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ABSTRACT

Currently, operational weather forecasting systems use observations to optimize the initial state of a
forecast without considering possible model deficiencies. For precipitation assimilation, this could be an
issue since precipitation observations, unlike conventional data, do not directly provide information on the
atmospheric state but are related to the state variables through parameterized moist physics with simplifying
assumptions. Precipitation observation operators are comparatively less accurate than those for conven-
tional data or observables in clear-sky regions, which can limit data usage not because of issues with
observations, but with the model. The challenge lies in exploring new ways to make effective use of
precipitation data in the presence of model errors.

This study continues the investigation of variational algorithms for precipitation assimilation using col-
umn model physics as a weak constraint. The strategy is to develop techniques to make online estimation
and correction of model errors to improve the precipitation observation operator during the assimilation
cycle. Earlier studies have shown that variational continuous assimilation (VCA) of tropical rainfall using
moisture tendency correction can improve Goddard Earth Observing System 3 (GEOS-3) global analyses
and forecasts. Here results are presented from a 4-yr GEOS-3 reanalysis assimilating Tropical Rainfall
Measuring Mission (TRMM) Microwave Imager (TMI) and Special Sensor Microwave Imager (SSM/I)
tropical rainfall using the VCA scheme. Comparisons with NCEP operational analysis and the 40-yr EC-
MWF Re-Analysis (ERA-40) show that the GEOS-3 reanalysis is significantly better at replicating the
intensity and variability of tropical precipitation systems ranging from a few days to interannual time scales.
As a further refinement of rainfall assimilation using the VCA scheme, a variational algorithm for assimi-
lating TMI latent heating retrievals using semiempirical parameters in the model moist physics as control
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variables is described and initial test results are presented.

1. Introduction

Observations containing information on precipita-
tion processes have become increasingly available from
spaceborne microwave sensors in the past decade, and
more is expected with the Global Precipitation Mea-
surement (GPM) mission now in formulation (National
Aeronautics and Space Administration 2006). These
measurements include radar reflectivity from TRMM
and GPM, brightness temperatures from microwave ra-
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diometers (e.g., TMI, SSM/I, AMSR-E, SSMIS,
MADRAS, GMI, CMIS) and sounders (e.g., AMSU,
ATMS, MHS) (see list of acronyms in the appendix), as
well as precipitation rates and latent heating profiles
derived from these measurements (Simpson et al.
2000). In recent years, significant progress has been
made in using these observations in data assimilation to
improve atmospheric analyses and forecasts. Numerical
weather prediction centers such as the NCEP, JMA,
and ECMWF have begun using precipitation data or
rain-affected microwave brightness temperatures in op-
erational forecasts (Treadon et al. 2002; Aonashi et al.
2004; Marecal and Mahfouf 2003; Bauer et al. 2006).
Currently, precipitation information (either retrievals
or rain-affected radiances) is assimilated in NWP sys-
tems much the same way as any other data to optimize
the initial state for a better forecast. To this end, the
system requires an “observation operator” capable of
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relating the observable to the initial state with reason-
able accuracy. In this regard, precipitation assimilation
poses a special challenge.

Unlike conventional data, precipitation observations
do not directly provide information on the atmospheric
state in terms of temperature, wind, and moisture but
are related indirectly to these variables through param-
eterized moist physics with simplifying assumptions. As
a result, precipitation observation operators are inher-
ently less accurate than those for conventional data or
observables in clear-sky regions. In variational data as-
similation, moist physics schemes are often further sim-
plified and linearized to facilitate the construction of
tangent linear and the associated adjoint models. Ac-
curacy of precipitation observation operators is there-
fore a key issue in using precipitation information in
data assimilation.

Precipitation observation operator errors and a por-
tion of forecast model errors arise from the same moist
physics parameterizations, which influence both model-
generated rain and the model trajectory. Within the
framework of traditional analysis schemes, which use
the forecast model as a strong constraint, model errors
cannot be mitigated in the assimilation procedure. Er-
rors in the rain observation operator can only be sta-
tistically accounted for as a part of the total observation
error covariance but not corrected. In such systems pre-
cipitation is assimilated only at locations where the ob-
servation operator based on the model physics is suffi-
ciently accurate, while in practice, model errors can re-
strict data usage. For instance, in the assimilation of
rain-affected microwave radiances at ECMWF, chan-
nels that are more sensitive to scattering by model-
generated solid precipitation are not used (Moreau et
al. 2004). Precipitation assimilation using the model as
a strong constraint can also produce moisture fields in
conflict with other types of observation such as total
column water vapor (Lopez et al. 2006). Yet, the ability
to use precipitation information to improve analysis
products is important since the representation of the
global hydrological cycle remains a serious problem,
even in state-of-the-art NWP analysis systems (Ander-
sson et al. 2005).

