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ABSTRACT

A new algorithm is proposed to predict the level of rainfall (above normal, normal, and below normal)
in Puerto Rico that relies on probability and empirical models. The algorithm includes a theoretical prob-
ability model in which parameters are expressed as regression equations containing observed meteorologi-
cal variables. Six rainfall stations were used in this study to implement and assess the reliability of the
models. The stations, located throughout Puerto Rico, have monthly records that extend back 101 yr. The
maximum likelihood method is used to estimate the parameters of the empirical probability models. A
variable selection (VS) algorithm identifies the minimum number of variables that maximize the correlation
between predictors and a predictand. The VS algorithm is used to identify the initial point and the maximum
likelihood is optimized by using the sequential quadratic programming algorithm. Ten years of cross
validation were applied to the results from six stations. The proposed method outperforms both climatology
and damped persistence models. Results suggest that the methodology implemented here can be used as a
potential tool to predict the level of rainfall at any station located on a tropical island, assuming that at least
50 yr of monthly rainfall observations are available. Model analyses show that meteorological indices can
be used to predict rainfall stages.

1. Introduction

Puerto Rico (PR), part of the Greater Antilles island
chain, is located in the northeastern Caribbean Sea.
Precipitation is primarily affected by troughs imbedded
in easterly waves during summer months and cold
fronts during winter months. The lowest amount of pre-

cipitation in PR occurs from December to March. The
rainy season is characterized by two peaks, usually oc-
curring during May and September.

A few researchers have attempted to simulate and
predict the rainfall process in Puerto Rico. Comar-
azamy (2001) successfully used the regional atmo-
spheric modeling system (RAMS) to simulate monthly
rainfall over Puerto Rico during April 1998, which was
an unusually wet month. However, RAMS failed to
simulate the rainy season (i.e., August and September)
because it was difficult to correct for initial soil mois-
ture conditions.
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Carter and Elsner (1997) used factor analysis to iden-
tify regions of mesoscale rainfall variance in nontropi-
cal storm convective rainfall (hurricanes and tropical
storms were removed from the dataset). They analyzed
15 yr (1973–88) of data to regionalize Puerto Rico.
They also extracted surface daily data during 3 yr
(1977–79) and applied a partially adaptive classification
tree to predict the occurrence of heavy rainfall events.
Instead of predicting the exact rainfall amounts, they
predicted the occurrence of light or heavy rainfall. Be-
cause their results were inconclusive, they pointed out
that their statistical model should include satellite and
radar products to improve tropical rainfall forecasts.

Carter (1999) also used factor analysis to identify
convective rainfall regions in Puerto Rico that are sta-
tistically independent and describe similar rainfall vari-
ance. He conducted, in real time, an area-averaged 24-h
quantitative precipitation forecast experiment over
three 6-week periods in 1998. He found that his fore-
casts for heavy rain events were better than operational
forecasts because of the absence of value-induced bias.

For this work, we plan to predict rainfall on a
monthly basis using 101 yr of monthly information from
6 stations. The major forcing factors that modulate rain-
fall patterns in PR are identified by using a variable
selection algorithm. The method is based on probability
and empirical models. The parameters of the dynamic
probability model are changing with time while the
mathematical structure of the probability model re-
mains unchanged. Parameters of the probability model
are estimated at every point in time by using empirical
functions that establish the relationship between a ran-
dom vector that belongs to the probability model and a
set of time series that are sequences of climatological
observations. In time series literature, the empirical
functions are known as lagged regression or transfer
function models (Brockwell and Davis 2002; Box and
Jenkins 1976; Pandit and Wu 1983; Wei 1990). A math-
ematical relationship between the dynamic probability
model and the empirical functions is derived after tak-
ing the first moment of both the probability and the
empirical models. Thus, the parameters of the dynamic
probability model become a set of empirical functions.

The success of the probability model is highly depen-
dent on the variable selection algorithm. If the appro-
priate variables are selected for an algorithm, then the
probability model will provide reasonable probability
forecasts. An algorithm for variable selection is intro-
duced in this paper where the amount of predictors is
larger than the number of observations. The algorithm
is based on three regression concepts: parsimonious
principle, stepwise selection, and multicollinearity

problem. The principle of the algorithm is to divide the
original set of predictors into smaller groups and to
perform variable selections in each group. The vari-
ables that best explain the underlying predictand are
selected by using the stepwise technique in such a way
that the multicollinearity problem is avoided. The final
estimates are obtained by applying the maximum like-
lihood (ML) method, which is used to estimate the pa-
rameters of the dynamic probability model. This is be-
cause ML estimates are asymptotically efficient, are in-
variant under linear transformations, and have a
smaller mean-square error than other competing esti-
mators (Bickel and Doksum 1977; Mood et al. 1974).
The resulting estimation task consists of solving a con-
strained nonlinear optimization problem consisting of
two parts. The first step is to select an appropriate ini-
tial point. The second step is to apply the sequential
quadratic programming (SQP) algorithm to solve the
constrained nonlinear optimization problem (Reklaitis
et al. 1983; Bazaraa et al. 1993). If an initial point is
carefully selected, then the nonlinear algorithm will
converge to a satisfactory local maximum to assure that
the appropriate parameters of the probability model
are obtained. The dynamic probability model and the
empirical regression equations are used to compute the
probability that at a given station and a particular
month, the rainfall level will be in one of the following
stages: exceeds normal, equals normal, and below nor-
mal. Following a similar idea of Carter and Elsner’s
(1997), instead of predicting the exact rainfall amounts,
we are predicting the occurrence of rainfall levels. Pre-
dicting the exact amount of rainfall at each station is
extremely difficult since the amount of rainfall depends
of the interaction of local thermodynamical informa-
tion, which is not available for centenary records.

The observed data and meteorological indices are
described in section 2. The dynamic probability model
is introduced in section 3, where the variable selection
algorithm and empirical models are also described. Sec-
tion 4 presents a numerical example describing the ma-
jor details of the prediction scheme. Section 5 summa-
rizes the cross-validation results, and the conclusions
are presented in section 6.

