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ABSTRACT

Starting with Arakawa and Lamb’s second-order C-grid scheme, this paper describes the modifications
made to the dynamics to create a C-grid atmospheric model with a variable number of cells for each vertical
column. Where mountains exist, grid cells are discarded at the bottom of the column so that the mass per
square meter of retained cells is more nearly equal to that of horizontally adjacent cells. This leads to the
following chain of causes and effects: decreased mass variations reduce the numerically induced alternating
patterns in the horizontal velocity components, which reduce erroneous vertical mass fluxes, which reduce
erroneous precipitation. In addition, horizontal flows above mountains are smoother, the Ferrel cell is
stronger, and the polar cell is better organized. The C-grid performs geostrophic adjustment best among the
gridpoint schemes, being the most sensitive to condensation-released heating perturbations. It also over-
reacts more egregiously to numerical errors, particularly with respect to the vertical mass flux, and conse-
quently is often not used. Mesinger et al. applied the step-mountain (eta coordinate) technique to an E-grid
scheme with excellent results. Its application to the C-grid reduces numerical errors in the vertical mass flux
resulting in improvements in precipitation and other quantities.

1. Introduction

Improving precipitation in climate models requires a
rather lengthy journey. In gridpoint schemes of general
circulation models, prognostic scalar quantities such as
mass, temperature, humidity, and tracers are defined in
the same grid cells, referred to as the primary grid.
Arakawa categorized rectangular gridpoint dynamical
schemes depending on where the prognostic vector
quantities, eastward and northward velocities, are lo-
cated with respect to the primary grid. On the A-grid,
velocity values are centered on the primary grid. Cen-
ter-difference A-grid schemes are seldom used because
derivatives needed on the primary grid must be calcu-
lated from opposite cells that are two cells apart. With-
out additional smoothing or filtering, a perturbation
that develops in one cell is spread over a checkerboard
pattern, which is unrealistic.

On the B-grid, velocity values are centered at the
corners of the primary grid. In Arakawa’s (1972)

scheme, mass fluxes for advection of scalar quantities
are calculated by averaging the velocity component
perpendicular to the flow. Derivatives for the pressure
gradient force are calculated by scalar differences of
adjacent primary cells and then are averaged perpen-
dicular to the velocity component being accelerated.
This averaging is less detrimental than the averaging
parallel to the velocity component that occurs in A-grid
center-difference schemes.

On the C-grid, eastward velocities are centered on
the eastern and western edges of primary grid cells and
northward velocities are centered on the northern and
southern edges. In Arakawa and Lamb’s (1977)
scheme, there is no averaging of the velocity compo-
nents for mass fluxes or for the pressure gradient force.
Thus, “the simulation of geostrophic adjustment is best
with Scheme C” (Arakawa and Lamb 1977, p. 190).
Unlike the A-grid and B-grid, the two components of
horizontal velocity are staggered in space (centered at
different locations), and consequently the Coriolis and
metric terms may be calculated with more averaging
and less precision on the C-grid.

The arrangement of variables on the E-grid can be
viewed as a B-grid rotated 45° or as two independent
C-grids that are offset from each other by a half cell in
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each horizontal direction. In Mesinger’s (1981) scheme,
eastward and northward velocity components reside at
the same location, which is convenient for applying the
Coriolis and metric terms. The pressure gradient force
and the bulk of advection are applied to the separate
C-grids, which can cause grid separation problems if
not addressed. It is on the E-grid that Mesinger et al.
(1988) first applied the step-mountain (eta coordinate)
technique, discarding cells at the bottom of columns
where mountains exist.

In years past, several different attempts were made at
the Goddard Institute for Space Studies (GISS) to im-
prove the flow near mountains (which is related to pre-
cipitation problems) without the step-mountain tech-
nique. None of them were successful. These included
using Arakawa’s (1966) fourth-order Jacobean in a C-
grid general circulation model (Abramopoulos 1991)
and using models that conserved potential enstrophy
(Arakawa and Lamb 1981; Takano and Wurtele 1982;
Abramopoulos 1988).

Mountains may generate erroneous vertical mass
fluxes that result in erroneous precipitation. Figure 1
shows the vertical mass fluxes from B-grid and C-grid
atmospheric general circulation models of the early

1990s vintage that used Arakawa’s dynamical schemes.
As a general rule of thumb, the B-grid scheme excites
checkerboard patterns in the mass field whereas the
C-grid scheme excites checkerboard patterns in the ve-
locity components. The vertical mass flux is derived
from the convergence of the horizontal velocities and is
consequently sensitive to the velocity’s alternating pat-
terns. Thus, one would expect that checkerboarding in
the vertical mass flux would be more extreme in the
C-grid than in the B-grid, and this is confirmed by the
figure. Because this checkerboarding is so much more
extreme in the C-grid, one might expect that the B-grid
should be a better model. In fact the two models are
comparable in abilities, but if the erroneous vertical
mass fluxes in the C-grid could be corrected, it should
become the superior model.

This paper describes the changes and improvements
made from Arakawa and Lamb’s (1977) C-grid algo-
rithms culminating in the step-mountain implementa-
tion. The modifications were that the second-order dif-
ferencing scheme for the linear advection of tracer
quantities, which was numerically inaccurate, was re-
placed by the linear upstream scheme; both potential
enthalpy and specific humidity now require three direc-

FIG. 1. Downward mass flux from earlier B-grid and C-grid models.
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tional gradients as well as mean values inside each cell
(section 2). Half of the corner fluxes in the advection of
momentum were eliminated; this allowed the mass
stencil, the combination of mass cells that converts a
velocity value to momentum, to be reduced from six
mass cells to two (section 3). The Coriolis and metric
terms for the eastward component of velocity now con-
serve angular momentum by advection; the Coriolis
and metric terms for the northward component con-
serve kinetic energy in concert with the eastward com-
ponent (section 4). For the pressure gradient force, geo-
potential height and enthalpy are mass weighted within
each layer using the prognostic vertical gradient of
heat, and cell distances are defined specifically for this
term (section 5). At each pole, a single horizontal ve-
locity vector was defined that rotationally sends and
receives advective fluxes and is accelerated by the pres-
sure gradient forces around the pole (section 6). A hy-
brid vertical coordinate is defined in which each layer
has a fixed amount of mass plus a fixed fraction of a
variable column mass (section 7). The step-mountain
technique is implemented; cells are discarded at the
bottom of a column so that the mass per unit area of
cells above the mountain is more nearly equal to hori-
zontally adjacent cells of the same layer (section 8).
Continental topography is adjusted as a further refine-
ment in forcing the mass per unit area of adjacent cells
to be more nearly equal (section 9). Results, the im-
provement in precipitation (section 10), and a discus-
sion (section 11) follow.

2. Linear upstream scheme replaces second-order
differencing for linear advection

Atmospheric advection is the transport of a quantity
through the air via the winds. Linear advection is the
transport of a quantity other than the winds; nonlinear
advection is the transport of momentum or the winds
themselves. Center-difference schemes for linear ad-
vection are not as good as intelligent upstream schemes
(described later) when the mass of each grid cell is
constant. When mass variations increase (because of
mountains), an advected structure degrades more rap-
idly in a center-difference scheme than in an intelligent
upstream scheme (Russell and Lerner 1981). Spectral
advection schemes suffer the same fate as do center-
difference schemes.