In seeking ways to use the available precipitation
data more effectively, one strategy is to develop assimi-
lation algorithms using the forecast model as a weak
constraint to improve the precipitation observation op-
erator within an analysis cycle. For example, model er-
rors of a prescribed temporal form can be estimated
along with other increments of state variables within a
four-dimensional variational data assimilation (4DVAR)
precipitation assimilation scheme (Zupanski 1997;
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Zupanski et al. 2002). While applying weak constraints
to a full analysis system is computationally demanding,
for precipitation assimilation one can exploit the close
relationship between precipitation and moist physics to
use column model physics as a weak constraint. Hou et
al. (2000, 2001, 2004) developed a 1D variational con-
tinuous assimilation (VCA) procedure for precipitation
assimilation by assuming that forecast errors in rain
arise primarily from model deficiencies rather than the
initial condition and explored the benefits of relaxing
the perfect model assumption. In a series of experi-
ments, they showed that rainfall assimilation using the
VCA scheme is effective in improving global analyses
and forecasts, providing a strong incentive for pursuing
the weak constraint approach for assimilating precipi-
tation-related information such as clouds, rain, and la-
tent heating, either in the measurement space or as
geophysical retrievals.

Building on the work of Hou et al. (2000, 2001, 2004),
this paper further investigates assimilation of precipita-
tion-related observations using the model as a weak
constraint. In section 2, we discuss a prototype problem
illustrating the issues with using the model as a strong
constraint in assimilating rainfall data in the presence of
known model physics deficiencies. Section 3 describes
the general variational assimilation methodology using
column model physics as a weak constraint. Section 4
compares a 4-yr Goddard Earth Observing System 3
(GEOS-3) global reanalysis assimilating tropical rain-
fall data using the VCA scheme with the operational
NCEP/GDAS analysis and ERA-40 reanalysis. Section
5 discusses a strategy for further improvement through
assimilation of TRMM-derived latent heating profiles
using semiempirical parameters in the moist physics as
control variables. Section 6 concludes with a discussion
of future research directions and how column model
weak constraints may be incorporated into a traditional
3DVAR or 4DVAR data assimilation system.

2. Model error issues in precipitation
assimilation

Conventional data assimilation algorithms are not
designed to address errors arising from model deficien-
cies. Under the “perfect model” assumption, the fore-
cast model is used as a strong constraint, with model
forecast errors attributed to uncertainties in the initial
state. However, in global forecast systems the model-
predicted precipitation is diagnosed from changes in
the time tendency of moisture, which are strongly in-
fluenced by moist physics parameterizations. If discrep-
ancies between the predicted and observed rain arise
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FiG. 1. An example of 1 + 1D variational assimilation of precipitation by means of initial-state adjustment (method A)
vs model time-tendency correction (method B) over a 6-h analysis window at a model grid location: total column water
vapor (TCWV) (a) at initial time 0000 UTC and (b) at 0600 UTC, and (c) 6-h-averaged rain rate. Shown in each panel
are observations (OBS), model first guess (FGS), analysis by method A (ANA,), and analysis by method B (ANAy).

primarily from errors in the model physics rather than
the initial state, attributing errors solely to the initial
state can lead to excessive corrections on the initial
state, resulting in either a degraded analysis or an out-
right rejection of useful observations.

The issue of model errors in precipitation assimila-
tion can be illustrated with a simple experiment using a
1 + 1D (column and time) variational assimilation sys-
tem. The model in this case consists of a column model
of GEOS moist physics with dynamic forcing pre-
scribed from a full GEOS GCM simulation. The initial
moisture field is slightly drier in terms of the observed
total column water vapor (TCWV). The 6-h forecast by
the column model produces excessive rain compared
with the TMI retrieval over the analysis window, end-
ing with a distinctly drier state compared with the ob-
served TCWV (Fig. 1).

