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ABSTRACT

The description of clouds in mesoscale models has progressed significantly during recent years by im-
proving microphysical schemes with more physical parameterizations deduced from observations. Recently,
the first lidar in space, the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geosciences Laser Altimeter
System, has collected a valuable dataset that improves the knowledge of occurrence and macrophysical
properties of clouds, and particularly high-altitude clouds, which are usually optically thin. This study
evaluates the capability of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model
(MM5) to reproduce optically thin clouds using the ICESat October–November 2003 dataset. Initial and
boundary conditions are prescribed from NCEP products and MM5 run over the European continent with
a 40-km spatial resolution. Spaceborne lidar profiles are diagnosed from model outputs and compared with
the observed ones at the same location and time. One month of simulations–observations comparisons
shows that the model correctly reproduces cloud structures on average, but underestimates the thinnest
clouds (by 0%–20%) and overestimates less thin clouds in the upper troposphere (altitude �6 km). The
total low-level water cloud amount (altitude �6 km) appears fairly well reproduced, although the masking
effect of higher clouds does not allow for a firm conclusion. The clouds are rarely simulated and observed
simultaneously, 50% for high clouds and 20% for low clouds. The lack of high-altitude very thin clouds is
possibly due to dry biases in the upper-troposphere humidity fields used to force the model. The overes-
timation of optically less thin cloud may be due to an overestimation of the cloud lifetime or water vapor
supersaturation around ice clouds that is not taken into account in the model. When the upper troposphere
and low warm clouds appear in the model at the same time and location as in the observations, they are
optically too thick, likely because their water/ice content and particle concentration are overestimated
simultaneously.

1. Introduction

Clouds play a major role on the climate through their
effects on the earth–atmosphere radiative balance and
the water cycle. Among others, strong uncertainties re-
main on the physics and radiative properties of the cold
high-altitude clouds (Liou 1986, 2002; Stephens et al.
1990). These latter cover a wide area of the earth’s
surface and their net radiative effect is largely uncer-
tain. The balance between heating and cooling effects
at the global and local scale depends on their macro-

and microphysical properties. Despite strong efforts in-
volving both observations and models in the last twenty
years to improve our knowledge of high clouds, they
are still roughly described in regional or global climate
models. Furthermore, their climatological, total
amount, and spatiotemporal variability are still too
poorly known and local properties are still not accu-
rately described from observations. These problems
lead to very large uncertainties in their impact on cli-
mate sensitivity (Yakohata et al. 2005).

These knowledge gaps are largely connected to the
difficulty in obtaining accurate observations of high
clouds at their standard altitude (6–14 km), especially
in the case of semitransparent clouds. Cirrus clouds
have been observed routinely from ground-based re-
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mote sensing (Ackerman and Stokes 2003; Haeffelin et
al. 2005; Sassen and Benson 2001; Campbell et al. 2002)
and with airborne in situ measurements during inten-
sive field experiments in the midlatitudes (Randall et
al. 1996; Raschke et al. 1998; McFarquhar and Heyms-
field 1996; Toon and Miake-Lye 1998) and also more
recently in the Tropics (McFarquhar and Heymsfield
1996; Jenson et al. 2004). The satellite remote sensing
community has developed techniques to derive the cli-
matology (Rossow and Schiffer 1999; Jin et al. 1996;
Wylie et al. 1995; Wylie and Wang 1999; Minnis et al.
1998; Platnick et al. 2003; King et al. 2003; Baum et al.
2000; Goloub et al. 2000; Chepfer et al. 2001; etc.) of
high clouds macrophysical and microphysical proper-
ties using the capabilities of the most recent satellite
imagery such as the International Satellite Cloud Cli-
matology Project (Rossow and Schiffer 1999), Moder-
ate Resolution Imaging Spectroradiometer (King et al.
1996), and Polarization Directionality and Earth Re-
flectances (Deschamps et al. 1994). Those studies use
passive remote sensing observations that present the
advantage of having good spatiotemporal coverage, but
these observations are not resolved vertically and
hardly detect very thin cloud layers.

Lidars provide powerful means of observing high
clouds, especially optically thin clouds, which are diffi-
cult to detect from passive remote sensing (Platt 1973;
Sassen 1991; Bissonnette et al. 2001; Noel et al. 2006;
Hart et al. 2005). Despite the difficulties generated by
low-cloud masks, ground-based lidar studies of these
clouds have allowed researchers to gain limited insight
into their spatial and seasonal distribution, cloud
amounts, optical depths, particle size, and relationships
between particle size and temperature (Heymsfield and
Platt 1984), thermodynamical phase and temperature
(Sassen and Benson 2001), and particle shape and tem-
perature (Noel et al. 2006).

In 2003, spaceborne lidar observations were collected
during the Ice, Cloud, and Land Elevation Satellite
(ICESat) mission. These top-down lidar profiles bear
unprecedented promises for the study of high-altitude
clouds as the beam scatters little before reaching the
cloud. This property is particularly interesting for the
establishment of high-cloud climatologies as they are
always “seen,” unlike when using the ground-based li-
dars where attenuation by lower-level water clouds re-
sults in nondetection of higher cloud layers. In the fu-
ture such lidars, like the Cloud–Aerosol Lidar and In-
frared Pathfinder Satellite Observation or Earth-Care
missions will enable more cloud observations.

Along with the increase in our knowledge of high
clouds, accurate remote sensing observations will allow

the evaluation of global or regional climate models’
ability to predict high-cloud occurrence frequency, spa-
tial distributions, and radiative properties. This analysis
is key in producing a more accurate understanding of
present climate prediction of climate change under an-
thropogenic pressure. These models include specific
microphysics schemes to describe ice clouds. These
schemes have to take into account high-cloud proper-
ties by including advanced parameterizations to de-
scribe the different processes such as the growth of ice
crystals, evaporation/saturation of water amount,
changes in thermodynamical phase (solid–liquid water
phase conversion), and fall of the particles. Moreover,
the specific optical properties of optically thin clouds
have to be considered in the models’ radiative schemes.
New parameterizations deduced from observations are
progressively incorporated within the microphysical ice
scheme (i.e., Dudhia 1989, 1993; Reisner et al. 1998;
Heckman and Cotton 1993; Levkov et al. 1992, 1998;
Boucher et al. 1995; Del Genio et al. 1996) in meso- and
large-scale models. The physical properties of ice
clouds also play a greater role in model radiative
schemes through more realistic optical properties
[single scattering albedo, extinction coefficient (Takano
and Liou 1989; Macke et al. 1996; Yang and Liou 1998)]
deduced from observations. As progress increases in
both observations and models, more direct compari-
sons between them become possible.