To understand why the above degradation occurs re-
quires understanding what is the natural coordinate sys-
tem of a tracer quantity. Tracer concentration is de-
fined as tracer mass in a parcel divided by air mass in
the parcel. Integrated air mass, in each of the three
directions, is the natural coordinate system because dif-

ferences in the airmass coordinates determine the de-
nominator when tracer concentration is measured. In
the vertical direction, integrated air mass is propor-
tional to pressure (assuming constant gravity). If a sine
wave was sampled at irregular points and then a center-
difference or spectral advection operator was applied,
the result would not be very smooth. This problem de-
velops when a tracer field is sampled at even intervals
in space but in irregular intervals in the natural airmass
coordinate; the advection operator erroneously as-
sumed that the tracer values were evenly distributed.
The magnitude of the errors depends on how large the
variation is between the spatial coordinate used and a
natural airmass coordinate. Mountain-induced airmass
variations exist indefinitely in time and cause persistent
systematic degradation of advected fields.

Upstream advection schemes do not require that a
tracer field be equally distributed in its coordinate sys-
tem and are relatively immune to mass variations. The
standard scalar upstream scheme is known to be highly
diffusive, but intelligent upstream schemes for linear
advection do exist (Van Leer 1977), and among them
are the linear upstream scheme (Russell and Lerner
1981) and the quadratic upstream scheme (Prather
1986). Before upstream schemes were implemented at
GISS, persistent “zeroes” occurred in the humidity
field at a few locations, which was not conducive to
good precipitation.

The linear upstream scheme is used for linear advec-
tion in the resultant model here, being a compromise
between little diffusion and reduction in complexity,
disk space, and computing time. Each scalar quantity
(heat, humidity, and other tracers) on a primary grid
cell contains three directional gradients and a mean
value, all of which are prognostic variables with time
derivatives. The gradients participate in and are up-
dated by the advection scheme. In addition, primary
grid cells are subdivided into 1⁄4 or 1⁄8 grid cells upon
which condensation subroutines are applied.

The resultant dynamical model of this paper still uses
a second-order center-differencing scheme for nonlin-
ear advection that suffers the same deficiencies as men-
tioned above for linear advection. Lin and Rood (1997)
have developed a semi-Lagrangian (upstream) scheme
for nonlinear advection that has been tested at different
modeling centers. It could conceivably make an im-
provement in the resultant model here. The errors gen-
erated by the center-difference momentum advection
scheme are reduced compared to prior versions be-
cause the present resultant model discards mountain-
ous cells at the bottom of a column and the continental
topography may be adjusted so that the airmass varia-
tions are minimized. In C-grid schemes at GISS, alter-
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nating patterns of the velocity components are filtered
in the zonal direction while conserving angular momen-
tum.

3. Half of the corner fluxes in momentum
advection are eliminated

Most three-dimensional gridpoint schemes on the
sphere solve the primitive equations, which are given in
flux form and discretized in the vertical in appendix A.
The arrangement of the variables, the order of the
scheme, and other factors cause wide variations in a
scheme’s algorithmic solution and behavior. The finite-
difference algorithms for mass and momentum for this
paper’s resultant model are given in appendix B. It is
desirable that properties including mass and energy are
conserved by various processes. In Arakawa and
Lamb’s (1977, p. 204) second-order C-grid discretiza-
tion of the primitive equations, corner fluxes of mo-
mentum are needed in order to conserve enstrophy un-
der nondivergent flow. Atmospheric flow, however, is
divergent, so enstrophy is not conserved exactly, but
this nondivergent property in Arakawa’s differencing
schemes has other benefits, namely to control the cas-
cade of kinetic energy to smaller scales.

Arrangement of variables for the C-grid is described
in Fig. 2. Using U for the eastward velocity and V for
the northward velocity, the corner flux of eastward mo-
mentum needed for enstrophy conservation has two
mass flux components that multiply the average of
UI�1/2, J and UI�1/2, J�1 in Arakawa and Lamb. The first

component is a four-point average of eastward mass
fluxes and the second component is a single northward
mass flux. The modification made here is to eliminate
the first component. Similarly, when the corner flux of
northward momentum from VI, J�1/2 to VI�1, J�1/2 is cal-
culated, the four-point average of northward mass
fluxes is eliminated. There are two reasons for this sim-
plification: the mass stencil that multiplies velocity to
obtain momentum can be reduced from six mass cells to
two, and angular momentum can be conserved while
maintaining the conservation of kinetic energy by the
Coriolis and metric terms.

If the full momentum corner fluxes are used as in
Arakawa and Lamb, then in order to maintain uniform
flow over a large domain, the mass stencil of UI�1/2,J

would require these six mass cells: MI, J�1, MI�1, J�1,
MI, J, MI�1, J, MI, J�1, and MI�1, J�1. (Here M is the mass
of a primary grid cell.) If the reduced momentum cor-
ner fluxes are used, then the mass stencil of UI�1/2,J can
be reduced to cells MI, J and MI�1, J and that of VI, J�1/2

to MI, J and MI, J�1. In general, it is preferable to localize
the interaction among variables so that a variable af-
fects other variables only in its immediate vicinity and
not variables that are farther away.

The resultant scheme with reduced corner fluxes and
the two–cell mass stencil is called the simplified advec-
tion scheme. It was tested with the improved Coriolis
and metric terms (section 4) in a 4° � 3°, 12-layer
model. Based on 10-yr simulations and comparisons
with 50 observational fields, the results were just as
good as using the Arakawa and Lamb scheme. Never-

FIG. 2. Arrangement of variables for the C-grid: mass M (kg m�2) along with other scalar
quantities is defined on primary grid cells; eastward velocity U (m s�1) and northward velocity
V (m s�1) are centered at the edges of primary grid cells. The eastward mass flux is centered
where U is, and the northward mass flux is centered where V is. If the primary cell (I � 1,
J � 1) is a discarded mountainous cell, then UI�1/2, J�1 and VI�1, J�1/2 would be set to zero in
the present resultant model. With Arakawa and Lamb’s (1977) six–cell mass stencil, both
UI�1/2, J and VI, J�1/2, when converting to momentum, would attempt to use MI�1, J�1, which is
not defined.
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theless, enstrophy is conserved less accurately during
nondivergent flow. Integrating the simplified advection
scheme with improved Coriolis and metric terms at
4° � 3° in a 1-layer shallow water equation model with
Rossby–Haurwitz wave-4 initial conditions, the simula-
tion diverges after 75 days. The Arakawa and Lamb
scheme does not diverge. In a climate model, source
terms and a filter on the velocity components (that
were not used for the shallow water equations) will
overwhelm the slow loss of enstrophy conservation.

When step-mountain mass cells are discarded in the
resultant C-grid scheme, a velocity component is only
nonzero if both of its mass cells contain air. If one of the
two mass cells is discarded, then the velocity compo-
nent is perpendicular to the face of a mountain, and it
is set to zero. If the six–cell mass stencil were in use, one
or more of the mass cells may have been discarded
although the velocity component may want to be non-
zero (Fig. 2). The mass stencil the for B-grid and E-grid
schemes use four mass cells. If one of the four has been
discarded, then the velocity point is at the corner of a
mountain and various inelegant decisions need to be
made: should both velocity components be set to zero
or should the mass weighting be altered? A similar
problem arises when two of the four mass cells have
been discarded.