We compare two variational schemes for assimilating
TMI rain rates over the 6-h window. Both schemes
minimize quadratic misfits between the 6-h average
model rain and TMI rain, but each uses a different
control variable. Method A uses the column model as a
strong constraint by adjusting the initial state. In
method B, the control vector is formulated in terms of
incremental corrections on moisture tendency, which
are applied at every time step during the 6-h model
integration to better match the observed rain rate. In
both cases, the error covariance statistics for the initial
(background) state, moisture tendency correction, and
observations are as prescribed in Hou et al. (2004).

Results show that, when model errors are present but
subsumed in a prescribed observation error covariance,

method A attempts to match the observed rain rate by
reducing the initial moisture field, resulting in an even
drier state at 0600 UTC. By relaxing the model as a
strong constraint to include moisture tendency correc-
tions to compensate for model errors, method B not
only reduces the excessive rain over the 6-h window but
also improves the final moisture field at 0600 UTC
(Figs. 1 and 2). These results show that, in the presence
of model deficiencies, rainfall assimilation using the
model as a strong constraint can lead to inconsistencies
between analysis variables. Specifically, a rainfall as-
similation scheme that attributes errors in the model
physics to errors in the initial state can improve model
precipitation but at the same time degrade analyses of
other variables such as moisture. Worse still, it could
lead to the erroneous conclusion that precipitation ob-
servations are not useful for improving atmospheric
analyses, while the problem is not with the data but how
the data is used.

The above illustrations consist of two extreme ex-
amples—one attributing model forecast errors solely to
initial state errors and the other to model deficiencies.
In reality, both types of errors can contribute to model
forecast errors, but disentangling these two sources of
errors knowing only model forecast errors is a major
challenge. But large biases often found in precipitation
forecast-minus-observations statistics are likely indica-
tive of the presence of significant model errors. Some
form of assimilation algorithm with the model as a
weak constraint will likely improve the use of precipi-
tation observations in data assimilation. In practice, one
strategy is to adopt a two-stage sequential approach by
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F1G. 2. Minimization solution for the case shown in Fig. 1: (left) correction to the initial
moisture profile and (right) time-integrated moisture time-tendency correction over the 6-h

window.

first assimilating observations of the atmospheric initial
state to optimize the state variables, followed by the
assimilation of rain-affected observations using the
model moist physics as a weak constraint.

3. Assimilation of precipitation information using
the model as a weak constraint

In a general weak-constraint variational framework,
a set of chosen parameters associated with model errors
is estimated along with the model state in a variational
analysis. The trajectory of the model during the assimi-
lation window is influenced not only by adjustments of
the initial state, but also corrections to model time ten-
dencies or other model parameters. The control vari-
able can be defined as an augmented vector of the
model state, x, and model error parameters, w, with
prescribed error covariances. The goal is to use infor-
mation from observations to estimate and correct not
only the initial state but also model errors. This work
focuses on using precipitation-related observations
such as precipitation rates and latent heating profiles to
estimate and correct the model deficiencies associated
with moist physics. Within the framework of a tradi-

tional analysis system, precipitation-derived model cor-
rections may be applied subsequent to initial-state cor-
rections using other observations within the same
analysis window, as in Hou et al. (2000, 2004).

We consider a variational parameter-estimation pro-
cedure, which seeks to minimize the functional,

Jw) = dw)'Q'w) + (y —y)'"R Yy —y9), (1)

where y” is the observed rain rate or latent heating
profile; y = H(w), where H is a 1 + 1D observation
operator based on a time integration of the column
model physics initialized with analysis using standard
observations and forced with large-scale tendencies
from a corresponding GCM forecast over the analysis
window. The control variable, dw, which is held con-
stant over the analysis window, consists of time ten-
dency corrections on temperature and moisture (for
precipitation assimilation), or adjustments to param-
eters in moist physics schemes (for latent heating as-
similation). Here Q and R are error covariances for a
prior estimate of w and observations, respectively. For
precipitation assimilation, the 8w correction is applied
to model moisture tendency to compensate for model
deficiencies during the model time integration in evalu-
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ating the model rain within the iteration loops for solv-
ing (1). Similarly, for latent heating assimilation, the
adjustments to moist physics parameters are updated
within each iteration loop. For further details, see Hou
et al. (2004) for surface rain assimilation and section 5
for latent heating assimilation.