2. Data

The precipitation data used for this study come from
six Puerto Rico weather stations: Coloso, Isabela,
Manati, Maunabo, Mayagüez, and San Juan (Fig. 1).
The station records were provided by the National Oce-
anic and Atmospheric Administration–Cooperative In-
stitute for Research in Environmental Sciences
(NOAA–CIRES) Climate Diagnostics Center and by
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the Puerto Rico Climatology Office. The weather sta-
tion records are from 1901 to 2001 and are resolved into
monthly observations organized into 12 variables. In
addition, five well-known meteorological indices
(Table 1) were chosen as possible predictors of Puerto
Rican precipitation variability: North Atlantic Oscilla-
tion (NAO; Hurrell 1995), Artic Oscillation (AO;
Thompson and Wallace 1998), Southern Oscillation in-
dex (SOI; Trenberth 1984), Sahel Rainfall index (SRI;
Janowiak 1988), and Brazil Rainfall index (BRI; Ward
and Folland 1991). Gray et al. (2005) have shown that
NAO, ENSO, AO, and SRI are correlated with the
climate conditions in the North Atlantic basin and that
the upper air data associated with the northeastern Bra-
zilian region exhibit superior hindcast prediction skill
over previous models. Taylor et al. (2002) show that
interannual variability in the early season is influenced
strongly by anomalies in the sea surface temperatures
of the tropical North Atlantic, with positive anomalies
over a narrow latitudinal band (0°–20°N) being associ-
ated with enhanced Caribbean rainfall. Also, a study by
Malmgren et al. (1998) showed a close relation between
NAO and PR rainfall over a period of nearly 100 yr.

3. Methodology

The proposed prediction scheme was divided into
monthly bins and into three precipitation categories:

above normal (�90th percentile), equal to normal (be-
tween 10th and 90th percentile), and below normal
(�10th percentile). These stages are given the terms
excess, normal, and scarce, respectively. A graphical
display of the prediction technique is shown in Fig. 2.

TABLE 1. Meteorological variables. The first column indicates
the number of the variable and the second column indicates the
variables used in this work. The first 12 variables represent local
information from the stations and the last 5 variables are meteo-
rological indices that were used to correlate with the rainfall pro-
cess at each Puerto Rican station.

No. Variable name

1 Monthly rainfall at Coloso
2 Monthly rainfall at Isabela
3 Monthly rainfall at Manati
4 Monthly rainfall at Maunabo
5 Monthly rainfall at Mayagüez
6 Monthly rainfall at San Juan
7 Monthly average air temperature at Coloso
8 Monthly average air temperature at Isabela
9 Monthly average air temperature at Manati

10 Monthly average air temperature at Maunabo
11 Monthly average air temperature at Mayagüez
12 Monthly average air temperature at San Juan
13 North Atlantic Oscillation
14 Arctic Oscillation index
15 Sahel rainfall index
16 Northeast Brazil rainfall index
17 Southern Oscillation index

FIG. 1. Map of PR pointing out the location of the six stations. The numbers included on the map indicate the station locations and
the names of the stations are listed on the upper right-hand side.
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a. Predicting a rainfall stage

Each of the stages is a mutually exclusive event and
therefore the rainfall processes can be represented by a
stochastic sequence. The stage of a single month for a
particular year can be modeled by the multivariate Ber-
noulli distribution.

A random vector at time t, Yt, has the multivariate
Bernoulli distribution if its probability mass function
can be written as follows:

f�y1,t , y2,t , . . . , yu,t � � p1,t
y1,t p2,t

y2,t · · · pu,t
yu,t,

t � 1, . . . , n, �1�

�
k�1

u

yk,t � 1, �
k�1

u

pk,t � 1, t � 1, . . . , n,

�2�

yk,t � 0, 1 and pk,t � 0, k � 1, . . . u

and t � 1, . . . , n, �3�

where u is the number of stages, n is the number of
available observations, and pk,t is the probability of suc-
cess that the random variable yk,t is at the k th stage at
time t.

Since at any given month the rainfall process is de-
fined by three mutually exclusive stages, its probability
mass function can be written as follows:

f�y1,t , y2,t, y3,t � � p1,t
y1,t p2,t

y2,t p3,t
y3,t t � 1, . . . , n �4�

1 � y1,t � y2,t � y3,t ,

1 � p1,t � p2,t � p3,t ,

yk,t � 0, 1 pk,t � 0 for k � 1, 2, 3

t � 1, . . . , n, �5�

where

y1,t � �1, if ri,t � qi,2

0, otherwise
y2,t � �1, if ri,t � qi,1

0, otherwise

y3,t � �1, if qi,1 � ri,t � qi,2

0, otherwise.
�6�

The variable ri,t is the amount of rainfall for the ith

station at month t, qi,1 is the rainfall 10th percentile for
the ith station, qi,2 is the rainfall 90th percentile for the
ith station, and pk,t are the parameters of the multivari-
ate Bernoulli (MB) distribution and each one repre-
sents the probability that the rainfall in the t th month is
in the k th stage. In this work, it is assumed that 10% of
the rainfall events are in excess, 80% are normal, and
10% are scarce.

The parameters of the MB distribution will change
through time, and consequently the parameters of the
distribution could be expressed by climatological vari-
ables, which also change through time. Therefore, the
dynamics of the probability model are captured by ob-

FIG. 2. The general prediction scheme. The MB distribution is used to identify the probability of rainfall stage,
which would be excess, normal, or scarce.
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serving climatological variables. Empirical models are
needed to express the relationship between the param-
eters of the probability model and the observed clima-
tological variables. Probabilistic forecast has been tra-
ditionally based on logistic regression (Chiu and Ke-
dem 1990; Gahrs et al. 2003; Wilson 2004). Recently,
Sohn et al. (2005) compared four methods (linear re-
gression, logistic regression, neural networks, and deci-
sion tree) to predict the occurrence of heavy rainfall
events in Korea. They found that logistic regression
provides the best validation results. Gahrs et al. (2003)
also found that logistic regression is significantly more
skillful than linear regression. Based on these results,
the following empirical models were postulated to es-
timate the parameters of the dynamic probability
model:

yk,t �
1

1 � e��k,t
� �k,t , k � 1, 2, 3 t � 1, . . . , n,

�7�

where

�k,t � a0,t,k � �
�sj,t,gj�∈Ak

aj,t,kzs,t�gj
� �k,t ,

k � 1, 2, 3, t � 1, 2, . . . , n, j � 1, 2, . . . , np,

gj � 1, 2, . . . , 24, and sj � 1, 2, . . . , nv, �8�

where zsj,t�gj
is the s th meteorological variable with a

subscript that belongs to set Ak. The selected meteoro-
logical variables are listed in Table 1. Here, Ak is a set
of subscripts for the kth stage defined as follows: sj

represents the variable name, t indicates the month, gj is
the time lag in months, nv is the total number of vari-
ables, np is the number of predictors in a specific equa-
tion, and n is the number of available observations. In
this study, there is no physical argument to justify the
lags used in the model. However, a high correlation
identified in a predictor with a particular lag is an in-
dication that there is a probability that the underlying
lag has a physical mechanism, which may need further
studying. The elements of the set Ak correspond to the
variables that significantly contribute to explain the
variability of yk,t, which is a sequence of Bernoulli vari-
ables defined by Eq. (6). The constant aj,t,k is the j th

regression coefficient at the i th month and at the k th

stage, and 	k,t is a sequence of independent random
variables with mean zero and constant variance. The
success of the proposed model relies on the identifica-
tion of meteorological variables that are highly corre-
lated with the behavior of the Bernoulli variables. A
variable selection procedure is proposed in this study
and is presented at the end of this section.

