables 4 and
5 also show a tendency to increase in the high regime
relative to the low regime, in contrast with the TMI and
PR, which both exhibited sharp decreases. Although
COM shows some consistency with the PR at KWAJ, it
deviates from the PR and the TMI in the high rain-rate
regime at MELB, especially in the land and coast strati-
fications. These results for COM are encouraging, but it
should also be noted that in Table 2 the COM biases at
MELB were consistently positive and absolute values

exceeded those of both the TMI and PR. However,
Figs. 11 and 12 both suggest that significant improve-
ments in rain estimation can be realized using informa-
tion from both sensors, even when the individual sen-
sors exhibit different rain characteristics.

c. Footprint statistics: Standard errors

The satellite errors were characterized by estimating
the error variance between the satellite sensor and the
GV rain rate for each binning interval between 0 and 30
mm h�1. The error variance �2

err(i) was computed at
each 1 mm h�1 interval by considering all of the match-
ing satellite–GV rain rates within �3 mm h�1 of the
target bin, using the following expression:

�err
2 �i� � var�si�3 � ri�3�

� �s
2�i� 	 �r

2�i� � 2 cov�si�3, ri�3�, �3�

where si�3 and ri�3 represent the matching satellite and
GV pairs within a �3 mm h�1 interval centered on the
target 1 mm h�1 bin, i.

The standard error was then computed by taking the
square root of the resulting error variance:

�err�i� � �var�si�3 � ri�3�. �4�

FIG. 13. Comparisons of the PR (v5), PR (v6), and COM rain intensities vs the mean GV
rain intensities.
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This statistical methodology oversamples the adja-
cent bins in the neighborhood of i, but has the advan-
tage of increasing the sample sizes of rain rates at the
higher bins where the sampling was insufficient (n  10).
This strategy was used in lieu of applying a 7 mm h�1

mean filter in order to ensure that each variance was
based on a sufficiently large sample size (both methods
were applied and produced consistent results). The sat-
ellite variance �2

s(i) contributes the most to the error as
expressed in (3), while the other two terms nearly can-
cel out when taken together.

The standard error profiles for KWAJ and MELB
are displayed in Figs. 14 and 15, respectively. Like in
the previous subsection, the MELB profiles shown in
Fig. 15 have been further subcategorized into ocean,
land, and coast. The standard errors, as expected, tend
to increase monotonically from near 0 at the low end to
as high as 15 mm h�1 at the high end, showing the
relative dependence of the error on rain rate. TMI stan-
dard errors over ocean trended significantly lower than
those of PR and COM for KWAJ and MELB, and both
cases remain in a narrow range confined between 0 and
8 mm h�1. The COM errors in the MELB ocean case
show a sharp increase above 23 mm h�1, which is not

FIG. 14. Profile of the standard errors for TMI, PR, and COM
at KWAJ vs the GV rain-rate intensity. Errors were determined
based on the variance differences between the matched satellite
rain rates and the GV radar at KWAJ. For the case of KWAJ, all
TMI pixels are classified as ocean (i.e., ocean/all).

FIG. 15. Profile of the standard errors for TMI, PR and COM at MELB vs the GV rain-rate
intensity: (top left) all matched data points, (top right) ocean only, (bottom left) land only,
and (bottom right) coast only.
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observed at KWAJ; it exhibited similar but less pro-
nounced error characteristics for MELB coast.

The sampling in each case seems to be sufficient,
since each 1 mm h�1 bin included all of the sampling
within a �3 mm h�1 range. Most sample sizes in the
higher bins exceeded 50 for each terrain case; the mini-
mum sample size was 23. The significantly higher vari-
ances observed at the higher rain rates in the case of
COM should be evaluated in conjunction with the
mean statistics shown in Fig. 12. The MELB land pro-
file shown in Fig. 15 (bottom left) exhibits different
error characteristics for the TMI and the PR. In this
case, the PR trends significantly lower, whereas the
TMI tracks more closely with the COM. The COM land
case shows monotonically increasing errors, but does
not exhibit the sharp increase above 25 mm h�1 ob-
served in the ocean and coast cases.

The empirical results shown here inferred from com-
parisons with GV are consistent with the results from
Olson et al. (2006). They applied an algorithm-based
method that computed standard errors at the footprint
scale (ocean only) using the data from seven complete
TRMM orbits. Their results show TMI errors increas-
ing monotonically from 0 to about 15 mm h�1 across a
range extending between 0 and 30 mm h�1. The results
displayed in Figs. 14 and 15 are consistent with those of
Olson et al., but these results were derived from re-
gional data, which may exhibit some additional depen-
dence on the regional climatology. The TMI ocean pro-
files for MELB and KWAJ, for example, are quite simi-
lar, especially in the lower range of rain rates below
20 mm h�1. The COM oceanic error characteristics, on
the other hand, are significantly different above 20 mm
h�1, with errors increasing more sharply in the MELB
case. More analysis will be required to verify these in-
ferred error characteristics.

d. Probability distributions at the TMI footprint
scale

1) KWAJ

Figure 16 provides the rain-rate PDFs and CDFs for
each estimate at the footprint level at KWAJ. Also,
shown are the resultant mean rain rates (2.01, 1.59, 1.83,
and 1.61 for GV, PR, TMI, and COM, respectively), as
well as the total number of “footprints” that were used
for averaging the various estimates. Given the large
number of points available for generating these distri-
butions, much can be deemed by analysis of the indi-
vidual PDFs. Most notably, note that the basic shapes
of the GV, PR, and COM distributions are quite simi-
lar, with rather flat unimodal peaks near 0.5 mm h�1;

however, the TMI distribution is much more peaked
with a pronounced mode at about 2 mm h�1.