Several recent studies (Guichard et al. 2003; Palm et
al. 2005; Chiriaco et al. 2006) have used remote sensing
observations to evaluate mesoscale capability to repro-
duce high- and low-level clouds. Here we used the space-
borne lidar ICESat dataset collected above Europe in
order to evaluate the ability of the fifth-generation
(version 3.6) Penn State University–National Center
for Atmospheric Research mesoscale model (MM5) to
reproduce optically thin high clouds in midlatitudes.
We used a simplified but robust model-to-satellite ap-
proach that consists of diagnosing the lidar level-1 data
observations (normalized and calibrated signal) directly
from model outputs. The simulated lidar signal pre-
dicted from the model is therefore compared with its
observed counterpart. The advantage of this model-to-
observation approach lies in the absence of any inver-
sion of the observed lidar signal, reducing the sources
of possible errors to be the cause of discrepancy be-
tween observations and model.

The model formulation described in section 2. Sec-
tion 3 follows with a description of the ICESat dataset.
The model-to-observation method used to compare
simulated with observed clouds is detailed in section 4
and illustrated with a case study. A statistical study is
then carried out over one full month of observations,
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and its results are presented in section 5. The first stage
of the analysis focuses on the cloud occurrence discrep-
ancy between observations and model (section 5b), and
the second stage aims to explain differences in the
cloud properties (section 5c) simulated and observed
using the subdataset of instances where clouds occur
simultaneously (time and location) in both the obser-
vation and model. A discussion and conclusion are
given in sections 6 and 7, respectively.

2. Model configuration

The MM5 (Dudhia 1993) is used in this study. The
domain used covers most of western Europe with a
horizontal resolution of 36 km. The surface is initialized
at the beginning of the simulation using the National
Centers for Environmental Prediction (NCEP) soil
temperature/soil moisture analyses coming from the
Noah land surface model (LSM). In MM5 the same
model is used (LSM) in order to calculate time-
dependent soil moisture and temperature, and fluxes of
heat and water. The time evolution step is that of the
dynamical model. The atmosphere is discretized into 61
vertical layers from the surface to 100 hPa, with sigma
levels decreasing by 0.02 in the upper layers, leading to
a vertical resolution of approximately 500 m in upper-
troposphere ice clouds and 100 m in the boundary
layer. Simulations are 30 h long, each simulated day
being initialized at 1800 UTC on the day before with
NCEP humidity, temperature, and wind analyses at 1°
horizontal resolution. The operational NCEP model,
Global Forecast System (GFS), is used here, where
relative humidity is assimilated from radiosondes up to
300 hPa and from Geostationary Operational Environ-
mental Satellite (GOES) radiances from 300 to 100
hPa. To avoid divergence from the analysis, a nudging
procedure is applied on wind and temperature fields
with a 6-h relaxation time. The humidity field is not
used in the nudging procedure in order to avoid the
forcing of water variables and to leave the microphysics
scheme unperturbed. Nevertheless, in the course of the
model run, the nudged temperature does influence the
microphysics. Because our aim is to evaluate the micro-
physical scheme and not its input parameters like tem-
perature, temperature nudging helps to remove one
source of error if observed and simulated clouds differ.

The Grell (1993) scheme is used for convection. The
boundary layer parameterization from Troën and
Mahrt (1986) is selected, with a modified formulation
of the convective velocity (Beljaars 1995) as suggested
by Liu et al. (2004). The radiation scheme is from Hack
et al. (1993) with a modification of the ice particle di-

ameter taken equal to 35 �m instead of 14.6 �m (Chiri-
aco et al. 2006). Reisner et al. (1998) is used for the
microphysical scheme with a modified parameteriza-
tion of the ice particle sedimentation velocity (Heyms-
field and Donner 1990) depending on the ice mixing
ratio as suggested in Chiriaco et al. (2006). The mass
contents for liquid water, rain, graupel, snow, and ice
are prognostic variables together with the ice particle
number. The size distributions are derived from the
mass contents and the particle concentration. For liquid
particles, the particle concentration is assumed constant
as given in the model.

Previous studies have allowed highlighting some limi-
tations of MM5 in producing clouds. Based on ground-
based observations, Chiriaco et al. (2006) have shown
that (i) MM5 model misses very thin clouds; and (ii)
high (z � 8.5 km) and low (z � 6 km) cloud occurrences
are underestimated, whereas middle (7 km � z � 8.5
km) clouds are overestimated. Reisner et al. (1998)
have shown that (i) riming and depositional growth is
too high; (ii) large-scale characteristics must be cor-
rectly simulated in order to get good results for the
microphysical scheme; and (iii) one key point for the
cloud representation is the vertical resolution of the
model in inversion areas (ideal should be adaptive
grids). Wetzel and Bates (1995) have pointed out that
(i) there is a negative bias of 10%–30% between model
and observations (GOES) concerning the cloud frac-
tion, in July; and (ii) that correlations between model
and observations (GOES) are better in mountain areas
in summer.

3. ICESat data

The ICESat launched as a low orbiting satellite car-
rying a lidar onboard a satellite platform. The instru-
ment is called the Geosciences Laser Altimeter System
(GLAS) and is an NdYag lidar emitting at 532 and 1064
nm with a pulse repetition frequency of 40 Hz, a nomi-
nal optical power of 40 mJ (4 Watts) and a divergence
of 0.1 mrad. The footprint is about 75 m at the tropo-
pause level in midaltitudes. The ICESat mission has
collected 4–6 weeks of data every 3–4 months since the
launch and is continuing to collect data.