Model 4 is a probability representation of a rainfall
stage for a given month, and model 7 is an empirical
representation of the same stage. Therefore, it is expe-
dient to express a relationship between the empirical
and the probability models to derive a parameter rela-
tionship between each model. This relationship is ob-
tained by determining the first moment of both empiri-
cal and probability models. The first moment of the
probability model is obtained as follows:

E�Yt� � � Yt f �Yt�

� 
1 0 0� f �1, 0, 0� � 
0 1 0� f �0, 1, 0�

� 
0 0 1� f �0, 0, 1�

�
p1,t p2,t p3,t � ,

where E is the mathematical expectation operator.
Thus, it follows that

E�yk,t� � pk,t k � 1, 2, 3, t � 1, . . . , n. �9�

The expected value of the random variable yk,t given
a set of meteorological variables (z) can be written as
follows:

E�yk,t |z� �
1

1 � e��k,t
, k � 1, 2, 3, t � 1, . . . , n.

�10�

Therefore, assuming that historical information of
meteorological variables is known up to time t, the re-
lationship between the empirical model and the prob-
ability model can be expressed as follows:

pk,t �
1

1 � e��k,t
, k � 1, 2, 3, t � 1, . . . , n. �11�

The parameters of the dynamic probability model are
estimated by using the maximum likelihood method.
The maximum likelihood function for the MB distribu-
tion is as follows:

L�p� � �
t�1

n

p1,t
y1,t p2,t

y2,t p3,t
y3,t �12�

1 � y1,t � y2,t � y3,t , yk,t � 0, 1,

1 � p1,t � p2,t � p3,t, and pk,t � 0 for

k � 1, 2, 3, t � 1, . . . , n. �13�

Maximizing the function [Eq. (12)] is equivalent to
maximizing its natural log. Using Eq. (11), the maxi-
mum likelihood estimators for a can be obtained after
maximizing the following expression:
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J�â� � �
t�1

n �y1,t ln� 1

1 � e��̂
1,t
� � y2,t ln� 1

1 � e��̂
2,t
�

� y3,t ln� 1

1 � e��̂
3,t
�� �14�

subject to

1

1 � e��̂
1,t

�
1

1 � e��̂
2,t

�
1

1 � e��̂
3,t

� 1, �15�

where

�̂k,t � â0,t,k � �
�sj,t,gj�

âj,t,kzsj, t�gj
. �16�

The variables 
̂k,t and âj,t,k are the estimates of 
k,t and
aj,t,k , respectively.

b. Parameter estimation

The constrained nonlinear optimization problem was
solved by using a two-step strategy. The first step con-
sists of applying a variable selection algorithm to iden-
tify the predictors that best correlate with the state vari-
ables, yk,t. The best predictors are used to generate the
appropriate initial point that guarantees that the non-
linear optimization algorithm will converge to a satis-
factory local maximum. The first step is always the key
in deriving a reasonable solution and consists of obtain-
ing a unique initial point, which is derived by fitting a
linear regression model. The second step consists of
using a nonlinear optimization algorithm to estimate
the parameters of the MB distribution.

1) VARIABLE SELECTION ALGORITHM

A suitable requirement for an empirical model is that
it (i) accomplishes the parsimonious principle, (ii)
maximizes the explained variability, and (iii) does not
exhibit the multicollinearity problem. The parsimoni-
ous principle consists of selecting the smallest number
of predictors that maximize the correlation between the
predictors and predictand. The multicollinearity prob-
lem occurs when the predictors are approximately lin-
early dependent, resulting in large increments in the
variance of the predictors. It should be noted that the
multicollinearity problem will produce extremely poor
regression coefficients and consequently misleading
predictions even though R2 is close to one, where R2 is
the proportion of variability explained by the regres-
sion model and is usually known as the coefficient of
multiple determination (Montgomery et al. 2001).
Thus, if the multicollinearity problem is present, it must
be removed before a prediction is computed. Removing
this problem eliminates redundant information, conse-

quently decreasing the variance of the prediction (i.e.,
only efficient estimators will be selected).

The variable selection (VS) algorithm, which is in-
troduced in this study, selects a model that meets the
previous characteristics. This algorithm is general, al-
though it is especially useful for the cases where there
are more predictors than observations. The VS algo-
rithm includes three major steps.

(i) Step 1

The first step consists of designing the number of
subgroups that will be created in a given dataset. The
number of subgroups should be selected in such a way
that the number of predictors included in each group
provides enough degrees of freedom to properly esti-
mate the regression coefficients in each group. The
number of predictors in each group is called the group
size. An empirical rule consists of selecting the integer
number of the following ratio:

gs �
n

3
, �17�

where gs is the group size and n is the total number of
observations. It should be noted that the degree of free-
dom, df, associated with errors in the regression model
is df � (2n � 3)/3.

The group size is often larger than the required size;
however, the group size will also be controlled by the
multicollinearity rule (step 3).

(ii) Step 2

The second step uses the stepwise algorithm to select
the best predictors from each group (Montgomery et al.
2001). The mean square error (MSE) for each group is
computed and the group that exhibits the minimum
MSE is selected. The variables from a group that pro-
vides the minimum MSE (MSEmin) will be called the
winner variables. The best variables from each group
that does not contain the winner set are studied to de-
termine whether or not they can improve the winner
variable set. The winner variables will join the best pre-
dictors from a no-winner set (one at a time), and the
stepwise procedure is used again to determine whether
or not the MSE associated with these variables is
smaller than the MSEmin. If that is the case, the MSEmin

is replaced by the new MSE and the winner variable set
is also updated. This process is repeated over and over
until all no-winner variable sets have been tested.