For rainfall assimilation, several implementations of
(1) as a VCA incremental moisture-tendency correc-
tion scheme have been examined in terms of their im-
pact on different aspects of GEOS global analyses and
forecasts. Hou et al. (2000, 2001) showed that assimila-
tion of TMI and/or SSM/I rain retrievals using the VCA
scheme improves not only precipitation analysis but
also related climate parameters such as the upper-
tropospheric moisture and top-of-the-atmosphere ra-
diative fluxes. Hou et al. (2004) provided examples of
improved hurricane track forecasts and precipitation
forecast threat scores using the VCA scheme. However,
these early studies were based on limited months of
assimilated data. In the following section, we will use
four years of the GEOS-3 “TRMM reanalysis” to ex-
amine the VCA scheme as a way for improving the
representation of precipitation intensity and variability
in global analysis.

4. Global reanalysis with continuous rainfall
assimilation

Understanding climate variability over a wide range
of space—time scales in terms of the complex interac-
tions of the underlying physical processes requires a
comprehensive description of the earth system. Global
analyses produced by fixed assimilation systems (i.e.,
reanalyses) that combine observations from diverse
sources with information from physical models—as
their quality continues to improve—may be crucial for
meeting this challenge. However, at the present time
the utility of global reanalyses is limited by uncertain-
ties in basic hydrological fields such as clouds, precipi-
tation, and evaporation (World Climate Research Pro-
gram 1998)—especially in the tropical precipitation,
where conventional observations are relatively sparse.

Uncertainties in tropical precipitation and latent
heating distributions have been a major impediment to
understanding how the Tropics interact with other parts
of the globe, including the remote response to tropical
El Nifo-Southern Oscillation (ENSO) variability on
interannual time scales, and the possible global influ-
ence of the Madden—Julian oscillation (MJO) and mon-
soons on intraseasonal time scales. A global atmo-
spheric analysis capable of capturing the observed
tropical rainfall variability accompanied by physically
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consistent estimates of wind, temperature, and mass
fields is the key to breaking this roadblock.

Analyses of the tropical atmosphere have long been
shown to be sensitive to the treatment of cloud/
precipitation processes, which remains a major source
of uncertainty in the current model (e.g., Trenberth and
Olson 1988). Yet, for many climate applications, it is
essential that analyses can accurately depict the ob-
served rainfall intensity and variability since what ap-
pear to be small errors in rain rate correspond to sizable
uncertainties in the earth’s energy balance. Roughly, an
error of 1 mm day ! in surface rain rate is equivalent to
30 W m 2 of latent heat flux in the energy budget.
Currently, discrepancies in monthly mean rain rates be-
tween global analyses and Global Precipitation Clima-
tology Project (GPCP) satellite gauge estimates can ex-
ceed 4 mm day ! at the horizontal resolution of 100 km,
which correspond to over 120 W m ™2, representing a
substantial uncertainty in the surface energy balance.
The aim of this study is to investigate whether space-
borne rainfall data from passive microwave sensors can
be used to significantly improve the representation of
precipitation in 4D global reanalyses.

a. GEOS-3 TRMM reanalysis

The TRMM reanalysis is a 1° X 1° global analysis
that assimilates TMI and SSM/I surface rainfall over
tropical oceans every 6 h using the VCA scheme in the
GEOS-3 global data assimilation system (Hou et al.
2004). In addition to TMI and SSM/I rain rates, the
system assimilates all conventional and satellite data
used in the standard GEOS-3 system. The TRMM sat-
ellite, developed jointly by NASA and JAXA (formerly
NASDA), was launched on 27 November 1997 (Simp-
son et al. 2000) and is currently operating in its ninth
year. The TRMM reanalysis extends from 1 November
1997 through 31 December 2002, covering the first five
years in orbit. The start date was set to 1 November
prior to the TRMM launch using SSM/I rainfall data to
include the peak phase of the 1997-98 El Nifio. A
unique feature of the GEOS-3 TRMM reanalysis is that
its precipitation is not derived from a short-term fore-
cast (as done at operational NWP centers) but given by
a time-continuous model integration constrained by ob-
servations (including precipitation data) in a 6-h analy-
sis window within the incremental analysis update
(IAU) framework of the system. As a result, the wind,
temperature, and mass fields can directly respond to
the improved precipitation and associated latent heat-
ing patterns during the assimilation cycle, which is cru-
cial for realizing the full benefit of precipitation assimi-
lation.
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FI1G. 3. Hovmoller diagrams of MJO signals in daily precipitation over oceans averaged from 10°S to 10°N for 2001.
(left to right) GPCP, NCEP/GDAS, ERA-40, and GEOS-3/TRMM.