The current study uses the 532-nm backscattered at-
tenuated profiles, which are calibrated and normalized
against theoretical molecular profiles computed from
NCEP thermodynamical profiles (GLA07 product).
This study used more than 45 days of observations col-
lected between 14 October and 15 November 2003. The
satellite passed over Europe 2 to 3 times a day around
0700 and 1900 UTC and only segments of orbits cross-
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ing Europe are considered here. One crossing of Eu-
rope typically takes 6 min, so that the measurements
used here can be considered as a quasi-instantaneous
picture of the state of the atmosphere.

The nominal GLAS laser emission is 40 Hz, here the
5-Hz-averaged profiles have been used and reaveraged
over 0.5° � 0.5° latitude–longitude boxes for consis-
tency with the model spatial resolution. Thus each mea-
sured profile to be compared with the model is typically
averaged over 8 s and one cross section of the Euro-
pean continent is described by approximately 40 pro-
files depending on the orbit considered. So, the signal is
averaged over a line approximately 55 km long and 66 m
wide. In broken cloud conditions, ICESat may not en-
counter any clouds even if they are present on the side
of the fly track in the same grid box, increasing the
likelihood of nondetection. On one hand, this satellite
observation limitation may be significant for low-level
cumulus convective clouds (even if autumn is not the
more convective season). On the other hand, those
small-scale clouds are also a challenging subgrid-scale
phenomena from the model point of view. The averag-
ing allows the data to be equalized to the model spatial
resolution, but also improves the signal-to-noise ratio
of the measured profiles. The vertical resolution of the
measured lidar profiles is 76.8 m. Only the points clos-
est to the model altitude levels are kept for model–
observation comparisons. The 14 October–15 Novem-
ber dataset is composed of 77 orbits in total spread over
the European continent.

4. Method

To compare lidar observations with model predic-
tion, we compute theoretical lidar profiles that would

be observed if the atmosphere had the composition pre-
dicted by the model. The theoretical lidar profile is
simulated from MM5 outputs using the active remote
sensing simulator (ActSim) code described in Chiriaco
et al. (2006). This code simply consists of computing a
theoretical lidar profile using the lidar equation includ-
ing the attenuation (see the appendix). The following
outputs of MM5 are inputs of ActSim: ice, snow, liquid
water contents, and associated particle concentrations
at each level of atmosphere. The particle optical prop-
erties at 532 nm are computed with Mie theory because
MM5 implicitly assumes atmospheric particles to be
spherical. The shape of the size distributions are pre-
scribed as in the Reisner et al. (1998) cloud microphysi-
cal scheme to keep consistency with the model. The
multiple scattering effects are taken into account by
applying Platt (1978) empirical corrections (multiple
scattering coefficient � � 0.5). NCEP thermodynamical
profiles (pressure and temperature) are used to com-
pute the molecular contribution to the lidar profile.
Both measured and simulated profiles are normalized
to the molecular signal above the tropopause, so they
can be compared directly. The model outputs are com-
puted at each hour, whereas the satellite overpass time
is variable. The comparison between observed and
measured profile uses the model output closest to the
observation. The time difference between both can
reach a maximum of 30 min. The entire simulated
dataset is called Data_sim_0 (Table 1).

Figure 1 shows an example of observed lidar profiles
as a function of latitude and the corresponding simu-
lated profiles for the 1850 UTC 23 October European
cross section. For this case, the main cloud structures
are reproduced by the model even though some of the
lower clouds (below 4 km) are missed by the model.

TABLE 1. Observed and simulated datasets.

Observations Used in

Data_obs_0 All the observations points (including saturated points)
Data_obs_1 All the nonsaturated points observed Section 5a
Data_obs_2 All the nonsaturated points observed that are contained in a cloudy profile (cloud

detection applied to observed profiles)
Section 5b

Data_obs_3 All the nonsaturated points observed that are contained in a cloudy profile when both
observations and simulations consistently detect a cloud at the same time and location

Section 5c

Simulations Used in

Data_sim_0 All the simulated points Section 4
Data_sim_1 All the simulated points Section 5
Data_sim_1bis All the simulated points associated to nonsaturated points observed
Data_sim_2 All the simulated points that are contained in a cloudy profile (cloud

detection applied to simulated profiles)
Section 5b

Data_sim_3 All the simulated points, that are contained in a cloudy profile when both
observations and simulations consistently detect a cloud at the same time and location

Section 5c
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The corresponding satellite ground track is shown in
Fig. 1c indicating that it crosses a well-formed frontal
system. Complementary analyzes of case-by-case com-
parison (not shown) confirm that the model captures
most of the cloud structure when the satellite crosses
the bulk of a frontal system, the strongest discrepancy
between simulated and observed signals occurs when
the satellite track is located at the edge of the cloud
structures.

For confirmation, the GLAS operational data prod-
ucts (Spinhirne et al. 2005) are shown in Figs. 1d–f. The
operational-derived cloud-height levels indicate the
presence of clouds as shown previously but also some
aerosol layers are found episodically in the boundary
layer. Aerosol particles are not taken into account in
the lidar simulated profiles. Also shown in Fig. 1 are
calculations of cloud optical thickness of layers and the
lidar multiple scattering factor, described later, as ef-
fective for the signal at the ground. These parameters
are only calculated where the cloud is sufficiently opti-
cally thin (typically, optical depth lower than 2.5) and
without saturation over a one-second average (Hlavka
et al. 2005). Most of the clouds shown are beyond the
optical thickness limit. The maximum cloud optical
depth retrieved from observation is 2.5, and the mul-
tiple scattering factor is between 0.2 and 1.