(iii) Step 3

The third step consists of testing whether or not the
multicollinearity problem is present in the winner
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dataset. Compute the eigenvalues of the Z matrix,
where Z � z�z and z is a matrix whose columns are the
predictors defined in Eq. (8). Compute the index num-
ber, ixn, as follows:

ixn �
�max

�min
, �18�

where �max and �min are the maximum and the mini-
mum eigenvalues of the Z matrix, respectively. An em-
pirical rule indicates that the multicollinearity problem
is present when ixn � 100 (Montgomery et al. 2001).

The multicollinearity problem can be solved by using
ridge regression, principal components, or by removing
redundant predictors. The last technique was imple-
mented in this research to conform to the parsimonious
principle and it can be described as follows. Let � be the
eigenvector associated with the minimum eigenvalue,
�min. It can be stated that the dimension of the � vector
corresponds to the number of predictors included in the
regression model. The locations of the predictors in the
regression model are associated with the � elements.
Thus, the first element of � is associated with the first
predictor of the regression model, the second element
of � is associated with the second predictor of the re-
gression model, and so on. The predictor that will be
removed is the one that corresponds to �max, where �max

is the maximum absolute value of the elements of �.
The variables that do not exhibit the multicollinearity
problem will be the final winner variables for the un-
derlying group. The winner variables provide the ele-
ments of the initial point for the nonlinear optimization
routine.

The initial point is a vector that includes the regres-
sion coefficients, a, from three stages (excess, normal,
and scarce). It should be mentioned that the initial
point selected by the VS algorithm is a unique point
and consequently causes the optimization routine to
converge at the same local maximum, assuming that the
predictors are physically related to the predictand.

If the underlying regression equation is linear, no
additional work is needed to create the initial point.
However, in this case, the regression Eq. (7) is not lin-
ear and consequently an additional computation is re-
quired since the stepwise algorithm works only with
linear regression equations. The strategy proposed here
is to use the observed rainfall in each month to estimate
pk,t and to use Eq. (11) to estimate 
k,t. Once the esti-
mates of 
k,t are developed, the best predictors will be
selected using the linear regression Eq. (8) and the step-
wise approach.

Since the precipitation can fall in any of the three
different stages, the estimation procedure includes

three different cases. Let us define the following
variables: Li,0 � min(ri,t, t � 1, . . . , n, i � 1, . . . , 6),
Ui,0 � max(ri,t, t � 1, . . . , n, i � 1, . . . , 6) and qi �
(qi,1 � qi,2)/2. It should be noted that the variable ri,t

was introduced in Eq. (6).

(iv) Excess stage case

If for a given month the precipitation falls in the
following range—qi,2 � ri,t � Ui,0—then the estimates
of 
k,t can be obtained as follows:

p̂1,t � 0.5 �
0.5

Ui,0 � qi,2
�ri,t � qi,2�, �19�

p̂3,t � �1 � p̂1,t�p̂1,t , p̂2,t � �1 � p̂1,t�
2, and

�̂k,t � ln� p̂k,t

1 � p̂k,t
�, k � 1, 2, 3. �20�

(v) Normal stage case

If for a given month the precipitation falls in the
following range—qi,1 � ri,t � qi—then the estimates of

k,t can be obtained as follows:

p̂3,t � 0.5 �
0.5

qi � qi,1
�ri,t � qi,1�, �21�

p̂2,t � �1 � p̂3,t�p̂3,t , p̂1,t � �1 � p̂3,t�
2, and

�̂k,t � ln� p̂k,t

1 � p̂k,t
�, k � 1, 2, 3. �22�

If for a given month the precipitation falls in the
following range—qi � ri,t � qi,2—then the estimates of

k,t can be obtained as follows:

p̂3,t � 0.5 �
0.5

qi,2 � qi
�qi,2 � ri,t�, �23�

p̂1,t � �1 � p̂3,t�p̂3,t , p̂2,t � �1 � p̂3,t�
2, and

�̂k,t � ln� p̂k,t

1 � p̂k,t
�, k � 1, 2, 3. �24�

(vi) Scarce stage case

If for a given month the precipitation falls in the
following range—Li,0 � ri,t � qi,1—then the estimates of

k,t can be obtained as follows:

p̂2,t � 0.5 �
0.5

qi,1 � Li,0
�qi,1 � ri,t�, �25�

p̂3,t � �1 � p̂2,t�p̂2,t , p̂1,t � �1 � p̂2,t�
2, and

�̂k,t � ln� p̂k,t

1 � p̂k,t
�, k � 1, 2, 3. �26�
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2) NONLINEAR OPTIMIZATION ALGORITHM

The sequential quadratic programming (SQP) algo-
rithm was used to estimate the parameters of the con-
strained nonlinear optimization problem given by Eqs.
(14) and (15). The SQP algorithm approximates the
objective function by a quadratic function and the con-
straints by a linear function. In this case, the underlying
constraints are linear, that is, the approximation was
computed only in the objective function. Once the ini-
tial point is selected and the approximation is complete,
the quadratic problem is solved by using Wolfe’s sim-
plex method (Bazaraa et al. 1993; Winston 2004). The
next point is considered a new initial point, and a new
approximation is developed and solved. This process is
repeated over and over in a sequential fashion until a
maximum local is found. The implementation of the
SQP algorithm is facilitated by using Matlab software
(MathWorks 2000). Once the optimal solution is found,
Eq. (7) is evaluated to predict the rainfall stage (excess,
normal, or scarce).

4. Numerical example

A computer program was developed to model the
rainfall processes of six stations located in PR. Ninety-
one years of monthly observations (1901–91) were used
as reference information and the last 10 yr of data
(1992–2001) were employed to perform model valida-

tion. A numerical example is computed to illustrate the
suggested methodology.

The proposed prediction scheme develops a model at
every month and for every station. The Mayagüez sta-
tion for January 1992 was arbitrarily selected to illus-
trate the model building and the optimization proce-
dure. The algorithm starts by computing an initial point
to solve the nonlinear problem. The initial point con-
sists of finding an appropriate set of a values that guar-
antee convergence to a satisfactory local maximum.
The 10 and 90%s were selected to define the stages of
every month. Figure 3 shows 101 yr of precipitation at
the Mayagüez station for the month of January; the
upper horizontal line exhibits the 90% and the lower
line shows the 10%. If the amount of rain is less than
0.52 inches per month, between 0.52 and 3.51 inches, or
greater than 3.51 inches, the stage of the month will be
considered scarce, normal, or in excess, respectively.