4. Angular momentum is conserved by advection
and the Coriolis and metric terms

To conserve the axis component of angular momen-
tum by advection and the Coriolis and metric terms, a
definition of angular momentum is needed for the C-
grid:

AI�1�2, J � �R2COSQJ
2 � R COSMJUI�1�2, J , �4.1�

where A (m2 s�1) is the axis component of angular mo-
mentum per unit mass, � (s�1) is the angular rotation
rate of the earth, R (m) is the radius of the earth, COSQ
and COSM are two specific definitions of cosine of lati-
tude, and J is the gridcell index of latitude. The advec-
tion algorithm of section 3 (ignoring the Coriolis and
metric terms) conserves linear eastward momentum.
This algorithm is applied to A, which, consequently, is
conserved. When A is replaced by the right-hand side
of (4.1), the terms of the algorithm’s application break
into the advection algorithm applied to U, the Coriolis
term, and the metric term, all multiplied by R COSMJ.
This process could have been accomplished with the
full corner fluxes and the six–cell mass stencil, but it is
complicated and was never programmed. This tech-
nique was only implemented for the simplified advec-
tion scheme. The solution is given in appendix B and

the derivation is available online (see http://aom.giss.
nasa.gov/doc4x3.html).

There is some freedom in choosing the cosines,
COSQ and COSM, but some choices are superior to
others. The choices selected for the resultant model are
simple and were found to be as good as or better than
other possibilities that were considered. Another
wrinkle that is divulged in the derivation is that when
angular momentum is advected northward from one
primary latitude row to another, the exact cosine of
latitude of the cell edges is used. Again, other choices
are possible, but this is what was selected. This wrinkle
violates exact conservation, but the global change of
angular momentum due to advection (including the Co-
riolis and metric terms) is four orders of magnitude
smaller than that due to either the pressure gradient
force or due to surface friction.

With the reduced corner fluxes, each term of the
Coriolis and metric terms that affects eastward momen-
tum (UM) in Eq. (A2) contains a linear factor of V.
(With Arakawa and Lamb’s full corner fluxes, this is
not the case, and it is the reason that they do not at-
tempt to conserve angular momentum.) Each term of
the Coriolis and metric terms that affects northward
momentum (VM) in Eq. (A.3) is designed to contain a
linear factor of U, and when the Coriolis and metric
terms of UM are multiplied by U they cancel a term in
the designed VM equation multiplied by V. Summing
all changes to UM � U � VM � V over the globe, the
Coriolis and metric terms all cancel exactly. Except for
variations in mass, the Coriolis and metric terms there-
fore conserve kinetic energy.

5. Changes made to the pressure gradient force

With only mean potential temperature defined over a
layer, there are different choices that can be made in
calculating the geopotential height; should potential
temperature be constant throughout the layer, should
temperature be constant throughout the layer, or
should some other choice be made? This is the debate
that occurred in Arakawa and Lamb (1977, p. 234), and
their answer is not completely satisfactory. In GISS
models and the present resultant model, both the mean
and the vertical gradient of potential enthalpy (poten-
tial temperature � mass � constant specific heat ca-
pacity) are prognostic variables, and assuming these
two values to be exact, temperature is known at every
depth of a layer. Both the geopotential thickness and
the mass-weighted height of a layer are calculated by
integration from the well-defined (but not continuous)
temperature function. The finite-difference algorithm is
given in appendix C.
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On a rectangular flat domain, the distances used in
the denominator of the pressure gradient force are
straightforward, but on a longitude–latitude spherical
domain they are not obvious. For the resultant model,
the east–west distance (m), which is used in the denomi-
nator when accelerating the eastward velocity [Eq.
(C.2)], is

�XPGFJ � R�� � cos2��� d��� cos��� d�,

�5.1�

where �	 is the east–west angular distance of a grid cell
in radians and the integrals are performed with respect
to latitude from the southern edge to the northern edge
of a primary grid row J (cells at same latitude). The
interpretation of Eq. (5.1) is that the ratio of the inte-
grals is the area-weighted cosine of latitude and
�XPGF is the area-weighted east–west distance. The
north–south distance (m), which is used in the denomi-
nator when accelerating the northward velocity [Eq.
(C.3)], is

�YPGFJ�1�2 � R��J�1 � �J�, �5.2�

where 
J is the area-weighted latitude in radians of a
primary grid cell.

These formulas were determined by trial and error
by the following test. A one-layer shallow water equa-
tions model on a sphere without topography or rotation
(� � 0) was initialized by a height field that was a linear
function of the distance along the sphere from a point
on the equator. The initial acceleration from this height
field was calculated in closed form, and then was area
averaged over the C-grid velocity cells. This closed
form acceleration was compared with that generated by
the shallow water model with different formulas for
�XPGF and �YPGF. The Eqs. (5.1) and (5.2) were
deemed satisfactory; the distances of Arakawa and
Lamb were worse.

6. A single horizontal velocity vector is defined at
each pole

In Arakawa and Lamb (1977), polar caps for the
North and South Poles were defined so that all scalar
quantities defined on triangular grid cells touching the
same pole would have the same value. This procedure
is continued still. What is new is how velocities are
defined at the poles. Arakawa and Lamb did not define
a separate eastward velocity at the primary grid row
touching a pole, but the mass of the polar cap was given
full weight when converting U velocity to U momentum
at the grid row adjacent to a pole as though that same

velocity were defined over both grid rows. Similarly,
the northward velocity edging a polar grid cell receives
the full weight of the polar cap whereas at other lati-
tudes it would receive only half the weight of the grid
rows it edges. This method was unsatisfactory because
the flow around and across a pole was not very smooth
and the model would diverge about every 20 yr of in-
tegration with the time step used (2 � 5 min for the
leapfrog time scheme of the 4° � 3° model).

This method is replaced by defining a single two-
component horizontal velocity vector for each polar
cap. Eastward velocity of the polar grid row has a sine
wave appearance in longitude when interacting with
grid cells adjacent to the pole. Northward velocity
touching the pole also has a sine wave appearance that
is 90° out of phase with the eastward component. Each
momentum component sends and receives advective
fluxes and participates in Coriolis and metric term cal-
culations. After the advection step, the eastward mo-
mentum cells in each polar grid row are spectrally ana-
lyzed and the sine and cosine coefficients of wavenum-
ber-1 are used to determine the next velocity vector at
the pole. The northward momentum cells at a pole have
half as much mass as do the eastward momentum cells
at the pole and are discarded.

In the C-grid, northward velocity cells are centered
between two primary grid rows. The pressure gradient
force that acts on northward velocity cells edging a pole
are based on values of mass and potential enthalpy of
the polar cap minus that of primary grid cells adjacent
to the pole. These gradients are spectrally analyzed us-
ing all longitudes, and the sine and cosine coefficients of
wavenumber 1 are retrieved and are applied as the
pressure gradient force acting on the polar vector ve-
locity with the appropriate distance factor.

Since implementing this modification to the poles,
simulations no longer diverge, and flow around and
across the poles is much smoother. This improvement
was confirmed in tests made with the one-layer shallow
water equations model; it eliminated alternating pat-
terns that develop at the poles.