b. Comparison of TRMM reanalysis with NCEP
GDAS analysis and ERA-40

Current global general circulation models and analy-
ses have only limited capability to accurately reproduce
the intensity and propagation of tropical precipitation
systems and intraseasonal oscillation patterns (Lin et al.
2006). Shown in Fig. 3 are Hovmoller diagrams of MJO
signals in precipitation over tropical oceans averaged
between 10°N and 10°S from three global analyses and
the GPCP satellite gauge estimate (Global Precipita-
tion Climatology Project 2004). The three analyses con-
sist of ERA-40 (European Centre for Medium-Range
Weather Forecasts 2004), which does not assimilate
precipitation data; the operational NCEP/GDAS
analysis (National Center for Environmental Prediction
2004), which assimilates TMI and SSM/I rainfall rates
in its 3DV AR system (from 16 October 2001); and the
GEOS-3/TRMM reanalysis. Compared with GPCP es-
timates, the ERA-40 precipitation is overly active and
more intense, while the GDAS analysis underestimates
the MJO intensity and variability. By assimilating 6-h

TMI and SSM/I rain rates using the VCA scheme, the
GEOS-3/TRMM reanalysis is able to closely replicate
the observed intensity and propagation of tropical pre-
cipitation systems. Figure 4 shows that of the three
analyses, the TRMM reanalysis has smallest biases and
rms errors, as well as better temporal correlations with
respect to GPCP estimates.

To assess the extent to which precipitation assimila-
tion accounts for the agreement between the TRMM
reanalysis and GPCP, a GEOS-3 control assimilation
without rainfall data was performed for 1 May through
31 August 1998, which corresponds to the intensive ob-
servation period (IOP) of the South China Sea Mon-
soon Experiment (SCSMEX). Figure 5 shows that rain-
fall assimilation reduces the rms errors and improves
temporal correlations of the GEOS-3 precipitation
analysis relative to GPCP estimates over this 4-month
period. The fact that the GEOS-3 control, NCEP, and
ERA-40 analyses have comparable rms errors and cor-
relations with GPCP suggests that the better GEOS-3/
TRMM rainfall analysis is due to rainfall assimilation
rather than a better baseline GEOS-3 system. The im-
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circle), NCEP/GDAS (dash line), and ERA-40 (solid line).

proved outgoing longwave radiation (OLR) in GEOS-3
analyses as a result of rainfall assimilation is shown in
Fig. 6.

The positive impact of precipitation assimilation on
tropical dynamical fields in the GEOS-3/TRMM re-
analysis was examined in detail in Hou et al. (2004) in
terms of synoptic features in hurricanes. Figure 7 shows
that the improved precipitation in the TRMM reanaly-
sis relative to the GEOS-3 Control directly modifies the
monthly mean omega velocity at 500 hPa and the hori-
zontal divergent wind at 200 hPa. Given the tight cou-
pling between latent heating and vertical motions in the
Tropics, the changes in the omega velocity closely cor-
related with the changes in the horizontal precipitation
pattern are likely improvements, which cannot be di-
rectly verified with observations. The horizontal wind
can also benefit from the improved precipitation pat-
tern, but the vertical profile of latent heat must also be

improved to effectively upgrade the divergent wind
analysis (see section 5).

A wavelet analysis of a 4-yr (1998-2001) time series
of precipitation averaged over the region 4°S—4°N,
120°-160°E (over the warm pool) has been performed.
Results show that the GEOS-3/TRMM reanalysis is
considerably better at capturing the observed intensity
and variability of precipitation as verified against
GPCP. Shown in Fig. 8 are the wavelet time correla-
tions and rms errors as a function of the oscillation
period. Compared with the GDAS analysis and ERA-
40, the TRMM reanalysis has significantly higher time
correlations with GPCP precipitation and smaller rms
errors for all time scales longer than a few days.