Overall, the COM and PR CDFs agree the best, and
the TMI estimates are considerably higher at all rain
rates up to about the 90th percentile (just over 2 mm
h�1). Again, as in section 3, we see that the GV CDF
falls within the bounds of the other CDFs. An interest-
ing question arises here as to why the TMI PDF is so
dissimilar to the other PDFs. Namely, is this due to land
effects of the atoll on the TMI estimates (which the
algorithm assumes do not exist), or is this an inherent
issue with TMI PDFs over ocean? Others have shown
some unusual characteristics of TMI oceanic PDFs. In a
global study, Yuter et al. (2006) found regional anoma-
lies in the TMI PDFs of rain rate, some of which could
be described as “physically implausible.”

To determine whether the land areas of the atoll af-
fected the TMI estimates, we subdivided the KWAJ
GV domain as illustrated in Fig. 17. In this figure, the
shaded regions directly over KWAJ were designated as
coast with the remainder of the areas (white region
within 150 km from the radar) designated as ocean. As
mentioned previously, this rather crude mask, which
was used in all TMI products prior to version 6, was at
0.25° resolution. Any 0.25° pixel that contained land-
mass was assumed to be either coast or land (depending
on the amount of land in the given pixel), and using this
classification resulted in KWAJ being considered ap-
proximately 40% coast (for version-5 algorithmic pur-

FIG. 16. Plot of the PDFs (curves with peaks) and CDFs of rain
rates for GV, PR, COM , and TMI estimates, at the TMI-footprint
scale, for the period 1999–2004 at KWAJ.
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poses). Note that the data used for this comparison
were still from the version-6 database, but the terrain
classification was via version-5 surface masking. Figure
18 shows the PDFs of KWAJ rain rates for the various
estimates: all, ocean (v5-deemed ocean pixels), and
coast (v5-deemed coastal pixels) in the left, middle, and
right panels, respectively. While the resultant means
are slightly different, the distributions themselves are
nearly indistinguishable, which seemingly negates the
hypothesis that land effects caused the different behav-
ior of the TMI PDF versus the PDFs of the other esti-
mates.

To investigate whether or not this is possibly due to
an inherent issue in ocean TMI estimates, a dataset of
distributions of TMI rain rates over 2.5° pixels through-

out the tropics compiled by T. Bell (NASA/GSFC,
2006, personal communication) was utilized. It is im-
portant to note that the Bell dataset consists of histo-
grams of TMI-footprint rain estimates within each 2.5°
grid box, and not histograms of 2.5° gridded rain esti-
mates. Thus, the following comparisons are at the same
scale as the Bell dataset. Figure 19 shows an ensemble
of monthly PDFs of TMI rain rates for the period 1999–
2004, for ocean, land, and coast, in the left, middle, and
right panels, respectively. The ocean PDFs clearly show
a preferred mode of about 2 mm h�1, as seen over
KWAJ and MELB, indicating that there is indeed some
algorithmic preference for such estimated rain rates.
The land PDF shows the difficulty of estimating light
rain rates, given the restrictions imposed by the sole use
of ice scattering as a precipitation estimate. Also, the
TMI-observable rain rates are significantly higher over
land than over ocean. This fact is due to both actual
differences in precipitation characteristics over land
and ocean, and the failure of the current TMI to esti-
mate higher rain rates over ocean due to the saturation
of the signal and beam-filling issues discussed previ-
ously.

2) MELB

Figure 20 provides the rain-rate PDFs and CDFs
from the various estimates at MELB for all, ocean,
land, and coast, in the top-left, top-right, lower-left, and
lower-right panels, respectively. What immediately
stands out in the “all” PDF is the peaked TMI distri-
bution of rates, with a mode at about 0.8 mm h�1, which
differs significantly from all of the other PDFs. A quick
examination of the coast PDF shows the dominant ef-
fect that coastal areas have on estimated rain rates for
the TMI. However, over ocean and land, all of the es-
timates agree quite well, but there is indeed a notice-
able 2 mm h�1 TMI rain-rate mode evident at MELB

FIG. 18. PDF (curves with peaks) and CDF rain rates at KWAJ over (top left) gray area shown in Fig. 17, (middle) white area in
Fig. 17, and all areas (as in Fig. 16).

FIG. 17. Subsetted classification of KWAJ using a rough esti-
mate of the TMI v5 surface mask, which considered the areas near
the atolls to be coastal.