7. Vertical layering is a combination of constant
mass and a sigma coordinate

The vertical coordinate at any level of the resultant
model is neither sigma nor eta but the mass per unit
area above the level. If gravity is constant, this coordi-
nate is proportional to pressure. The vertical layering is
maintained by the vertical mass fluxes that are forced
by the horizontal mass fluxes.

Arakawa and Lamb (1977) used fixed pressure layers
between the model top and a fixed intermediate pres-
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sure level PI (approximately the tropopause) and a
pure sigma coordinate system between PI and the sur-
face. Because water vapor mass was ignored in the at-
mosphere and the sigma coordinates were fixed, the
vertical layering was determined by a two-dimensional
horizontal pressure array. At GISS, mass per unit area
(which includes water vapor) is a three-dimensional
prognostic variable given by (A.1), and the vertical lay-
ering is more general: each layer has a fixed amount of
mass [MFIX (kg m�2)], plus a fixed fraction (MFRAC)
of a column variable amount. The columns headed by
MFIX and MFRAC in Table 1 are constant global
numbers for a model simulation. For each grid column,
the column variable amount (kg m�2) is

MVAR � MSURF � MTOP � � MFIXK, �7.1�

where MSURF is the total mass per unit area of the
column, MTOP is the fixed mass above the dynamical
top, and the summation of K is taken over nondis-
carded layers in the column. The prognostic mass per
unit area of a layer L is

ML ≅ MFIXL � MFRACLMVAR�� MFRACK,

�7.2�

where again the summation of K is taken over nondis-
carded layers in the column.

Precipitation and evaporation remove or add mass to
individual layers so that after the source terms, the vari-
able mass of each layer, ML � MFIXL, in a column may
no longer be proportional to the MFRACs. The sub-
routine that calculates vertical mass fluxes, however,
smoothly adjusts the mass of grid cells in each column
during the dynamics so that at the end of the dynamics,
the variable mass of individual layers are exactly pro-
portional to the MFRACs. The sum of the MFRACs
need not equal 1; it is the relative ratios that are im-
portant.

The vertical resolution displayed in Table 1 is not
appropriate for a model with a fixed number of layers
everywhere. Over the Himalayas in such a model,
MSURF may be as low as 5300 kg m�2, which means
MVAR would be �2500 (�5300 � 100 � 7700) and the
mass in layers 7 through 11 would be 87.5 (�400 � 2500
� 4/32). Such thin layers could cause numerical prob-
lems.

MFIX and MFRAC of Table 1 are used for the 20-
layer resultant model developed here. With a variable
number, LM, of layers in a column, only the first LM
values of MFIX and MFRAC are used, but for every
grid column the mass of a layer is quite close to that
entered under column M. Another consideration was to

have the lowest layer, where surface interaction occurs,
nearly the same for all grid columns. Less than 5% of
the area of the earth has mountains that would occupy
layer 14.

8. Allow a variable number of layers, implement a
step-mountain technique

The model with a variable number of layers requires
two new input files. The LM file fixes the number of
layers for each horizontal grid column, and a second file
contains offline calculations used by the model’s polar
filter. The atmospheric initial conditions input file is
recreated by a modified offline program that reads the
LM file. This program and the model itself were tested
first with an LM file that had the same fixed number of
layers everywhere.

The LM file must be created first. Each primary grid
column lies above a surface cell that is either all ocean
or all continent. In the atmosphere above an ocean cell,
the number of layers is always the fixed maximal num-
ber. The principle to be followed over continental col-
umns is to choose the number of layers so that the mass
per unit area of a cell is as close as possible to the

TABLE 1. Vertical resolution for a 20-layer atmosphere. Layers
are counted from the top downward. MFIX (kg m�2) is the fixed
amount of mass in each layer. MFRAC is the fraction of the
column’s variable mass (that may be negative) that is added to
each layer. MTOP � 100 kg m�2, the fixed amount of mass above
the dynamical model top. The contents of columns headed by
MVAR (variable mass of individual layers), M (total mass of
layers), and VSUM (vertically integrated M) are for a sample grid
column with 20 layers whose total column mass is 10 360 kg m�2,
about 1016 mb.

Layer MFIX MFRAC MVAR M VSUM

100
1 200 0 0 200 300
2 300 0 0 300 600
3 400 0 0 400 1000
4 400 1/32 80 480 1480
5 400 2/32 160 560 2040
6 400 3/32 240 640 2680
7 400 4/32 320 720 3400
8 400 4/32 320 720 4120
9 400 4/32 320 720 4840

10 400 4/32 320 720 5560
11 400 4/32 320 720 6280
12 400 3/32 240 640 6920
13 400 2/32 160 560 7480
14 400 1/32 80 480 7960
15 400 0 0 400 8360
16 400 0 0 400 8760
17 400 0 0 400 9160
18 400 0 0 400 9560
19 400 0 0 400 9960
20 400 0 0 400 10360

7700 32/32 2560 10260
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average mass of its eight horizontally surrounding cells
of the same layer. If the number of layers of a column
obeys this principle for a particular layer, then the prin-
ciple is obeyed for other layers of the column. The
principle is implemented by changing the number of
layers iteratively; the column that is most out of line
with its neighbors is corrected first. Columns may be
corrected more than once during the process. The ad-
vantage of using the above principle, as opposed to
choosing the number of layers independent of neigh-
boring columns, is that it minimizes the discrepancy in
mass with horizontally adjacent cells.

Unfortunately, the above principle is insufficient to
uniquely determine the number of layers over the con-
tinents; the solution depends upon the initial guess.
Starting with the ocean maximal number of layers ev-
erywhere (method 1) produces a solution with the few-
est number of discarded cells that are consistent with
the principle. Another starting method is to spread the
mass of each layer from the oceans smoothly over the
continents, defining an ideal mass (the average mass of
its horizontal neighbors) for each continental cell with
the full maximal number of layers everywhere and tem-
porarily ignoring the mountains. Then, for each conti-
nental column, choose N (which will become the first
guess for the number of layers) so that the sum of the
first N ideal masses is closest to the column’s actual
column mass (method 3). Intermediate starting values
are also possible (method 2). Note that the column
mass comes from a prior simulation, and over the ocean
it may vary within 250 kg m�2. From the ocean masses
of a layer, ideal continental masses are generated by a
smooth unique convergent solution.

The polar filter is used to allow a longer dynamical
time step than would otherwise be needed. The east-
ward mass flux and the east–west pressure gradient
force are Fourier analyzed in longitude, and spectral
coefficients of each field are multiplied by the factor
SMOOTH [Arakawa and Lamb 1977, p. 250, their Eq.
(325)], which is a function of wavenumber and latitude
and is limited to 1:

SMOOTH � �X� ��Y sin��N�IM�, �8.1�

where �X is the east–west gridcell distance (a function
of latitude), �Y is the north–south gridcell distance, IM
is the number of east–west grid cells around the globe,
and N is the wavenumber (which is limited to IM/2). In
the present resultant model, the same two fields are
filtered with the same strength when a primary grid row
of a given layer is above the mountains, but when a
primary grid row intersects a mountain, the row is bro-
ken into one or more basins. A basin that is KM pri-

mary grid cells wide will have edges for KM � 1 field
values to be filtered. The field is Fourier analyzed on
2 � KM periodic values, which include zeroes on each
coast and KM � 1 reflected values of opposite sign. The
cosine coefficients are all zero, but the sine coefficients
are multiplied by the same SMOOTHing factor as in
(8.1) except that IM is replaced by 2 � KM and the
largest wavenumber is KM � 1. Because filtered field
values are fixed linear combinations of the KM � 1
unfiltered values, the matrix coefficients of linear com-
binations are calculated once in an offline program but
are used repetitively in the atmospheric polar filter sub-
routine. The matrix coefficients depend upon KM and
latitude (�X and �Y).