As an example of the internanual variability in pre-
cipitation captured in global analyses, Fig. 9 displays
changes in the January-mean tropical precipitation be-
tween the 2001 La Nifia and the height of 1998 El Nifio.
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Consistent with results of the wavelet analysis, the
TRMM reanalysis is in closer agreement with GPCP
than either the GDAS or ERA-40, and has notably
smaller RMS errors than the GEOS-3 analysis without

precipitation data. The tropical-averaged rms depar-
tures from GPCP rain rates are 2.23 mm day ' for the
TRMM reanalysis, 3.46 mm day ' for GDAS analysis,
and 4.36 mm day ' for ERA-40, much larger than the
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estimated uncertainty of the GPCP analysis on the or-
der of 20%, or 0.6 mm day ' (Adler et al. 2003).

5. A variational algorithm for tropical latent
heating assimilation

The vertical structure of latent heat release from pre-
cipitation processes in the Tropics is strongly coupled to
the vertical motion field and large-scale circulation pat-
terns (Houze 1982). In global forecast models, latent
heating profiles are determined by moist physics pa-
rameterizations derived empirically with limited obser-
vations. Typically, the parameters prescribed in moist
physics schemes are static, homogeneous, and indepen-
dent of the atmospheric state. Bayesian retrievals of
precipitation from microwave sensors such as TMI us-
ing the simulated cloud database from a cloud-resolving
model (CRM) can also provide latent heating struc-
tures that are radiatively compatible with multichannel
TMI brightness temperature measurements (Tao et al.

2006). By comparison, the parameterized latent heating
profiles in global forecast models, which are not subject
to similar constraints, are likely to be less accurate. The
possibility that assimilation of CRM-based retrievals
of latent heating profiles can improve the accuracy of
global analyses is attractive and remains to be explored.
In this section we examine the viability of the varia-
tional algorithm proposed in section 3 for matching
model latent heating rates with TMI retrievals. The al-
gorithm seeks adaptive corrections of a set of selected
parameters to reduce misfits between the 6-h average
model latent heating profiles and retrievals. The advan-
tage of parameter estimation within the data assimila-
tion framework is that the derived parameters are con-
sistent with an analyzed rather than a simulated (and
often biased) atmospheric state. It also offers a way to
accommodate the fact that subgrid-scale convective
events and microphysical properties can vary from one
model grid to another and that the aggregate influence
of this subgrid-scale variability cannot be captured by
current parameterized schemes with global constants.
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Fi1G. 8. Wavelet analysis of 4-year (1998-2001) time series of precipitation averaged over the
warm pool (4°S—4°N, 120°-160°E): (top) time correlations with GPCP data as a function of
oscillation period for GEOS-3/TRMM (open circle), NCEP/GDAS (dash line), and ERA-40
(solid line); and (bottom) wavelet rms errors, 120°~160°E, with respect to GPCP.

The challenge in this approach lies in matching the
modeled and observed latent heating profiles of many
degrees of freedom with a limited set of parameters to
which the heating rates are responsive. For a given
heating profile, the degrees of freedom correspond to
the number of model levels over the heating depth,
which typically exceeds 15 in this example. Moreover,
matching the net latent heating rates can lead to unre-
alistic structures of convective and stratiform heating
since they represent different processes: convective and
stratiform heating profiles must be matched individu-
ally with observations, effectively doubling the number
of degrees of freedom.

The selection of model physics parameters as a con-
trol variable is based on a series of sensitivity experi-
ments using the column model of GEOS-3 moist phys-
ics (Hou et al. 2004). The experimental design is similar
to what is often used in model physics development but
focuses only on precipitation events. Empirical param-
eters in moist physics schemes were perturbed individu-
ally to determine their impact on the model heating
profile. Four empirical parameters that emerged as
having the largest impact on the vertical distribution of
latent heating were selected as the control vector: 1) the

convective adjustment time (which controls the convec-
tive mass flux), 2) the minimum critical relative humid-
ity at the cloud top, 3) the fraction of cloud liquid that
evaporates into the large-scale environment at the
cloud top, and 4) the ratio of water/ice in stratiform
precipitation. The error standard deviations of these
parameters are prescribed to ensure that they are physi-
cally meaningful and that the heating rates are within
bounds of observed values. The assigned error standard
deviation is 50% for the convective adjustment time
and 20% for the remaining three parameters. Since this
algorithm is not designed to turn off model heating
where there is no observed heating, the algorithm is
applicable only where latent heating is present in both
the model and the observation. In practice, latent heat-
ing assimilation can be implemented with the VCA of
surface rain to improve the convective and stratiform
latent heating structures over rainy locations.