In the statistical study presented hereafter, an ob-
served lidar signal and its simulated counterpart are
used only if the measured lidar signal is not saturated.
When saturation occurs in an observed profile, the non-
saturated points above are kept for analysis. This
means that the top of thick clouds up to the limit of
attenuation is kept in the dataset. Those datasets (with-
out the saturated points) are called Data_obs_1 and
Data_sim1 (Table 1). They are built from Data_obs_0
and Data_sim0, using the saturation/nonsaturation of
the lidar profile flagged at each level of altitude in the
GLAS measurements (called i5_g_sat in the Gla07 data
product). This flag indicates whether the corresponding
bin in the 5-Hz 532-nm profile is saturated or not. The
saturated condition occurs when the received photon
count for a bin is greater than nine counts per detector
for each of the four detectors for a given shot. Usually,
the saturation condition occurs only for relatively low-
level, liquid-water clouds. Most of the observations lo-
cated above 6 km are not saturated (95%) nearly inde-
pendently of the altitude (6 � z � 13 km), so that the
high level clouds dataset used here is significant and not
limited to the ice cloud top layer. Thus the analysis of
the difference between simulations (Data_sim_1) and
observations (Data_obs_1) is not hindered by the lidar
penetration problem.

5. Results of statistical comparison

This section aims at comparing the mean simulated
and observed lidar signals (section 5a), the cloud occur-
rences observed and simulated (section 5b), and the
differences between cloud properties observed and
simulated in the subdataset where clouds occur consis-
tently in observations and simulations (section 5c)

a. Comparison of mean simulated and observed
signals

The mean lidar signals over the complete dataset
(Data_obs_1 and Data_sim_1) are plotted in Fig. 2a
together with the number of points averaged at each
level of altitude (Fig. 2b). Similar plots for the sub-
dataset corresponding to time differences between
model and observations of 15 and 5 min, respectively
(not shown), give similar results whatever the restric-
tion on the time differences. The simulated lidar signal
is consistent with the observed one above 11.5 km, it is
overestimated between 7 and 11.5 km, and underesti-
mated below 7 km.

The interpretation of the differences between simu-
lated and observed lidar profiles are not straightfor-
ward in terms of cloud differences, as an overestimation
of simulated high-cloud backscattering inherently leads
to an underestimation of the signal below. Thus the
nearing of the mean simulated profile to the molecular
baseline between 3 and 5 km does not mean that the
model never simulates clouds at this altitude. Large
low-level underestimations may also suffer from higher
levels backscattering overestimation. The only firm
conclusion that can be drawn from Fig. 2a is that model
high optically thin clouds have a backscattering power
higher than in the observation.

To investigate the disagreement between observed
(black) and simulated (red) signals (Fig. 2), the lidar
signal has been simulated by considering independently
the different particle categories produced by the model:
liquid water, snow, and ice without the other phases. As
the model parameterization imposes changes of the
thermodynamical phase as a function of temperature
thresholds, the main contribution of ice is logically ob-
tained in the upper clouds layers and the liquid water in
the lower clouds. Above 6.5 km, associated with tem-
peratures around �30°C (�15°C), the contribution of
liquid water is negligible and the contribution of snow is
very small, hence most of the discrepancy obtained be-
tween model and observations between the tropopause
and 6.5 km is due to the ice scheme in MM5, multiple
scattering effects hypothesis in ActSim, and/or errors in
the thermodynamical fields used to force the model at
high altitudes.

2742 M O N T H L Y W E A T H E R R E V I E W VOLUME 135



The backscattering profile produced by snow alone is
significant between 3 and 6 km, and it is much higher
than that of the total signal. Thus in the total signal the
presence or absence of snow cannot explain by itself the
model underestimation, which results in large part from
the optically too thick ice clouds. At lower altitudes
(0–3 km) the total signal is also probably largely af-
fected by the ice clouds masking effect. However the
mean water profile has smaller amplitude than that of
the snow profile. A small amount of optically thin liq-
uid water clouds is produced by the model, but a large
fraction of the liquid water clouds are optically thicker
than 2.5 and precluded of the dataset because of the
lidar limitation penetration.

b. Cloud occurrence

1) NUMBER OF CLOUD EVENTS

Differences between observations (Data_obs_1) and
simulations (Data_sim_1) can be due to errors in the
cloud occurrence and/or in the cloud properties [i.e., ice
water content (IWC), liquid water content (LWC),
snow water content, particle concentration, etc.] pre-
dicted by the model. To distinguish between these two
possible causes, the same rough cloud detection is ap-
plied independently to the observed and simulated lidar
signals. The cloud data resulting from this cloud detec-

tion are called Data_obs_2 and Data_sim_2 (Table 1).
The cloud detection consists of searching for differ-
ences between the cloud signal and the molecular signal
larger than a threshold value. If such a difference is
encountered, the atmosphere is considered as cloudy.
Various threshold values (0, 10�7, 10�6, 10�5 W m2

sr�1) have been tested for the cloud detection. The mo-
lecular signal is typically of the order of 3 � 10�7 in the
upper troposphere (Fig. 2), hence a threshold of 10�7

allows avoiding false detection, but may miss optically
very thin cloud/aerosols layers. For the 10�7 threshold,
30% of the pixels contain in Data_obs_1 are identified
as cloudy in the observations, 10% are located at alti-
tudes higher than 6.5 km and 20% at lower levels. The
other 70% of Data_obs_1 pixels correspond to cloudy-
free areas. These numbers should not be interpreted as
a cloud coverage because here a pixel corresponds to a
level of altitude at a given location at a given time, the
atmospheric column is composed of 61 different levels
from the ground to 13 km.

Comparisons between observations (Data_obs_2)
and simulations (Data_sim_2) are summarized in Table
2. Here clouds are counted using either the different
water phases separately like in Fig. 2 (second half of the
Table 2), or all phases together (first half of the Table
2). Whatever the threshold, the number of low-level
(�6 km) clouds pixels observed is significantly larger

FIG. 2. (a) Mean observed (Data_obs_1) and simulated (Data_sim_1) lidar profiles (Data_obs_1) over the 77
orbits. (b) Number of points averaged to compute the mean profiles.
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than the higher clouds (�6 km; see lines 1–3 of Table 2)
mostly because the vertical resolution is much finer at
lower levels than at higher levels.