9. Adjust continental topography after LM file has
been determined

The object of using a variable number of layers is to
cause the mass per unit area of any cell to be more
nearly equal to its horizontally adjacent cells. A further
refinement in achieving this goal is to adjust the conti-
nental topography of a simulation. The mass per unit
area of each cell over the oceans is derived from a
multiyear annual mass distribution from a prior simu-
lation. These ocean masses are spread smoothly over
the continents (as was done in method 3 of section 8),
producing an ideal mass for every cell on land, dis-
carded or not. The ideal column mass over the conti-
nents is the summation of the ideal masses over the
nondiscarded layers as specified by the LM file. The
ideal and the model’s present column masses from the
prior simulation are to be matched by adjusting the
continental topography.

The multiyear simulation’s column mass (MSURF) is
subtracted from the ideal column mass to produce a
discrepancy, �M (kg m�2). Adjusting the continental
topography by �Z (m) in future simulations would
cause their column mass to approach the ideal column
mass:

�Z � �1 � �1 � �M�MSURF��	�GT�	, �9.1�

where � (J kg�1 K�1) is the gas constant for dry air, �
(K m�1) is the moist-adiabatic lapse rate, G (m s�2) is
the earth’s gravitational acceleration, and T is the sur-
face temperature (K) from the same prior simulation.

If the LM file from method 1 (least discarded cells) is
chosen, then the area-weighted �Z over the continents
is �338 m. Method 3 yields a continental �Z of �17 m.
From the LM file of method 3, method 4 creates a new
LM file in which more cells over the continents are
discarded until the global mean mass of a layer matches
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the global mean ideal mass. Method 4 yields a conti-
nental �Z of a little more than �1 m.

10. Results

The results of this section relate to three 12-yr simu-
lations of recent 4° � 3° atmospheric models: (i) 20
layers everywhere; (ii) 20 layers maximum, method 1 of
section 8 is used to determine the LM file; and (iii) 20
layers maximum, method 4 of section 9 is used to de-
termine the LM file, and continental topography is ad-
justed. Comparisons are made using the last 10 yr.
Simulation (i) has different values for MFIX and
MFRAC; MFIX is less than those given by Table 1. The
relationship between cloud optical depths and mass of
condensate were tuned for each simulation in order to
optimize the comparisons with observations. Other mi-
nor parameters were also tuned. Actually, each model
was simulated 8 times with slightly varying initial tem-
peratures, and the best simulation was chosen for the
subsequent results. Each group of eight simulations is
quite similar; the root-mean-square error in precipita-
tion in Table 2 (discussed later) between the best and
worst simulations is about 0.08 mm day�1.

Other than the vertical layering and tuning, the three
simulations use identical coding. Each tries to repro-
duce the climatology of the second half of the twentieth
century using climatologically observed ocean surface
temperatures and sea ice distributions. A common fea-
ture is a filter that conserves momentum and is applied
in the east–west direction to the horizontal velocity
components. It is mentioned because it affects the dy-
namics—the topic of this paper. The strength of this
filter can be weakened in simulations (ii) and (iii), but
this was not done.

Numerically induced noise is present in the monthly

northward velocity of simulation (i) at all layers around
mountains, but is nearly missing in (ii) and is absent in
(iii) except possibly in the Himalayas. An alternating
pattern in latitude develops at the surface above the
ocean near Antarctica in simulations (ii) and (iii) that
was not significant in (i). This is the only quantity and
region that degrades; overall, northward velocity
(which is not displayed) is smoother in simulations (ii)
and (iii) than it is in (i).

Vertical mass fluxes in general are more sensitive
than are horizontal velocities, and they are shown in
Fig. 3 for January for 200- and 850-mb pressure levels.
The numerical noise at 200 mb that is present in simu-
lation (i) is reduced in (ii) and is nearly eliminated in
(iii). In particular, the alternating pattern in South
America, which is present in simulation (i) at 200 mb
and also in the earlier B-grid and C-grid simulations of
Fig. 1, is eliminated in (ii) and (iii). At 850 mb, rising air
on the western side of the Rocky Mountains and sink-
ing air on the eastern side are clearly indicated in (ii)
and (iii), but not so in (i) nor in Fig. 1. Although the
magnitudes of the vertical mass fluxes are reduced from
(i), simulation (ii) is still more spotted than the B-grid
of Fig. 1. Improvements in the vertical mass flux will
pay big dividends in the precipitation field.

The maximum value of the January Northern Hemi-
sphere Hadley cell is nearly identical in all three simu-
lations: 194 in (i), 194 in (ii), and 193 � 109 kg s�1 in
(iii). The maximum value of the Ferrel cell is �30 in (i),
�40 in (ii), and �49 in (iii), and the cell is about 3°
narrower in latitude in simulation (i). The polar cell is
very disorganized in (i) and eventually a cell with the
same sign as the Ferrel cell develops between 68° and
85°N. In the other simulations, the polar cell is well
developed with a maximum value of 12 in (ii) and 9 in
(iii) and which extends from about 61° to 77°N.

TABLE 2. Root-mean-square error of precipitation (mm day�1) over Northern Hemisphere ground for January and July. Five
climatological observation files {Legates and Willmott (1990), years 1920–80; Shea (1986), years 1950–79; German Climate Research
Programme (2005; DEKLIM), years 1951–2000; New et al. [1999; Climate Research Unit (CRU)], years 1961–90; Adler et al. [2003;
Global Precipitation Climatology Project (GPCP)], years 1979–99} are compared among themselves and against 3 model simulations:
(i) 20 layers everywhere; (ii) 20 layers maximum, method 1 of section 8 is used to determine the LM file; and (iii) 20 layers maximum,
method 4 of section 9 is used to determine the LM file, and continental topography is adjusted.

January July

Legates Shea DEKLIM CRU GPCP Legates Shea DEKLIM CRU GPCP

Legates 0 0.58 0.59 0.55 0.64 0 1.33 1.31 1.01 1.35
Shea 0.58 0 0.37 0.45 0.59 1.33 0 1.09 1.18 .96
DEKLIM 0.59 0.37 0 0.38 0.53 1.31 1.09 0 1.23 1.42
CRU 0.55 0.45 0.38 0 0.59 1.01 1.18 1.23 0 .98
GPCP 0.64 0.59 0.53 0.59 0 1.35 .96 1.42 .98 0
(i) 1.57 1.62 1.63 1.64 1.64 2.85 2.57 2.78 2.63 2.52
(ii) 1.02 0.94 0.94 0.97 0.89 2.32 1.98 2.23 2.03 1.80
(iii) 1.13 0.99 1.01 1.05 0.91 2.65 2.25 2.56 2.30 1.98
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Among quantities with adequate observations, pre-
cipitation shows the greatest improvement when step-
mountain is used. Figure 4 shows the January and July
precipitation for simulations (i) and (ii) and the obser-
vations of Shea (1986). Simulation (iii) is quite similar
to (ii) and is not displayed. Precipitation peaks on
Greenland, Iceland, and Norway of simulation (i) are
reduced in (ii) and are then more similar to Shea. The
largest improvement is in South America. The precipi-
tation peaks in the northern Andes are eliminated in

(ii), and in the south, the precipitation that fell on the
continent in (i) is moved to the Pacific Ocean in (ii)
where it coincides with Shea.