The procedure starts by computing the gamma values
(
k,j) using Eqs. (19)–(26). Three linear models have
been developed having the form expressed by Eq. (8).
The VS algorithm identifies the predictors that best
correlate with a given predictand. Since the available
information is very limited, several lags and mathemati-
cal transformations are explored to increase the possi-
bility of identifying appropriate models. Twenty-four
lags and five mathematical transformations were ex-
plored (linear, squared, exponential, sinusoidal, and in-
verse). Thus, the total number of possible predictors is

FIG. 3. Rainfall for the Mayagüez station to illustrate the numerical example. The lower horizontal line
is the 10th percentile and corresponds to 0.52 in. of rain and the upper horizontal line is the 90%
associated with 3.51 in. Any amount of rainfall that falls (during January at the Mayagüez station)
between 0.52 and 3.51 in. represents a normal stage. Any observation that falls above 3.51 in. is declared
an excess stage and any observation that falls below 0.52 in. is called a scarce stage.
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17 original variables, 24 lags, and 5 mathematical trans-
formations to each original variable. This turns out to
be 2040 potential predictors. The inputs to the VS al-
gorithm are one predictand (
k,j) and 2040 predictors.
The algorithm develops a model for each month and
uses 91 yr of data for model building (i.e., each variable
has 91 observations). However, 88 observations are
used to build the model since 3 observations were
dropped because of the lag calculation. The variable
selection algorithm creates groups of size gs � 88/3 �
29.33. The group size was 29 and the total number of
groups of that size was 70; there was a single group of
size 10. The stepwise algorithm and the multicollinear-
ity subroutine were applied to identify the best vari-
ables. Thus, for the excess stage, 3 predictors out of the
2040 were identified as the winner predictors that best
express the gamma values associated with the excess
stage. Similarly, the routine for the VS algorithm was
applied with different predictands and it identified 6
and 2 winner predictors for scarce and normal stages,
respectively. The VS algorithm identified the following
three models for the Mayagüez station to predict the
rainfall stage for January 1992:

• Model for excess stage—

�1,t � a0,t,1 � a1,t,1ez3, t�20

� a2,t,1
sin�z10,t�16� � cos�z10,t�16��

� a3,t,1
sin�z7,t�2� � cos�z7,t�2�� � �1,t.

�27�

The subscript t represents the time at which the
prediction is made, that is, observations are known
for time equal to 1, 2, . . . , t. Thus, t � 12 � 91 � 1092
represents December 1991 and indicates that this is
the most recent information that can be used to pre-
dict January 1992. The variable z3,t�20 has two sub-
scripts; the first one represents the number of the
variable that is listed in Table 1 and the second sub-

script represents the time after the lag is imple-
mented. The a coefficients from Eq. (27) represent
the first set of coefficients of the initial point, and the
complete initial point is given in Table 2. The variable
�1,tis the random noise with mean zero and constant
variance.

• Model for scarce stage—

�2,t � a0,t,2 � a1,t,2z14,t�15
2

� a2,t,2
sin�z15,t�9� � cos�z15,t�9��

� a3,t,2
sin�z5,t�19� � cos�z5,t�19��

� a4,t,2z17,t�24
2 � a5,t,2z16,t�2

2

� a6,t,2z17,t�1 � �2,t. �28�

• Model for normal stage—

�3,t � a0,t,3 � a1,t,3
sin�z12,t�13� � cos�z12,t�13��

� a2,t,3z7,t�11
2 � �3,t. �29�

The coefficients for a from these three models cor-
respond to the initial point of the problem described
by Eqs. (14)–(16). This optimization problem is
solved by using the SQP algorithm. The initial and
optimal points are shown in Table 2. The SQP algo-
rithm converged after 184 iterations and the behavior
of the ML function during the constrained optimiza-
tion is given in Fig. 4. The ML function starts with a
reasonable initial point reaching a value of �67.5 and
after 64 iterations increases to a maximum of �54.6;
however, at this point, the set of constraints is unfea-
sible. The algorithm continues for 184 iterations
when the optimum and feasible point is reached with
an ML function equal to �57. It should be mentioned
that constraints are stabilized after 100 iterations, in-
dicating that all the constraints are satisfied and have
converged to a stable and reasonable value.

TABLE 2. Initial and optimal point of the sequential quadratic programming algorithm. This table shows the optimization perfor-
mance for the Mayagüez station for predicting January 1992 and shows the initial and optimal points obtained after conducting 184
iterations of the SQP algorithm. The first three columns show the parameters, initial point, and optimal point for the excess stage.
Columns 4–6 and 7–9 show the same for the scarce and normal stages, respectively.

Excess stage Scarce stage Normal stage

Parameter
Initial
value

Optimal
value Parameter

Initial
value

Optimal
value Parameter

Initial
value

Optimal
value

a0,1,t 1.6598 �0.675 42 a0,2,t �2.3253 �2.0637 a0,3,t 0.973 95 1.5498
a1,1,t �0.054 89 0.02397 a1,2,t 0.434 45 0.124 04 a1,3,t �0.226 99 �0.021 99
a2,1,t �1.1242 �0.491 56 a2,2,t 0.384 34 �0.005 07 a2,3,t �1.5695 �0.466 97
a3,1,t 0.355 04 0.061 31 a3,2,t �0.267 49 �0.026 59

a4,2,t 0.301 56 0.0619 15
a5,2,t 0.064 614 0.025 443
a6,2,t �0.316 99 0.086 686
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Once the optimal parameter set is obtained, the mod-
els [Eqs. (27)–(29)] are evaluated at time t � gj � L,
where t is the time when the forecast is made, gj is the
identified lag to the j th predictor, and L is the lead time.
Table 3 shows the winner predictors evaluated at time
t � gj � L. Thus, Eqs. (27)–(29) are evaluated with
optimal values of a at time t � gj � L and provide the
following results: 
̂k,t�L � 
̂1,1093 � �1.1992, 
̂2,1093 �
�1.6835, and 
̂3,1093 � 0.446 16. Finally, the predicted
probability of being in a particular stage is computed by
evaluating the following equations:

• Predicted probability of being in the excess stage in
January 1992—

ŷ1,1093 �
1

1 � e��̂
1,1093

�
1

1 � e1.1992 � 0.2316. �30�

• Predicted probability of being in the scarce stage in
January 1992—

ŷ2,1093 �
1

1 � e��̂
2,1093

�
1

1 � e1.6835 � 0.1566. �31�

• Predicted probability of being in the normal stage in
January 1992—

ŷ3,1093 �
1

1 � e��̂
3,1093

�
1

1 � e�0.44616 � 0.6097. �32�

Based on the information from 1901 to December 1991,
it is predicted that the Mayagüez station will be in the
normal stage in January 1992, with a probability of
0.6097.