The simulated high cloud amount is lower than the
measured one (line 7 of Table 2) for the small threshold
values where the model misses about 12% of the opti-
cally thinner ice clouds in the upper troposphere
(threshold 10�7). For large thresholds, the simulated
high-cloud amount is greater than what is observed,
meaning that the model produces too many optical
thick clouds. Those features concerning high clouds are
roughly confirmed when considering ice only in the
simulations (lines 10 and 12 of Table 2).

The low water cloud amount is relatively well repro-
duced by the model when considering water alone be-
low 6 km in the simulations (line 13 of Table 2). How-
ever these relatively good scores obtained when con-
sidering independently the two main cloud layers (�6
km and �6 km) are strongly degraded if we consider all
the thermodynamical phases in the total atmospheric
column (line 8). In this case more than half of the cloud
observed are not detected in the simulation because of
the presence of high clouds in the model. The low-level
clouds (water) predicted by the model in a large
amount are less frequently detectable (comparison be-
tween line 5 and 11). The difference is likely due to

model errors in the description of upper-troposphere
cloud properties that propagate to lower altitudes when
considering the simulated lidar profile.

The initial ratios obtained independently for each
phase above and below 6 km, become too small if we
consider correct (time and location) cloud hits (without
any constraint on the lidar profile intensity, Data_sim_3
as defined in Table 1), as shown by the values in pa-
rentheses in Table 2 (lines 12–13). This degradation is
larger for low-level water clouds, showing that cumulus
and stratocumulus clouds are poorly predicted at the
right location and time by the model. A visual inspec-
tion of lidar profiles confirmed that the poor pixel-to-
pixel correlation is due to cloud misplacements.

Figure 3 shows the cloud occurrence as a function of
latitude and altitude in the observations and simula-
tions for a 10�7 threshold including the complete
dataset. Both vary consistently with latitude, with two
cloud layers occurring mostly in the boundary layer and
in the upper half of the troposphere. Figures 3a,b con-
firm that most of the cloud amount below 6 km, asso-
ciated with temperatures of typically 0°C (�15°C), are
masked in the simulation by the presence of too fre-
quent and too thick high clouds even though they are
predicted by the model (Fig. 3c) but not necessarily
predicted at the right time and location. Table 2 (line 5

TABLE 2. Cloud occurrences in observations and simulations. The numbers of cloudy pixels are computed by applying the same cloud
detection independently to the observations and simulations (Data_obs_2 and Data_sim_2). Four different values of the detection
threshold are considered. Values in brackets give the number of cloudy pixel simulated (Data_sim_3) at the same location (altitude and
latitude) as an observed cloudy pixel, divided by the total number of cloudy pixel observed (Data_obs_2).

Line No. Detection threshold 0 10�7 10�6 10�5

No. of cloudy pixels detected in observations
1 �6 km 22 902 14 000 6766 1419
2 �6 km 30 794 26 878 17 645 5877
3 Entire column 53 696 40 878 24 411 7296

No. of cloudy pixels detected in simulations considering all particles categories

4 �6 km 17 145 12 549 9247 2087
5 �6 km 5277 4097 3068 1402
6 Entire column 22 422 16 646 12 315 3489

Ratio between the number of cloudy pixels simulated (considering all particles categories) and the No. of
cloudy pixels observed

7 �6 km (%) 75 88 137 147
8 �6 km (%) 17 15 17 24
9 All (%) 42 41 50 48

No. of cloudy pixels detected in simulations considering water and ice separately

10 Ice only �6 km 18 550 13 720 9472 2142
11 Water only �6 km 32 333 22 308 17 821 2762

Ratio between the No. of cloudy pixels simulated (considering water and ice separately) and the No. of cloudy
pixels observed

12 Ice only (%) �6 km 81 (39) 98 (36) 140 (41) 151 (12)
13 Water only (%) �6 km 105 (17) 83 (10) 101 (5) 47 (1)
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and 11) indicates that 81% of the low-level clouds ef-
fectively produced by the model are masked by the
presence of high clouds in the simulations. Note that it
is not possible, like with the model, to isolate the ob-
served lidar signal due to liquid water cloud. It is prob-
able that high clouds also remove a large number of low
clouds in the observations. Thus in any case the number
of low clouds is most probably underestimated.

2) LINK WITH THERMODYNAMICAL CONDITIONS

Figure 4 shows the difference between the simulated
and observed cloud occurrences for a detection thresh-
old of 10�7. (The value 0 corresponds to agreement
between observations and simulations whatever the
conditions: cloudy or clear sky). This difference is plot-
ted as a function of NCEP temperature and humidity to
highlight the thermodynamical conditions in which the
model under- or overestimates the cloud amount. Fig-
ure 4a indicates that the total cloud amount, including
all thermodynamical water phase (liquid water, snow,
and ice), is underestimated (negative values) or over-
estimated (positive values) depending on the tempera-
ture and humidity ranges. The model underestimates
cloud over a cold temperature range (�50° to �60°C)
for a humidity range RHi (20%–140%) and at a posi-
tive temperature range (0°–20°C) for a humidity range
RHw (60%–100%). The cloud amount is overestimated
by the model at cold temperatures (20° to �60°C) when
RHi is ranging between 130% and 160%. Figure 4c
shows the same diagram but uses the ice phase only in

the simulated signal: only the ice particles numbers
prognosticated by the model are used to simulated the
lidar profile (liquid water, graupel, rain, snow contribu-
tion are not taken into account). Similarities between
Figs. 4b and 4c for cold clouds indicate that most of the
cloud amount errors identified previously are induced
by the ice phase description in the model or by errors in
the NCEP temperature and humidity fields that are
used as an input for the simulations. The deficit of cloud
amount at low values of RHi � 100% associated with
optically thin clouds (small values of lidar signals, not
shown) may be associated with cloud cases where the
humidity amount is underestimated in NCEP fields.
The cloud amount overestimations at cold temperature
occur for both optically thin and thick clouds, indepen-
dently of the cloud temperature when RHi is higher
than 120%.