Table 2 shows the root-mean-square error compari-
sons of model results versus five observational precipi-
tation files over Northern Hemisphere ground; thus,
much of South America is excluded from this compari-
son. The observational files were interpolated (conserv-
ing means) to the model’s 4° � 3° resolution before
comparing. Simulation (ii) is the most accurate. Note

FIG. 3. Downward mass flux from simulations (i), (ii), and (iii).
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that if one wishes to compare with other models,
coarser resolution reduces the root-mean-square errors
among the observational files. The errors for 5° � 4°
resolution are on average 3% less in January and 15%
less in July than those given in Table 2.

11. Discussion

The purpose of discarding grid cells at the bottom of
mountainous columns and modifying the topography is

to cause the mass per unit area of horizontally adjacent
cells to be more nearly equal, which, according to sec-
tion 2, should reduce the systematic numerical errors of
horizontal momentum advection. Implementing step-
mountain technique consequently improves the vertical
mass fluxes and the flow around mountains. There are
two reasons that the precipitation distribution is im-
proved, especially so in the Andes. First, the vertical
mass flux, which is less in error, is an important deter-

FIG. 4. Precipitation from simulations (i) and (ii) and from Shea (1986).
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minate in large-scale condensation. Second, in a sigma
coordinate model or model (i), moist air above the Pa-
cific Ocean can jump to the top of the Andes in one
step because the lowest cells are in the same layer; in
model (ii), moist air must rise over the ocean, where it
may condense, before moving over to the Andes.

The resultant C-grid model here is ideal for imple-
menting step-mountain technology in terms of the mass
stencil. In B-grid and E-grid schemes, velocity compo-
nents are centered at the corner of four primary grid
cells, and the mass of those four cells are used to con-
vert velocity to momentum. If one or two of them be-
come discarded mountainous cells, then the velocity
must either be set to zero (which may not be desirable)
or some other inelegant arrangement must be made for
the mass stencil. With Arakawa and Lamb’s (1977) six–
cell mass stencil for the C-grid, the problem is even
worse. The simplified advection scheme expounded
here, with its simple two–cell mass stencil, is ideal; if
one of the mass cells was discarded, then the velocity
component is set to zero, being perpendicular to the
face of the mountain.

Intelligent upstream schemes for nonlinear advection
may some day surpass center-differencing schemes
whose improvements are nearing their end. Fourth-
order differencing schemes did not make improvements
at GISS. They work well for simulating smooth patterns
like Rossby–Haurwitz waves or stratospheric flow, but
are worse than second-order schemes when local oddi-
ties occur, like sharp mountains or point source heating.
A fourth-order version (Takano and Wurtele 1982) of
Arakawa’s potential enstrophy conserving scheme was
the best among several shallow water equation models
tested with Rossby–Haurwitz waves (Russell et al.
1987), but it never worked well in earth climate models.
Using potential temperature as the vertical coordinate
was also suggested. It would cause large variations in
the mass per unit area of layers and is unlikely to make
an improvement, but it was never tested.

Many things are improved by increasing resolution,
but simulated flow around mountains may degrade be-
cause the horizontal topography gradients increase.
While other model diagnostics became more realistic,
precipitation degraded as horizontal resolution in-
creased at GISS. Much effort and money was spent on
the condensation subroutines, but errors in the basic
patterns of flow prevented improvement. This problem
has now been solved by using the step-mountain tech-
nique. Over the next few years, this correction of the
basic pattern of flow will spread to improvements in
condensation, clouds, radiation, and other aspects of
the model.

When Mesinger set out to develop the eta coordinate

and the step-mountain technique, his purpose was to
reduce errors in the pressure gradient force. In its
simple form, the left-hand side of (C1) has two terms
that are added together, the gradient of pressure and
the gradient of height. Consider a column in the Pacific
Ocean and an adjacent column in the Andes in a sigma
coordinate system or in the hybrid model (i) with the
same number of layers everywhere. The gradient of
pressure accelerates the eastward velocity while the
gradient of height decelerates it. The simple view of the
problem (Smagorinsky et al. 1967) is that each of these
terms is huge, but they nearly cancel causing the rela-
tive error to increase. Mesinger et al. (1988) are more
subtle in their understanding of the problem, namely
that temperatures in the Pacific column that are below
the applied velocity cell’s pressure are ignored in cal-
culating the geopotential heights while temperatures in
the Andes column that are above that pressure are
used, both being wrong from the physical point of view.
With the step-mountain technique implemented, the
pressures and heights of horizontally adjacent cells are
more similar, the gradients are weaker, the net calcu-
lation is no longer orders of magnitude smaller than
either of the terms, and the temperature error men-
tioned above is nearly eliminated. The present paper
agrees with the improvements to the pressure gradient
force, but it claims that there is another reason to
implement step-mountain, namely that systematic er-
rors in the advection of momentum are reduced when
the mass per unit areas of adjacent cells are more nearly
equal. When Wyman (1996), in his E-grid step-
mountain model, modified his continental topography
to one of eleven possible values in order to reduce the
gradient of height, he did not minimize the mass per
unit area of adjacent cells as effectively as was done in
section 9 here. This may be a minor point, and based on
the next paragraph, the choice of method to modify the
continental topography may be mute.

There is still one aspect of this paper that is unset-
tling: why is simulation (ii) superior to simulation (iii)?
The tuning of each model is extremely similar and it
seems unlikely that tuning is the cause of the discrep-
ancy. The reason may be that small topography gradi-
ents that affect the general circulation are present in
(ii), but have been removed in (iii) by the topography
adjustment. The improvement in vertical mass fluxes in
(iii) over those in (ii) does confirm the theoretical
analysis of Russell and Lerner (1981) that mass varia-
tions are a cause of numerical errors in advection by
center-difference schemes. But wiping out topography
gradients to achieve this end may be counterproduc-
tive. At GISS, we now use simulations like (ii) and do
not adjust the continental topography.
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Gallus and Klemp (2000) using a two-dimensional
model (one vertical and one horizontal direction) have
pointed out deficiencies in the step-mountain tech-
nique, namely that “flow will not properly descend
along the lee slope. Rather, the flow separates down-
stream of the mountain and creates a zone of artificially
weak flow along the lee slope.” Their criticism applies
to step-mountain three-dimensional schemes of the B-
grid, C-grid, and E-grid, which look identical in two
dimensions. When a ridge exists, the criticism is valid
for all three grids, but when there is flow around a
mountain, the various three-dimensional schemes will
behave differently. F. Mesinger and D. Jovic (2004, un-
published manuscript) have developed a version of the
eta coordinate E-grid scheme that allows sloping hori-
zontal transport between different layers at the bottom
of the atmosphere. This may eliminate the ridge prob-
lem, but it is not implemented here.