Figure 10 shows two examples of the extent to which
this four-parameter algorithm can match the observed
heating structures. In case A, the model first guess has
excessive convective heating aloft, with a maximum dif-
ference of ~30 K day ' at 400 hPa, while the discrep-
ancies in startiform heating/cooling is even more pro-



NOVEMBER 2007 HOU AND ZHANG 3875

%QH GPCP

%g“ i mm d’

10N A 13
% 1
55 - 2
%

205 1 =1

255

305

30N

25N 1

20N - mm d'

15N -

10N 13
5N 1 g
EQ 4 6
55 —d
1] ~12

205 1 —~1&

255 -

305

30N

25N

%8” ] mm d-!

10N - 13
‘
55 - : -
1] L. il A 2

] Oy 9, ) OES" FESR W Z1%

IR e

255 g

305 ' . o :

Son NCEP GDAS (RMSE = 3.46)

25N

a0 oy

10N A 13
g,
55 - 2
=

205 1 =12

255 -

305

30N

15N 1 18
10N - !
5N - 6
EQ - 1
551 -6
193] ~12

205 - —tks,

255 -

305 :

120E 180 120W 60W 0

FiG. 9. Changes in tropical precipitation between January 2001 (La Nifia) and January 1998 (El Nifio): (top to
bottom) GPCP, GEOS-3/TRMM, GEOS-3/Control, NCEP/GDAS, and ERA-40. Contours indicate positive val-
ues.

e
(o))
[
m



3876

hPa Q1 convective

110

JOURNAL OF THE ATMOSPHERIC SCIENCES—SPECIAL SECTION

VOLUME 64

Q1 stratiform

T80 case A
270
400
540
690

810

900

960

case A

hPa

30 —60 -40 -20 0 20 40 60 80

110
1e0 case B
270
400
540
690

810

900

960

case B

20 -10 0 10 20 30 40 50

(K d™)

-0 0 10 20 30 40

(K d™)

60 40 -30 -20

FiG. 10. (left) Convective and (right) stratiform latent heating profiles for TMI retrieval
(solid), column-model first guess (open circle), and minimization solution of the latent heating
assimilation algorithm (closed circle). (top) Case A is for 0000 UTC 4 Jul 2001 at 15°N, 132°E;
(bottom) case B is for 0600 UTC on the same day at 4°S, 100°E.

nounced (roughly 60 K day'). Latent heating assimi-
lation significantly improves both heating profiles, with
rms error reduction of 55% and 26% for convective and
stratiform heating rates, respectively.

By contrast, in case B, the quadratic misfits between
the model heating profiles and the retrievals are rela-

tively uniform with height. The minimization conver-
gence is slow and the rms errors in latent heating struc-
tures are reduced only slightly—by 18% in stratiform
heating and unchanged in convective heating. The ef-
fectiveness of the minimization procedure appears to
depend upon the structure and amplitude of the model-
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minus-observed departures. This is likely a result of the
nonuniform sensitivity with height of the heating pro-
files to the selected parameters. Given the nonlinear
relationships between the heating structures and the
parameters, it is difficult to generalize the heating re-
sponse to parametric perturbations since they are
highly state dependent.

The above procedure shows promise for assimilating
latent heating as a further enhancement to precipitation
assimilation. In addition to improving the intensity and
horizontal pattern of surface rain using the VCA
scheme, the technique allows us to refine the vertical
distribution of latent heating to further improve the
vertical motion field. We are currently implementing
this latent heating assimilation procedure in the GEOS
system, together with a comprehensive quality control
and data selection procedure, to perform data impact
studies. Results will be presented in a follow-on paper.

6. Concluding remarks

The current generation of global analysis systems can
have significant errors in basic hydrological fields such
as clouds and precipitation. This paper examines the
prospect of improving the quality of global analyses by
assimilating precipitation-related observations using
column model moist physics as a weak constraint. We
generated a 4-yr GEOS-3 reanalysis that assimilates
TMI and SSM/I tropical rainfall using a variational con-
tinuous assimilation scheme and compared results with
the operational NCEP GDAS analysis and ERA-40.
Results show that the GEOS-3 reanalysis with VCA
rainfall assimilation is significantly better at replicating
the intensity and variability of tropical precipitation
systems ranging from a few days to interannual time
scales.