Figure 4d shows the same diagram but considering
only simulated water clouds. Figure 4d compared with
Fig. 4a confirms that the count of low-level clouds is
closer to the observed one as obtained with the lidar
total signal. Once again this latter comparison does not
take into account the masking effect in the observation,
and there is a good chance that the simulated low-level
cloud amount is underestimated. The model underesti-
mated cloud amounts (negative values in Fig. 4d) oc-
curring in the model at cold temperature are due to the
presence of ice clouds in the observations, and cannot
be attributed to a model deficiency (that uses water
only here). On the contrary, at warm temperatures (0°–
20°C) for RHw between 60% and 80%, the model fails
to produce enough low-level water clouds. This may be
due to the lack of fractional clouds in MM5, as a liquid-
water cloud is formed only when RHw reaches 100% in
a grid cell, while in reality subgrid fluctuations allow
cloud formation at lower mean RHw. Finally as RHw is
higher than 80%, the warm cloud amount is slightly
overestimated (Fig. 4c) between 0° and �10°C.

c. Cloud properties

For the cases where both model and observations
consistently detect a cloud at the same time and loca-
tion (Data_obs_3 and Data_sim_3 defined in Table 1),
the average observed and simulated signals are plotted
in Fig. 5a. As mentioned in Table 2 (values in bracket),
less than half of the ice clouds observed and less than
10% of the total low water clouds observed are effec-
tively seen at the right time and location in the simu-
lations and their postprocessed backscattering pro-
file. The mean observed and simulated profiles are
quite similar, while the amplitude of the signal is rela-
tively well captured. The model overestimates the in-
tensity of the lidar signal at altitudes ranging between

FIG. 3. Cloud occurrences as a function of latitude including the
77 ICESat European orbits using a detection threshold of 10�7 in
the (a) Data_obs_2 observations and (b) Data_sim_2 simulations
including all phases. (c) Same as (b) including water particles only.
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7 and 10 km whatever the latitude, confirming that the
ice cloud overestimation of Fig. 2a is not only due to a
cloud occurrence deficiency but also to errors in the
cloud physical and dynamical properties such as the ice
content, particle size, and fall velocity.

The model underestimates the lidar signal between 4
and 6 km where the ice, liquid, and snow phases occur
simultaneously (Fig. 2a). The model overestimates the
lidar cloud signal below 2 km, showing that when they
occur in the model the low, warm model clouds are
optically too thick, or the multiple scattering factor in
ActSim is wrong. In this case the masking effect cannot
account for the disparity.

Figure 5b shows the mean atmospheric optical depth
as estimated by the model using Data_sim_1 (triangles)
as well as the mean optical depth when considering only
cases where both observations and simulations simul-
taneously detect a cloud (solid) using Data_sim_3. In
cloudy conditions (Data_sim_3), the mean optical
depth is lower than 2 (Fig. 5b), on average, as estimated
from the simulated signal, which is consistent with the

limitation imposed by the lidar penetration. Above 6
km, the mean optical depth of the clouds under study is
0.5. Below 2 km, the mean optical depth estimated by
the model, including the complete nonsaturated dataset
(Data_sim_1), is of the order of 7 when the correspond-
ing observations only retain clouds with optical depth
lower than 2.5 (lidar penetration, nonsaturated signal),
confirming that when they appear in the model the low-
level water clouds are significantly too thick optically.

The differences between the observed and simulated
profiles are plotted as a function of pressure and tem-
perature in Fig. 6. For the ice phase (Figs. 6a–c), the
difference is nearly independent of the cloud tempera-
ture, but it is slightly more important at RHi around
150% (RHw around 80%) than other humidity ranges.
All the phases are represented in Figs. 6d–f. Differ-
ences between Figs. 6a–c and 6d–f are due to liquid
water and snow. Figures 6d and 6e show that for posi-
tive temperatures and RHw around 100%, the simu-
lated lidar signal produces by water cloud can be sig-
nificantly larger than the one observed, indicating that

FIG. 4. Differences between the simulated and observed cloud occurrences as a function of temperature and
humidity, (a) including all the thermodynamical phases in the simulated signal, as function of RHw. (b) Same as
(a) but as a function of RHi, (c) including ice only in the simulated signal, as a function of RHi, (d) including water
only in the simulated signal, as a function of RHw, (e) RHw, and (f) RHi.
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the water clouds simulated are optically too thick in
those conditions when they appear in the model. Even
if those phases (water/snow) appear less frequently
than the ice phase in the simulated dataset, they are
more biased, the simulated values being most of the
time larger than the measured one as soon as RHw
reaches 100%, while there is no evident link with tem-
perature.

6. Discussion

The previous results show that simulated and ob-
served lidar signal profiles differ significantly when
both observations and simulations detect a cloud.
These differences can be caused by errors in the ther-
modynamical fields used to force the model, the cloud
scheme within the model, and the hypothesis done in
ActSim for simulating the lidar profile.

a. The simulation of the lidar profile

The simulation of the lidar profile (ActSim) uses a
hypothesis to treat the multiple scattering effect of the
laser beam during its path within the cloud. This phe-
nomenon can take significant importance when the
clouds are optically thick (Nicolas et al. 1997). The mul-

tiple scattering phenomena is treated here by applying
an empirical correction that consists of a factor of mul-
tiple scattering called � introduced in the exponential
of the transmission term of the lidar equation (see the
appendix) as proposed by Platt (1978). For cloud par-
ticles larger than the lidar wavelength, which is the case
here at least for ice and snow particles (Fig. 8), � ap-
proximately takes the value of 0.5 because half of the
energy interacting with the particle will be diffracted at
very low angles, all this energy entering in the lidar
telescope after possible multiple interactions with the
particle (Platt 1978). For a lidar in space like ICESat
the distance between the cloud and the telescope is
large, and the large footprint allows photons at larger
angles to stay in the field-of-view. The � factor can thus
take lower values than 0.5 for certain ice cloud particles
(Chepfer et al. 1999). In addition, for particles smaller
than the wavelength, photons are more likely to leave
the field-of-view and the � factor can take values larger
than 0.5. Figure 1d shows that the � factor estimated
from ICESat data can range between 0.2 and 1. Figure
7 shows the sensitivity of the mean results to multiple
scattering representation using three different values of
� (0.7, 0.5, and 0.3). The � value influences the simu-
lated profiles, but the discrepancies underlined in pre-
vious sections remain between 6 and 10 km (the simu-