Step-mountain technology may be a benefit to E-grid
and B-grid schemes, but it is a true savior to the C-grid.
The improvements are truly significant. The question
remains, do they restore Arakawa’s original belief that
the C-grid is the best of the gridpoint schemes?

Acknowledgments. The author thanks Fedor Mes-
inger for numerous suggestions for the manuscript and
for inventing the step-mountain technique in the first
place. Maxwell Kelley first suggested using a single
horizontal velocity vector at the poles and checking the
distances used by the pressure gradient force.

APPENDIX A

Primitive Equations

After discretizing the vertical coordinate, the form of
the primitive equations without the source terms for
each layer L (counted downward) on the spherical grid
are.


M�
t � �
MU�
� � 
MV cos��
���R cos�

� WL�1�2 � WL�1�2 � 0 �A.1�


UM�
t � �
UMU�
� � 
UMV cos��
���R cos�

� �UW�L�1�2 � �UW�L�1�2

� �f � U tan��R�MV � M�
�� � CT��
�

� �P�P0��
H�
��R cos� � 0 �A.2�


VM�
t � �
VMU�
� � 
VMV cos��
���R cos�

� �VW�L�1�2 � �VW�L�1�2

� �f � U tan��R�MU � M�
�� � CT��
�

� �P�P0��
H�
���R � 0 �A.3�


QM�
t � �
QMU�
� � 
QMV cos��
���R cos�

� �QW�L�1�2 � �QW�L�1�2 � 0 �A.4�

where M (kg m�2) is mass per unit area, U (m s�1) is
the eastward (zonal) velocity component, V (m s�1) is
the northward (meridional) velocity component, t (s) is
time, 	 is longitude, � is latitude, R (m) is the radius of
the earth, W (kg m�2 s�1) is the downward vertical
mass flux defined at layer edges, f (s�1) is the Coriolis
parameter 2� sin � (� is angular rotation rate of earth),

 (m2 s�2) is the geopotential, C (J kg�1 K�1) is the
specific heat capacity of dry air at constant pressure, T
(K) is temperature, P (Pa) is pressure, P0 (Pa) is the
fixed arbitrary reference pressure for potential quanti-
ties (e.g., temperature), � is the exponent of the Exner
function used in obtaining potential temperature, H (J
kg�1) is potential specific enthalpy, and Q is the tracer
concentration such as specific humidity or potential
specific enthalpy.

APPENDIX B

Finite-Difference Algorithm for Simplified
Advection Scheme

Finite-difference algorithms for the simplified advec-
tion scheme, the polar velocity, and the Coriolis and
metric terms are described below. The momentum ad-
vection scheme and polar velocity are simpler than that
described in Arakawa and Lamb (1977). Derivation
of the complicated Coriolis and metric terms can be
found online (see http://aom.giss.nasa.gov/DOC4X3/
CORIOLIS.TXT).

a. Constants

IM � number of longitudinal grid cells
JM � number of latitudinal grid cells

R � radius (m) of earth
� � angular rotation rate (1/s) of earth

d	 � longitudinal spacing of grid cells � 2�/IM
d� � latitudinal spacing of grid cells � �/JM
dt � advective time step(s)

b. Trigonometric functions of longitude

COSII � cos[d	 (I � 1/2)]
SINII � sin[d	(I � 1/2)]

COSUI�1/2 � cos(d	I)
SINUI�1/2 � sin(d	I)

c. Trigonometric and distance functions of latitude

COSVJ�1/2 � cos{d� [J � 1/2 � (1 � JM)/2]}
SINVJ�1/2 � sin{d�[J � 1/2 � (1 � JM)/2]}

DXYPJ � area of primary cell (m2)
� d	R2(SINVJ�1/2 � SINVJ�1/2)
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DXVJ�1/2 � X length (m) of primary gridcell
edge � d	RCOSVJ�1/2

DXPJ � average X length (m) of primary grid
cell � (DXVJ�1/2 � DXVJ�1/2)/2

DYPJ � average Y length (m) of primary
grid cell � d�R

COSMJ � selected cosine for angular
momentum � (COSVJ�1/2

� COSVJ�1/2)/2
COSQ2

J � selected cosine squared for
angular momentum

� (COSV2
J�1/2 � COSV2

J�1/2)/2
SINxYJ � (sine of latitude) d�

� COSVJ�1/2 � COSVJ�1/2

TANxYJ � (tangent of latitude) d�
� SINxYJ/COSMJ

0 � COSV1/2 � DXV1/2 � MVI,1/2

� UMVcI�1 /2 ,1 /2 � UMVwI , 1 /2

� UMVeI,1/2

0 � COSVJM�1/2 � DXVJM�1/2

� MVI,JM�1/2 � UMVcI�1/2,JM�1/2

� UMVwI,JM�1/2 � UMVeI,JM�1/2

International date line is located at (1⁄2, J)
� (IM � 1/2, J)

South Pole is located at (I, 1/2)
North Pole is located at (I, JM � 1/2)

d. Definitions of variables

I, J � longitudinal and latitudinal index of
primary grid cell

M � mass per unit area (kg m�2) of primary grid
cell (identical at all longitudes at a pole)

B � mass stencil (kg) for U (identical at all
longitudes at a pole)

N � mass stencil (kg) for V
U � eastward velocity component (m s�1)
V � northward velocity component (m s�1)

USP � velocity component (m s�1) at South Pole
pointing up 90°W

VSP � velocity component (m s�1) at South Pole
pointing up 180°

UNP � velocity component (m s�1) at North Pole
pointing down 90°W

VNP � velocity component (m s�1) at North Pole
pointing down 0°

MU � eastward mass flux (kg s�1) located on U
MV � northward mass flux (kg s�1) located on V

UMU � eastward momentum flux of U (kg m s�2)
UMV? � northward momentum flux of U (kg m s�2)

(? � c, w, or e)
VMU? � eastward momentum flux of V (kg m s�2)

(? � c, s, or n)
VMV � northward momentum flux of V (kg m s�2)

e. U at poles

UI�1/2,1 � COSUI�1/2USP � SINUI�1/2VSP
UI�1/2,JM � COSUI�1/2UNP � SINUI�1/2VNP

f. V at poles

VI,1/2 � COSIIVSP � SINIIUSP
VI,JM�1/2 � COSIIVNP � SINIIUNP

g. Mass stencil of U

BI�1/2, J � (MI, J � MI�1, J)DXYPJ/2

h. Mass stencil of V

NI, J�1/2 � (MI, JDXYPJ � MI, J�1 DXYPJ�1)/2

i. Eastward mass flux

MUI�1/2, J � (MI, J � MI�1, J)filtered(UI�1/2, J)DYPJ /2

Polar filter is applied to U when calculating MU. At
Poles, compute MU so that horizontal mass conver-
gence into each polar triangle is the same for all longi-
tudes, and summation over longitude of MU is 0. Here
MUI�1/2,1 is a function of all MVI,3/2 in row, and MUI�1/

2,JM is a function of all MVI,JM�1/2 in row.