5. Cross validation

The prediction skills of the proposed scheme are as-
sessed by means of cross validation. Essentially, 91 yr of
data (1901–91) were used to develop forecast models
and the last 10 yr (1992–2001) were used to validate the
models. The validation of a model consists of compar-
ing the forecasts with observations. Since the stage of a
month is modeled by a multivariate Bernoulli distribu-
tion, the involved random variables are discrete and
consequently the prediction accuracy of the stage can
be studied by analyzing contingency tables. The valida-
tion process also includes the relative comparison of
our model performances with a reference model that is
known as the damped persistence model (Murphy
1992). The accuracy of the relative comparison is usu-
ally presented by using a specific skill score.

The typical scores that measure the accuracy of cat-
egorical forecasts are hit rate (H), probability of detec-
tion (POD), false-alarm rate (FAR), and bias (B). Hit
rate is the fraction of the n forecasting occasions when
the categorical forecast correctly anticipated the subse-
quent event or nonevent. Probability of detection is the
likelihood that the event would be forecast, given that
it occurred. The false-alarm rate is the proportion of
forecast events that fails to materialize. Bias is the com-
parison of the average forecast with the average obser-
vations and is computed by the ratio of the average
forecast with respect to the average of observations
(Wilks 1995).

A three-way contingency table is used to validate the
probability prediction scheme and includes the true
stage and the predicted stage when the lead time pre-

FIG. 4. The ML function. This figure represents the behavior of the objective function
during the optimization process. The initial point starts at �68.5 and at the 64th iteration
finds the maximum value. However, this solution is not feasible. The algorithm continues
searching until it finally reaches the value of �57, and this is the feasible and optimal
solution, which was obtained at iteration 184.
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diction is one month. When the true stage coincides
with the predicted stage, the event is declared as a hit
score; otherwise it is considered a failure. The POD and
FAR scores include dichotomous yes/no forecast situ-
ations and consequently demand a conversion from
three-way to two-way tables (Wilks 1995). Table 4 pre-
sents three-way contingency tables (one for each rain-
fall station) comparing the predicted stages versus the
true stages. Transformation of the three-way tables into
two-way contingency tables is not shown because of
space limitations; however, results from the two-way
tables such as POD, FAR, and B associated with each
stage are also shown in Table 4. The outcomes from the
six contingency tables were added to create a single
contingency table that contains the total scores from
the six stations. The 3 � 3 contingency table that con-
tains the total scores will be called the total contingency
table and reveals the overall performance of the fore-
casting scheme. Thus, the total contingency table pro-
vides the overall hit rate from the 6 stations during the
10-yr validation period. This hit rate value indicates
that 85% of the time, the algorithm properly predicted
the stages of the rainfall. The overall probabilities of
detection were 0.52, 0.95, and 0.56 for the excess, nor-
mal, and scarce stages, respectively. The algorithm cor-
rectly predicts about 52% of the time when the stage is
in excess, 56% of the time in scarce stage, and about
95% of the time when the process is in the normal
stage. The false-alarm rates were 0.21, 0.12, and 0.28 for
the excess, normal, and scarce stages, respectively.
These results indicate that about 28% of the time or
less, the algorithm predicts that the rainfall would be in
a given stage when in reality a different stage has oc-
curred. The bias scores were 0.65, 1.08, and 0.78 for the
excess, normal, and scarce stages, respectively. Bias re-
sults indicate that the forecasts of the scarce and excess
stages are underpredicted, whereas the forecasts of the
normal stages show a small overprediction.

To compare the empirical probability model with a
reference model, the forecasts were computed for the
damped persistence model (Murphy 1992). The amount
of predicted rainfall for each month was used to iden-
tify the prediction stage by using the 10th and 90th
percentiles in the corresponding month. Based on the
sequences of the predicted and observed stages, the 3 �
3 contingency tables for each station and the total con-
tingency table from all stations were developed and
analyzed.

Climatology forecasts were computed as the monthly
average of observed rainfall. The period of time to cal-
culate climatology changes from year to year since the
average was computed from data starting in 1901 and
ended up on the previous year of the prediction time, as
indicated in Eq. (34). Persistence forecasts were com-
puted by using either the observation of the previous
month to be predicted or the observation made 12
months ago. The forecast for the damped persistence
method uses a convex combination of the climatology
and persistence forecasts. Since the observation of the
previous month provides better forecasts than the one
12 months ago, the reported damped persistence
method in this work is based on the previous month.

The damped persistence forecast was computed us-
ing the following expression (Murphy 1992):

r̂dp,�	�1�12�m � 
r̂p,�	�1�12�m � �1 � 
�r̂cli,�	�1�12�m,

�33�

where

r̂cli,�	�1�12�m �
1

	 � 1 �
i�1

	�1

r�i�1�12�m and

r̂p,�	�1�12�m � r�	�1�12�m�d �34�

	 � 2, 3, . . , 101, d � 1, 12,

m � 1, 2, . . . , 12, and 0 � 
 � 1,

TABLE 3. Predictors for probability stage. The original values of the predictors x are standardized by subtracting its mean and dividing
by its standard deviation z � (x � x)/s. The z values are transformed and evaluated at time t � gj � L, where t � 1092 and L � 1. The
z values are multiplied by the optimal a values to estimate the gammas and to be able to estimate the probability of each stage. A
routine to detect and fix the presence of outliers was implemented. This routine is critical, especially for the exponential and square
transformation.

Excess stage Scarce stage Normal stage

Predictor name
Predictor

value Predictor name
Predictor

value Predictor name
Predictor

value

ez3,t�20 1.7329 z2
14,t�15 0.3671 sin(z12,t�13) � cos(z12,t�13) �0.5075

sin(z10,t�16) � cos(z10,t�16) 1.6320 sin(z15,t�9) � cos(z15,t�9) 1.5337 z2
7,t�11 2.3873

sin(z7,t�2) � cos(z7,t�2) 3.8638 sin(z5,t�19) � cos(z5,t�19) 3.6435
z2

17,t�24 0.023
z2

16,t�2 2.8439
z17,t�1 4.2172
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where r̂dp,(��1)12�m is the amount of rainfall to be pre-
dicted by the damped persistence model at the � th year
and in the mth month. Here, r̂cli,(��1)12�m is the amount
of rainfall to be predicted by the climatology model at
the � th year and in the mth month and rt is the amount
of rainfall observed in the tth month. Also, r̂p,(��1)12�m

is the amount of rainfall to be predicted by the persis-

tence model at the � th year and in the mth month. The
subscript d represents either the observation from the
previous month or from 12 months ago. It should be
noted that the subscript for the station was dropped to
simplify the notation. The convex coefficient (�) was
obtained by minimizing the mean absolute prediction
errors.