FIG. 5. (a) Mean observed and simulated lidar signal when clouds occurred simultaneously in observations and
simulations (Data_obs_3 and Data_sim_3). (b) Mean simulated optical thickness from the 13 km to the altitude z
[	(13km, z)] when the observed signal is not saturated Data_sim_1bis (triangles) and when both simulation and
observation consistently detect a cloud Data_sim_3 (solid line).
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lated signal is larger than the observed one), and we
conclude that the treatment of multiple scattering phe-
nomena in ActSim is likely not the unique cause of the
discrepancy between simulated and observed profiles.

b. Errors in the humidity and temperature fields

Errors in the humidity and temperature fields used to
initialize and force the model could lead to discrepan-
cies between model (MM5) and observations (NCEP).
The uncertainty of those fields may play a role, but in
the absence of a systematic bias the high number of
points used here allows for the consideration of numer-
ous variations in atmospheric situations leading to an
insignificant difference between the model and obser-
vations on average, precluding a possible uncertainty to
be the cause of the differences. Numerical bias are in-
duced by the analysis, which does not always perfectly
predict humidity and temperature measured in the up-
per troposphere by radio soundings or by radiances,

leading typically to an overestimation of 
50% in RHw
at 300 hPa over Europe in autumn, by comparison with
radio sounding. In addition, the radio sounding mea-
surements themselves are likely to be biased in the up-
per troposphere because of the sensors’ difficulties at
very low temperatures. The bias in the upper-
tropospheric humidity measured by radiosondes has
not been estimated statistically but several field experi-
ments (Gierens et al. 2000; Ovarlez et al. 2002; Wang et
al. 2003; Sapucci et al. 2005) compared airborne humid-
ity measurements with radio sounding observations and
have shown that the upper tropospheric humidity mea-
sured routinely by radio sounding is underestimated by
a factor of 2. Because the numerical NCEP bias and the
radio-sounding bias in the upper RH are of opposite
sign, it is difficult to get a definitive bias estimate, but
the order of magnitude of the radio-sounding bias is
larger than the numeric one, suggesting that an upper-
tropospheric dry bias is likely to occur. Given that the

FIG. 6. Bias (x axis) between lidar observed and simulated signals when both consistently detect a cloud
(Data_obs_3 and Data_sim_3), as a function of ( y axis) T, RHw, and RHi. In (a)–(c) the simulated signal contains
ice particles only. In (d)–(f) the simulated signal contains all thermodynamical phases: ice, snow, and liquid
(different scale).
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cloud occurrence in the model is simply specified as a
function of the water vapor humidity in the atmo-
sphere, a dry bias in RH at very low temperatures could
explain the insufficient cloud amount produced by the
model. On the other hand, the overestimation of the
cloud occurrence simulated around 130%–140% RHi
and cold temperatures (�20° to �60°C) may be partly
due to the supersaturation phenomena (water vapor
that do not condensate even if RHi � 100%) in the
upper troposphere that are regularly observed (Gierens
et al. 2000; Ovarlez et al. 2002) but do no exist in the
model where the water vapor condense as soon as RHi
� 100%. It could also be produced by clouds that are
too persistent over time.

c. The model cloud scheme

The model cloud scheme is another possible cause
that explains the differences between the model and
observations. The simulated lidar profile is mostly over-
estimated in ice clouds and in boundary layer liquid
clouds as soon as the cloud is created (assuming the
multiple scattering factor is not larger than 0.7 as shown
in Fig. 7). The discrepancy could be caused by several
things, among which are wrong particle sizes, concen-
tration, or water amount, as these parameters directly
influence the lidar profile (see the appendix). Other
parameters, such as the fall velocity of ice crystals could
also induce errors: for example, if the simulated fall
velocity is too small [as suggested in Chiriaco et al.

(2006)], the residence time of ice in the atmosphere is
too long, and the cloud could become optically too
thick. As a first rough attempt to understand the reason
why the simulated lidar profile is overestimated, the
exponential term of the lidar equation can be neglected
[Eq. (A1)] as the exponent term corresponds to the
optical depth that is, on average, lower than 0.5 in the
upper atmosphere and lower than 2 when including the
entire vertical column (Fig. 5b). Then the lidar signal is
reduced to the backscatter coefficient � [Eqs. (A1) and
(A2)], which depends on the backscatter-to-extinction
ratio k, the particle size r, and the particle concentra-
tion n(r). So, errors in those three parameters may be
the cause of the simulated lidar signal overestimation.

The particle sizes simulated by the model for the
dataset under study are shown in Fig. 8: between 1
and 10 �m for liquid clouds and 10 to 40 �m for ice
clouds. As those values seem realistic, the particle
size may not be the cause of the simulated lidar
signal overestimation.

The backscatter-to-extinction ratio k in this range of
particle size is quite constant (Fig. 9), so it may not
be the cause of the simulated lidar signal overesti-
mation.

If r and k are realistic, the overestimation of the
simulated lidar signal is likely to be due to an over-
estimation of the particle number [Eq. (A3)].

In the model, the particle sizes (rice) and (rliq) are
diagnosed from nice(r) and nliq, the latter being con-
stant. Here, r3

ice is proportional to IWC/nice(r) and r3
liq is

proportional to LWC/nliq(r). So the realistic values of
particles size may be due to a simultaneous overesti-
mation of both water contents and particle concentra-
tions. Moreover, �ice is proportional to IWC2/3n1/3

ice,
meaning that an error in the content will have more
impact on the measurement than error in the particle
concentration for both ice and liquid water clouds.

Three possible sources of error have been discussed
in this paper. Nevertheless other ones such as super-
cooled liquid water clouds or pockets of supercooled
liquid water in ice clouds (Hogan et al. 2004) that are
frequently observed in midlatitudes, but are not repro-
duced in the models, cannot be excluded asplaying a
role in the disagreement between observations and
simulations as they would have a direct significant im-
pact on the lidar signal.