j. Northward mass flux

MVI, J�1/2 � (MI, J � MI, J�1)VI, J�1/2DXVJ�1/2/2

k. Eastward momentum flux of U from UI�1/2,J to
UI�1/2,J

UMUI, J � (MUI�1/2, J � MUI�1/2, J)(UI�1/2, J

� UI�1/2, J)/4

l. Northward momentum flux of U from UI�1/2,J to
UI�1/2, J�1, UI�1/2, J�1, or UI�3/2, J�1

UMVwI,J�1/2 � MVI,J�1/2(UI�1/2,J � UI�1/2,J�1)/12
UMVcI�1/2,J�1/2 � (MVI,J�1/2 � MVI�1,J�1/2)

(UI�1/2,J � UI�1/2,J�1)/6
UMVeI�1,J�1/2 � MVI�1,J�1/2(UI�1/2,J � UI�3/2,J�1)/12

m. Eastward momentum flux of V from VI,J�1/2 to
VI�1, J�1/2, VI�1, J�1/2, or VI�1, J�3/2

VMUsI�1/2,J � MUI�1/2,J(VI,J�1/2 � VI�1,J�1/2)/12
VMUcI�1/2,J�1/2 � (MUI�1/2,J � MUI�1/2,J�1)

(VI,J�1/2 � VI�1,J�1/2)/6
VMUnI�1/2,J�1 � MUI�1/2,J�1(VI,J�1/2 � VI�1,J�3/2)/12
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n. Northward momentum flux of V from VI,J�1/2 to
VI,J�1/2

VMVI, J � (MVI, J�1/2 � MVI, J�1/2)(VI, J�1/2

� VI, J�1/2)/4

o. Updated M; Note: Mnew is identical at all
longitudes at poles

MnewI, JDXYPJ � MI, JDXYPJ � dt(MUI�1/2, J

� MUI�1/2, J � MVI, J�1/2

� MVI,J�1/2)

p. Updated B; Note: Bnew is identical at all
longitudes at poles

BnewI�1/2, J � (MnewI, J � MnewI�1, J)DXYPJ/2

q. Updated N: J � 1/2 � 3/2, JM � 1/2

NnewI,J�1/2 � (MnewI, J DXYPJ

� MnewI, J�1 DXYPJ�1)/2

r. Updated U including advection, Coriolis, and
metric terms

UnewI�1�2, JBnewI�1�2, J

� UI�1�2, JBI�1�2, J � dt�UMUI, J � UMUI�1, J

� UMVeI,J�1�2 � UMVcI�1�2,J�1�2 � UMVwI�1,J�1�2

� UMVwI,J�1�2 � UMVcI�1�2,J�1�2 � UMVeI�1,J�1�2

� �RSINxYJ�MVI, J�1�2 � MVI�1, J�1�2 � MVI, J�1�2

� MVI�1, J�1�2��2 � TANxYJ�UMVeI, J�1�2

� UMVcI�1�2,J�1�2 � UMVwI�1,J�1�2 � UMVwI,J�1�2

� UMVcI�1�2, J�1�2 � UMVeI�1, J�1�2��2

s. Updated V including advection, Coriolis and
metric terms

VnewI, J�1�2NnewI, J�1�2

� VI, J�1�2NI, J�1�2 � dt�VMVI, J � VMVI, J+1

� VMUnI�1�2,J � VMUcI�1�2,J�1�2� � VMUsI�1�2,J�1

� VMUsI�1�2,J � VMUcI�1�2,J�1�2 � VMUnI�1�2,J�1

� �MI,J � MI,J�1�DXVJ�1�2 � ��RSINxYJ�UI�1�2,J

� UI�1�2,J� � �RSINxYJ�1�UI�1�2,J�1 � UI�1�2,J�1�

� �TANxYJUI�1�2,J � TANxYJ�1UI�1�2,J�1��UI�1�2,J

� UI�1�2, J�1��4 � �TANxYJUI�1�2, J

� TANxYJ�1UI�1�2, J�1��UI�1�2, J � UI�1�2, J�1��4

� �TANxYJ � TANxYJ�1��UI�1�2, J � UI�1�2, J�

� �UI�1�2, J�1 � UI�1�2, J�1��12�4�,

t. Calculate UPnew and VPnew from Unew

USPnew

� 2 ��UnewI�1�2,1COSUI�1�2��IM

VSPnew

� �2 ��UnewI�1�2,1SINUI�1�2��IM

UNPnew

� 2 ��UnewI�1�2,JMCOSUI�1�2��IM

VNPnew

� 2 ��UnewI�1�2,JMSINUI�1�2��IM

with the summation taken over all longitude cells in
polar grid row.

APPENDIX C

Discretization of the Pressure Gradient Force

a. Constants

C (J kg�1 K�1) � specific heat capacity � 1003.5 for
dry air � �/�

G (m s�2) � earth’s downward gravitational
acceleration

P0 (Pa) � reference pressure for potential
quantities � 1

� (J kg�1 K�1) � gas constant � 287 for dry air � �C
� � exponent of exner function � �/C

b. Distances used in denominator of pressure
gradient force

�XPGFJ � R�� � cos2��� d��� cos��� d�

�YPGFJ�1�2 � R��J�1 � �J�

�J � � �cos��� d��� cos��� d�

� area-weighted latitude of a primary
grid cell

Integrals are performed from southern edge to north-
ern edge of primary grid cells.

c. Discrete three-dimensional prognostic variables
defined on primary grid cells

M (kg) � mass
H0(J kg�1) � mean potential specific enthalpy

HZ(J kg�1) � vertical gradient of potential specific
enthalpy times M/2
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d. Derived quantities defined on primary grid
columns

m (kg m�2) � continuous downward vertical
coordinate derived from M

M (kg m�2) � mean value of m in cell
P (Pa) � continuous pressure � Gm

� � continuous exner function � (P/P0)�

B � mass-weighted � in cell
H (J kg�1) � potential specific enthalpy that is

continuous within each cell � H0 �
2HZ(m � M)/M

E (J kg�1) � specific enthalpy that is continuous
within each cell � H(P/P0)�

E (J kg�1) � mass-weighted value of E in cell
T (K) � temperature that is continuous within

each cell � E/C
� (m3 kg�1) � specific volume from equation of state

that is continuous within each cell
Z (m) � continuous geopotential height above

mean sea level by integrating the
atmospheric geostrophic assumption

Z (m) � mass-weighted value of Z in cell
Atmospheric equation of state: P � �T/�

Atmospheric geostrophic assumption: �ZG � ���P

e. Equivalent forms of the pressure gradient
force

�
P�
X � 
ZG�
X � 
�E � ZG��
X � �P�P0��
H�
X

�C.1�

f. Change in U by pressure gradient force

��UI�1�2, J�

� �dtfiltered�EI�1, J � EI, J � G�ZI�1, J � ZI, J�

� �H0I�1, J � H0I, J��BI�1, J � BI, J��2��XPGFJ

�C.2�

Polar filter is applied to pressure gradient force in east–
west direction.

g. Change in V by pressure gradient force

��VI, J�1�2� � �dt�EI, J�1 � EI, J � G�ZI, J�1 � ZI, J�

� �H0I, J�1 � H0I, J��BI, J�1

� BI, J��2��YPGFJ�1�2 �C.3�
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