TABLE 4. Three-way contingency tables describing the accuracy of the prediction scheme for each station and also a summary for all
stations. Each three-way contingency table can be converted into 3 two-way tables, which were omitted. However, the results from these
two-way tables are presented in terms of the following measurements: POD, FAR, and B, and these measurements are exhibited in the
last four columns. The hit rate for each station is also presented in the last row of each station. The last table shows the three-way
contingency table for the accumulation of scores from the six stations and the last four columns of the last table present results from
the two-way contingency table describing the overall performance of the prediction scheme. The overall hit rate for the six stations is
given in the last row of the table.

Station 1
Coloso

Obs Excess Normal Scarce

Excess Normal Scarce POD 0.38 0.94 0.55

Model Excess 3 3 1 FAR 0.57 0.14 0.14
Normal 5 85 9 B 0.87 1.10 0.63
Scarce 0 2 12 Hit rate � 0.83

Station 2
Isabela

Obs Excess Normal Scarce

Excess Normal Scarce POD 0.57 0.95 0.71

Model Excess 8 0 0 FAR 0 0.07 0.54
Normal 5 94 2 B 0.57 1.02 1.57
Scarce 1 5 5 Hit rate � 0.89

Station 3
Manati

Obs Excess Normal Scarce

Excess Normal Scarce POD 0.45 0.95 0.64

Model Excess 5 0 0 FAR 0 0.10 0.40
Normal 5 90 5 B 0.45 1.05 1.07
Scarce 1 5 9 Hit rate � 0.87

Station 4
Manuanabo

Obs Excess Normal Scarce

Excess Normal Scarce POD 0.58 0.95 0.55

Model Excess 7 0 0 FAR 0 0.14 0.27
Normal 5 84 9 B 0.58 1.11 0.75
Scarce 0 4 11 Hit rate � 0.85

Station 5
Mayagüez

Obs Excess Normal Scarce

Excess Normal Scarce POD 0.40 0.95 0.54

Model Excess 4 2 1 FAR 0.43 0.23 0.10
Normal 6 71 15 B 0.70 1.23 0.60
Scarce 0 2 19 Hit rate � 0.78

Station 6
San Juan

Obs Excess Normal Scarce

Excess Normal Scarce POD 0.80 0.95 0.45

Model Excess 4 1 0 FAR 0.20 0.07 0.44
Normal 1 99 6 B 1 1.02 0.82
Scarce 0 4 5 Hit rate � 0.90

All stations

Obs Excess Normal Scarce

Excess Normal Scarce POD 0.52 0.95 0.56

Model Excess 31 6 2 FAR 0.21 0.12 0.28
Normal 27 523 46 B 0.65 1.08 0.78
Scarce 2 22 61 Avg hit rate � 0.85
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The sequence of stages identified by the climatology
forecasts were compared with the observed sequence of
stages during the validation period, and the associated
contingency table is presented in Table 5. The pre-
dicted sequence of stages based on the damped persis-
tence forecast was computed and also provided the
same contingency table as the climatology forecasts.
Table 5 shows that the overall hit rate for either the
climatology or damped persistence forecast is equal to
0.77.

The relative comparison between the empirical prob-
ability and the reference models can be accomplished
by using a skill score (SS) that relates the hit rates of the
forecast methods. For instance, the hit rate between the
empirical probability model and damped persistence
model is given as follows:

SSdp �
Hemp � Hdp

Hperf � Hdp
�

.85 � .77
1 � .77

� 0.35, �35�

where Hdp, Hperf, and Hemp are the hit rates of the
damped persistence, the perfect, and the empirical fore-
casts, respectively. This result shows that the empirical
probability model exhibits an improvement of 35%
over both the climatology and the damped persistence.
The dynamic probability model has the capability of
counting the number of times that a particular predictor
belongs to the winner set. Thus, the contribution of
each predictor is measured by counting the number of
times that each variable belongs to the winner set. Re-
sults show that the selected meteorological indices can
be used as proxy variables that may help predict the
rainfall stages.

6. Conclusions

One of the major contributions of the present re-
search effort is to introduce probability models with
empirical functions that predict rainfall level at a given
station. These functions help to determine the param-
eters of the probability model with the use of historical
meteorological events. Since meteorological events
change over time and space, the probability model be-
comes dynamic. The multivariate Bernoulli distribu-
tion, introduced in this research, is used in conjunction
with empirical models to relate the parameter vector of
the probability model with observational atmospheric
phenomena. The success of the probability model is
highly dependent on the variable selection algorithm. If
the appropriate variables are selected for an algorithm,
the probability model will provide reasonable forecasts.
An algorithm for variable selection is proposed in this
paper where the amount of predictors is larger than the
number of observations. The algorithm is based on

three regression concepts: parsimonious principle, step-
wise selection, and multicollinearity problem. The al-
gorithm identifies the minimum number of variables
that maximize the correlation between predictors and a
predictand. The variable selection algorithm was used
to identify the initial point to induce convergence in the
sequential quadratic programming algorithm.

The model may not always predict the correct pre-
cipitation stage for a month. Ten years of cross valida-
tion, however, indicates that 85% of the time, the algo-
rithm properly predicted the correct rainfall stage. The
probability of detection was 0.52, 0.95, and 0.56 for ex-

TABLE 5. Contingency table for climatology forecasts.