2234 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 47



FIG. 19. PDF of TMI rain rates over 2.5° � 2.5° boxes over (top left) ocean, (middle) land, and (right) coast. Curves are shaded by
month and year. The boldfaced solid line represents the ensemble of all distributions. The dashed red lines represent August 2001,
which corresponds to the period during the TRMM boost from 350 to 402 km. [Data displayed in figure were obtained from Dr. T. Bell
(NASA/GSFC).]

FIG. 20. PDFs (curves with peaks) and CDFs of rain rates at MELB at the TMI-footprint
scale for the period 1999–2004 showing GV, PR , COM , and TMI . (top left) The full GV
area, (top right) ocean areas only, (bottom left) land areas only, and (bottom right) coastal
areas only.
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over ocean areas, as was also shown to exist at KWAJ
and the tropical oceans in general. The erroneous mode
is most probably due to the Bayesian algorithm, and
this behavior has been reported to algorithm develop-
ers (W. S. Olson et al. 2007, personal communication).

5. Summary and conclusions

TRMM satellite and GV rain rates were spatiotem-
porally matched and intercompared over two different
regional GV sites for the period 1999–2004. These in-
tercomparisons were performed at two different scales:
at 0.5° � 0.5° (corresponding to the resolution of the
TRMM 3G68 product) and at the nominal scale of the
TMI footprint (approximately 150 km2). It was shown
that all of the estimates agree well, but there were some
notable differences, especially during heavy rain events
and peak rainfall periods. These differences were at-
tributed to the spatiotemporal characteristics of the
various rain sensors in conjunction with the observed
precipitation events, differences in the way active and
passive remote sensing interpret and process rain infor-
mation, and systematic variations in the physical appli-
cations of the different rain algorithms.

Some of the discrepancies were shown to be depen-
dent on the geographical terrain over which the various
estimates were made. Over land, for example, the TMI
algorithm cannot resolve light rain rates (�0.8 mm
h�1) because the algorithm only uses the 85-GHz scat-
tering signal and this precipitation tends not to be as
highly correlated with ice processes aloft. The TMI
coastal algorithm was also shown to have problems due
to the partitioning of these regions into land and ocean
sectors. This poses an intrinsic problem for GV, as was
shown in Table 1. The GV sites consist of a much higher
fraction of coastal pixels relative to the complete sam-
pling domain of the TRMM satellite. In the case of the
PR, on the other hand, attenuation of the high-
frequency radar signal limits the ability of the PR to
resolve areas of deep convection over land and to some
extent over ocean. Over ocean, the TMI is better able
to resolve the lighter rain rates (�0.02 mm h�1), but the
precipitation signal in the lower channels becomes satu-
rated at higher rain rates (�20 mm h�1).

While analysis of the probability distributions was
difficult for the 3G68 comparisons, due to the limited
sample size, a much more robust number of observa-
tions was available at the TMI footprint scale (approxi-
mately 12 000 and 9200 samples per year for KWAJ
and MELB, respectively). Our analysis showed that the
PDFs of the GV, PR, and COM were quite similar to
one another. The TMI PDFs compared to the other
three revealed significant structural differences. One of
the key findings of this work is the pronounced effect

that coastal areas have on the retrieved distribution of
rain rates, especially by the TMI. Although it is well
known that there are problems for passive microwave
estimation of rain intensities over coastal areas, it was
shown that the full-GV-area probability distributions of
rain rates are strongly influenced by coastal algorithm
uncertainties. It then stands to reason that validating
TRMM estimates without removing coastal-area esti-
mates will significantly increase the quantitative uncer-
tainty and, at the very least, lead to a misinterpretation
of the results.

Satellite–GV intercomparisons at the footprint scale
showed reasonably good agreement in the lower half of
the rain-rate spectrum, with the most salient differences
observed at the higher rain rates. In the comparisons to
GV, the v6 TMI and v6 PR appear to be underestimat-
ing the higher rain rates. This issue, interestingly, ap-
peared to be somewhat mitigated in similar compari-
sons performed using v5 data. This same result, as dis-
cussed earlier, has been noted in other studies and is
currently being investigated by the developers of the
PR algorithm. An evaluation of the mean rain-rate
spectrum suggested that COM performed better at the
higher rain rates relative to GV than either v6 TMI or
v6 PR. But in some cases the COM errors were signifi-
cantly higher, perhaps suggesting an inconsistent han-
dling of the high rain-rate cases. This result will need to
be more closely examined in future work. Although
more work needs to done, the results from the footprint
part of the study are encouraging because they show
that statistically meaningful GV–satellite intercompari-
sons can be performed at the spatiotemporal scale of
the TMI footprint, provided there exists a sufficiently
large sample of overpasses.

It was also shown that there is a preferred mode in
the TMI rain-rate distributions at approximately 2 mm
h�1 that was not evident in any of the other distribu-
tions, thus indicating that more work needs to be done
to improve the over-ocean estimates by the TMI algo-
rithm developers.
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