7. Conclusions

An intensive comparison of the performance of MM5
to simulate clouds over Europe was presented, by origi-
nal means of statistical comparisons between lidar in

FIG. 7. Sensitivity of the simulated mean signal to the multiple
scattering correction. The three simulated curves correspond to
the following multiple scattering factors: � � 0.3 associated with
the larger values of lidar signal, 0.5 (middle), and 0.7 (smaller
signal).
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space observations and simulations during one month
in the autumn of 2003. Lidar profiles were diagnosed
from model fields, allowing direct comparisons be-
tween observations and simulations, without inversion
of the observed lidar signal. This approach is different
from and complementary to the one used by Mace et al.
(1998), Miller et al. (1999), Miller and Stephens (2001),
and Palm et al. (2005) who used radar and lidars to
evaluate ECMWF cloud prediction.

The main limitation of such model evaluation exer-
cises using lidar data is that the portion of the atmo-
sphere sounded by the lidar corresponds only to clouds
with optical depths typically lower than 2.5, precluding
the study of optically thick clouds. MM5 overestimates
the lidar signals, on average, in the upper troposphere
(z � 6 km) and underestimates it at lower altitudes. A
simple cloud detection was applied identically to both
observed and simulated lidar signals in order to identify
the part of the error due to false cloud occurrence and
to incorrectly parameterized cloud properties in the
model. The discrepancy in cloud occurrence is a result
of disagreement between observations and simulations.
Simulated high cloud with large optical depth are too
frequently produced by the model (40%–50% overes-
timation), while the occurrence of optically thin clouds
is correct or too rare (0%–20% underestimation). Low-
level cloud occurrence seems more correct, although
the masking effect due to high clouds and their simu-

lation–observation differences does not allow a firm
conclusion.

Most of these clouds are not reproduced at exactly
the same time and space as they are observed. The
upper clouds amount missed by the model occur pre-
dominantly when the temperature is very low (�50° to
�60°C), which could be because of a dry bias in NCEP
humidity data in the very upper troposphere that are
used to initialize MM5. The upper-troposphere humid-

FIG. 9. Lidar backscatter-to-extinction ratio as a function of the
particle radius.

FIG. 8. Particle sizes simulated using the 77 ICESat orbits (Data_sim_3). Particle size as a function of (a)
temperature and (b) humidity. Particles with sizes less than 1 �m are neglected.
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ity is usually underestimated by radio sounding. This
could explain the underestimation of the frequency of
thinner tropopause ice clouds. The ice cloud amount
with the temperature ranging between �20° and �50°C
is overestimated most of the time when RHi � 100%.
The supersaturations (RHi � 100% without condensa-
tion) that have been observed in situ in ice clouds (Gie-
rens et al. 2000; Ovarlez et al. 2002) and that are not
reproduced in models (that condensate as soon as
RHi � 100%) may explain part of this overestimation.
Another possibility is that when the cloud is created in
the model, it is optically too thick and/or too persistent
in time. The low-level cloud amount is slightly under-
estimated between 60% and 100% of RHw at higher
temperatures. That could be an artifact due to the
simple cloud detection used here, which does not allow
differentiating between aerosols and clouds. That could
also result from the fact that MM5 does not consider
fractionary clouds, hence inhibiting subgrid-scale cu-
mulus clouds to appear at lower RH than 100% over
the whole model cell.

When high clouds occur simultaneously in both ob-
servations and simulations, the simulated lidar signal is
systematically higher than the observed one. It is the
same in low-level water clouds, but ICESat does not
provide a representative figure of those optically thick
clouds. There is no evident link between this overesti-
mation and the atmospheric thermodynamical condi-
tions. Because the variability of the size of the particles
composing these clouds is reasonable, on average, in
the model in both ice and liquid water cloud, this indi-
cates that as soon as the model creates a cloud, the
particle concentration and the water content (liquid or
ice) are simultaneously too large (assuming the cloud is
not composed of very small particles so that the mul-
tiple scattering factor is not higher than 0.7). The liquid
particle number is considered as constant in the model
whereas the ice particle concentration is parameterized.

Finally, this study shows that active spaceborne re-
mote sensing observations can be used to evaluate the
ability of meteorological mesoscale models to simulate
clouds, and particularly high clouds in a systematic
manner, using a simple and robust model-to-
observation approach. The advance over comparisons
done with passive cloud observation is the direct infor-
mation on the cloud height. Our analysis offers some
possible explanations for these discrepancies, but a full
understanding requires complementary datasets to the
lidar because of the masking of low clouds by high
clouds. More over the results obtained here are based
on a limited dataset (one month in the autumn), which
is not neutral with respect to the cloud type and model
performances (e.g., one may expect the limitation of

convection scheme to be less crucial here). Future ob-
servations collected simultaneously with lidar and radar
in space (Stephens et al. 2002) should allow extending
this kind of study to optically thicker clouds and get
more valuable results for the low-level water clouds.
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APPENDIX

Lidar Equation

The lidar equation can be written as

S��zz2 � K���sca,part,��z


 �sca,mol,��z�e�2����sca,part,�
�sca,mol,��z� dz ,

�A1

where S�(z) is the lidar signal (W m�2 sr�1), K� is the
calibration constant, �sca,part,� and �sca,mol,� are the lidar
backscatter coefficient (m�1 sr�1) for particles and mol-
ecules, � is the multiple scattering coefficient, and � is
the attenuation coefficient (m�1). Here,

�sca,part,��z � kpart�z�sca,part,��z, �A2

where k is the backscatter-to-extinction (sr�1) ratio
proportional to the particle scattering phase function in
backscattering. Here,

�sca,part,��z � � �r2Q��rn�r, z dr, �A3

where �sca,part,� is the attenuation coefficient due to the
scattering processes, r is the radius (m), Q�(r) is the
scattering efficiency, and n(r, z) is the size distribution
(m�3).
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