In the near term, accuracy of observation operators
based on parameterized physics will continue to be an
issue in precipitation assimilation. Assimilation algo-
rithms using the model as a weak constraint provide an
opportunity for making online estimation and correc-
tion of model physics errors to improve precipitation
observation operators within an analysis cycle. Success-
ful implementation of this strategy in global NWP sys-
tems can lead to better use not only of available radi-
ance measurements but also multichannel retrievals le-
veraging off more detailed physics of cloud-scale
models.

Adding to a growing body of literature on the ben-
efits of precipitation assimilation based on column
model physics, this study offers further evidence that
precipitation assimilation using the VCA scheme with a
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moisture tendency correction is very effective in allow-
ing the GEOS global analysis to capture the observed
intensity and variability of tropical precipitation sys-
tems on a wide range of time scales. As a strategy for
further improvements, this study examines a variational
algorithm within the general framework of parameter
estimation to assimilate satellite-retrieved vertical la-
tent heating structures in conjunction with rainfall as-
similation. The algorithm minimizes quadratic misfits
between the modeled and observed latent heating pro-
files using selected semiempirical parameters in the col-
umn model moist physics. The initial column-model
test results are encouraging, but the full impact of this
technique for latent heating assimilation in global sys-
tems has yet to be explored.

Model error corrections based on the 1 + 1D varia-
tional algorithm for precipitation and/or latent heating
assimilation can be incorporated into a traditional
3DVAR or 4DVAR system following the conventional
data analysis within an analysis cycle. In the GEOS-3
system, which uses IAU increments with a 3DVAR
Physical-Space Statistical Analysis System, the VCA
procedure for precipitation assimilation is performed
after IAU tendencies due to all other observations have
been computed. The rain-induced moisture tendency
corrections and conventional IAU tendencies are ap-
plied together as additional forcing during a 6-h inte-
gration of the full GCM to produce the final analysis. In
this case, precipitation observations over the current
analysis time window are used.

In a standard 3DV AR analysis system without IAU
increments, the VCA procedure for precipitation as-
similation can also be performed after conventional
analysis. The main difference is that the precipitation
data are “future” observations from the current analy-
sis time. The VCA tendency corrections can be applied
as an incremental model error correction on the fore-
cast rainfall in the first-guess field for the next analysis
cycle. In a standard 4DVAR system, the VCA precipi-
tation assimilation can be implemented to provide an
incremental model correction during the model integra-
tion within the conventional analysis window.

While model errors pose special challenges for pre-
cipitation assimilation, the close relationship between
precipitation and moist physical processes also presents
opportunities to quantify model deficiencies through
precipitation assimilation. Extending conventional
analysis systems to assimilate precipitation-related in-
formation using moist physics as a weak constraint
could prove to be an effective strategy for improving
not only the quality of atmospheric analyses and fore-
casts but also moist physics parameterizations.
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APPENDIX
Acronyms

AMSU Advance Microwave Sounding Unit

AMSR-E Advanced Microwave Scanning Radiom-
eter for Earth Observing System

ATMS Advanced Technology Microwave
Sounder

CERES Cloud and the Earth’s Radiant Energy Sys-
tem

CMIS Conical Scanning Microwave Imager/
Sounder

CRM Cloud-Resolving Model

ECMWF European Centre for Medium-Range
Weather Forecasts

ENSO El Nifio-Southern Oscillation

ERA-40  40-yr ECMWF Re-Analysis

GCM General circulation model

GDAS Global Data Assimilation System

GEOS Goddard Earth Observing System

GMI GPM Microwave Imager

GPCP Global Precipitation Climatology Project

GPM Global Precipitation Measurement

TAU Incremental analysis update

10P Intensive Observing Period

JAXA Japan Aerospace Exploration Agency

IMA Japan Meteorological Agency

MADRAS Multifrequency Microwave Scanning Radi-
ometer

MHS Microwave Humidity Sounder

MJO Madden—Julian oscillation

NASA National Aeronautics and Space Adminis-
tration

NASDA  National Space Development Agency of
Japan

NCEP National Centers for Environmental Pre-
diction

NWP Numerical weather prediction

OLR Outgoing longwave radiation

SCSMEX South China Sea Monsoon Experiment

SSM/1 Special Sensor Microwave Imager

SSMIS Special Sensor Microwave Imager/Sounder
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TCWV Total column water vapor

T™I TRMM Microwave Imager

TRMM Tropical Rainfall Measuring Mission
VCA Variational continuous assimilation
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