Station 1 Obs
Hit
rateExcess Normal Scarce

Forecast Excess 0 0 0 0.75
Normal 8 90 22
Scarce 0 0 0

Station 2

Obs
Hit
rateExcess Normal Scarce

Forecast Excess 0 0 0 0.83
Normal 14 99 7
Scarce 0 0 0

Station 3

Obs
Hit
rateExcess Normal Scarce

Forecast Excess 0 0 0 0.79
Normal 11 95 14
Scarce 0 0 0

Station 4

Obs
Hit
rateExcess Normal Scarce

Forecast Excess 0 0 0 0.73
Normal 12 88 20
Scarce 0 0 0

Station 5

Obs
Hit
rateExcess Normal Scarce

Forecast Excess 0 0 0 0.63
Normal 10 75 35
Scarce 0 0 0

Station 6

Obs
Hit
rateExcess Normal Scarce

Forecast Excess 0 0 0 0.87
Normal 5 104 11
Scarce 0 0 0

All stations

Obs
Hit
rateExcess Normal Scarce

Forecast Excess 0 0 0 0.77
Normal 60 551 109
Scarce 0 0 0
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cess, normal, and scarce stages, respectively. The false-
alarm rate was 0.20, 0.12, and 0.28 for excess, normal,
and scarce stages, respectively. Validation results indi-
cated that the proposed methodology is a potential tool
that may be used to predict the rainfall level in a given
station. Results show that the selected meteorological
indices can be used as proxy variables that can help
predict rainfall stages.

Acknowledgments. This research has been supported
by NASA EPSCoR Grant NCC5-595 and by the Uni-
versity of Puerto Rico Sponsored Research Office. The
authors appreciate the technical support provided by
the Climate Diagnostics Center and Drs. Robert S.
Webb and Jon Eischeid who provided the 101 yr of
monthly meteorological index data and rainfall data for
the San Juan station. The authors acknowledge the col-
laboration of Israel Matos, meteorologist in charge of
the National Weather Service in San Juan, PR. Helpful
comments were provided by the reviewers, and one of
them in particular gave a very thorough review along
with useful recommendations.

REFERENCES

Bazaraa, M. S., H. D. Sherali, and C. M. Shetty, 1993: Nonlinear
Programming: Theory and Algorithms. 2d ed. John Wiley and
Sons, 638 pp.

Bickel, P. J., and K. A. Doksum, 1977: Mathematical Statistics:
Basic Ideas and Selected Topics. Holden-Day, 492 pp.

Box, G. E. P., and G. M. Jenkins, 1976: Times Series Analysis:
Forecasting and Control. Holden-Day, 575 pp.

Brockwell, P. J., and R. A. Davis, 2002: Introduction to Time Se-
ries and Forecasting. 2d ed. Springer-Verlag, 434 pp.

Carter, M. M., 1999: A quantitative precipitation forecast experi-
ment for Puerto Rico. Ph.D. dissertation, The Florida State
University, 123 pp.

——, and J. B. Elsner, 1997: A statistical method for forecasting
rainfall over Puerto Rico. Wea. Forecasting, 12, 515–525.

Chiu, L. S., and B. Kedem, 1990: Estimating the exceedance prob-
ability of rain rate by logistic-regression. J. Geophys. Res., 95
(D3), 2217–2227.

Comarazamy, D. E., 2001: Atmospheric modeling of the Caribbe-
an region: Precipitation and wind analysis in Puerto Rico for
April 1998. M.S. thesis, Department of Mechanical Engineer-
ing, University of Puerto Rico, Mayagüez, Puerto Rico, 112
pp.

Gahrs, G. E., S. Applequist, R. L. Pfeffer, and X.-F. Niu, 2003:

Improved results for probabilistic quantitative precipitation
forecasting. Wea. Forecasting, 18, 879–890.

Gray, W. M., P. J. Klotzbach, and W. Thorson, cited 2005: Ex-
tended range forecast of Atlantic seasonal hurricane activity
and U.S. landfall strike probability for 2005. [Available on-
line at http://hurricane.atmos.colostate.edu/Forecasts/2005.]

Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscil-
lation: Regional temperatures and precipitation. Science, 269,
676–679.

Janowiak, J. E., 1988: An investigation of interannual rainfall vari-
ability in Africa. J. Climate, 1, 240–255.

Malmgren, B. A., A. Winter, and D. Chen, 1998: El Niño–
Southern Oscillation and North Atlantic Oscillation control
of climate in Puerto Rico. J. Climate, 11, 2713–2717.

MathWorks, 2000: Optimization toolbox for use with Matlab: Us-
er’s guide. MathWorks, Inc., 331 pp.

Montgomery, D. C., E. A. Peck, and G. G. Vining, 2001: Intro-
duction to Linear Regression Analysis. 3d ed. John Wiley and
Sons, 641 pp.

Mood, A. M., F. A. Graybill, and D. C. Boes, 1974: Introduction to
the Theory of Statistics. 3d ed. McGraw-Hill, 564 pp.

Murphy, A. H., 1992: Climatology, persistence, and their linear
combination as standards of reference in skill scores. Wea.
Forecasting, 7, 692–698.

Pandit, S. M., and S. M. Wu, 1983: Time Series and System Analy-
sis, with Applications. John Wiley and Sons, 586 pp.

Reklaitis, G. V., A. Ravindran, and K. M. Ragsdell, 1983: Engi-
neering Optimization: Methods and Applications. John Wiley
and Sons, 684 pp.

Sohn, K. T., J. H. Lee, S. H. Lee, and Ch. S. Ryu, 2005: Statistical
prediction of heavy rain in South Korea. Adv. Atmos. Sci., 22,
703–710.

Taylor, M. A., D. B. Enfield, and A. A. Chen, 2002: Influence of
the tropical Atlantic versus the tropical Pacific on Caribbean
rainfall. J. Geophys. Res., 107, 3127, doi:10.1029/2001JC001097.

Thompson, D. W. J., and J. M. Wallace, 1998: The Artic Oscilla-
tion signature in the wintertime geopotential height and tem-
perature fields. Geophys. Res. Lett., 25, 1297–1300.

Trenberth, K. E., 1984: Signal versus noise in the Southern Oscil-
lation. Mon. Wea. Rev., 112, 326–332.

Ward, M. N., and C. K. Folland, 1991: Prediction of seasonal rain-
fall in the northeast of Brazil using eigenvectors of sea sur-
face temperature. Int. J. Climatol., 11, 711–743.

Wei, W. W. S., 1990: Time Series Analysis: Univariate and Multi-
variate Methods. Addison-Wesley, 478 pp.

Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences:
An Introduction. Academic Press, 467 pp.

Wilson, F. W., 2004: Probabilistic forecasts of cloud impacts at San
Francisco International Airport. Proc. 20th Int. Conf. on In-
teractive Information and Processing Systems (IIPS) for Me-
teorology, Oceanography, and Hydrology, Seattle, WA,
Amer. Meteor. Soc., CD-ROM, 18.1.

Winston, W. L., 2004: Operations Research: Applications and Al-
gorithms. 4th ed. Brooks/Cole, 1418 pp.

890 M O N T H L Y W E A T H E R R E V I E W VOLUME 135


