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ABSTRACT

Predictability limits for seasonal atmospheric climate variability depend on the fraction of variability that
is due to factors external to the atmosphere (e.g., boundary conditions) and the fraction that is internal.
From the analysis of observed data alone, however, separation of the total seasonal atmospheric variance
into its external and internal components remains a difficult and controversial issue. In this paper a simple
procedure for estimating atmospheric internal variability is outlined. This procedure is based on the ex-
pected value of the mean square error between the observed and the general circulation model simulated
(or predicted) seasonal mean anomaly. The end result is a spatial map for the estimate of the observed
seasonal atmospheric internal (or unpredictable) variability. As improved general circulation models be-
come available, mean square error estimated from the new generation of general circulation models can be
easily included in the procedure proposed herein, bringing the estimate for the internal variability closer to
its true estimate.

1. Introduction

Predictability of seasonal climate anomalies can arise
from two possible sources: 1) boundary conditions ex-
ternal to the atmosphere [e.g., sea surface temperatures
(SSTs)] and 2) atmospheric initial conditions. Within
the paradigm of seasonal atmospheric predictability
due to external boundary conditions, the potential for
skillful predictions depends on the fraction of the at-
mospheric seasonal mean variability that is related to
the anomalous boundary conditions and the fraction
that is internal to the atmosphere. The influence of the
anomalous boundary conditions on the atmospheric
seasonal variance can be further augmented by the in-
fluence of atmospheric initial conditions, and in gen-

eral, this influence depends on the separation between
the initial condition and the target forecast season (i.e.,
the forecast lead time).

Based on observational data alone, however, the
separation of seasonal atmospheric variance into its ex-
ternal and internal components, as well as determining
the influence of atmospheric initial conditions on sea-
sonal mean variability, remain difficult and controver-
sial tasks. The difficulty arises because for the indi-
vidual realizations of observed seasonal mean atmo-
spheric anomalies, the estimation of boundary forced
and internal components of the atmospheric variance,
as well as the influence of initial conditions on them,
cannot be made. Alternate approaches for the estima-
tion of seasonal internal variability based on the daily
atmospheric variability have been proposed (Madden
1976; Shea and Madden 1990). These methods rely on
the analysis of the autocorrelation of daily observations
to infer the variance of monthly and seasonal time av-
erages and their comparison with the corresponding ob-
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served interannual variability. Such methods also rely
on various assumptions (e.g., changes in boundary con-
ditions have no influence on the characteristics of daily
variability). Such assumptions could lead to erroneous
estimates for the internal and external variability of
seasonal means (Shukla 1983; Trenberth 1984; Zwiers
1987).

An alternate approach for estimating seasonal cli-
mate predictability is the use of atmospheric general
circulation models (AGCMs). For example, for decom-
position of the seasonal mean atmospheric variability
into its internal and external components, long multiple
realizations of AGCM simulations starting from differ-
ent atmospheric initial conditions, but forced with iden-
tical evolution for the observed boundary conditions
(the so called AMIP simulations), are made. The en-
semble mean of the AGCM-simulated anomaly is the
atmospheric response to the observed boundary forc-
ing, whereas the departure from the ensemble mean is
the component of seasonal mean that is internal to the
atmosphere, making it possible to estimate the atmo-
spheric external and internal variances (Barnett 1995;
Harzallah and Sadourny 1995; Kumar and Hoerling
1995). A similar setup can also be used for estimating
the influence of atmospheric initial conditions on sea-
sonal means; except for this case, AGCM simulations,
in contrast to the long AMIP integrations, start from
observed initial conditions and are of short duration
(Branković and Palmer 2000; Shukla et al. 2000).

Although ensemble AGCM simulations can be used
to decompose seasonal mean atmospheric variability
into its external and internal components, such a pro-
cedure leads to an estimate that is an AGCM’s rendi-
tion of observed atmospheric variability and could be
biased by the AGCM errors. Indeed, AGCM-based es-
timates of external and internal components of seasonal
mean variability show a large range of variations from
one AGCM to another (Shukla et al. 2000; Kumar et al.
2000).

To lessen the influence of AGCM biases, in this pa-
per an approach for estimating the upper bound for the
observed internal variability is outlined, based on the
aggregation of simulations from many different
AGCMs. This procedure provides a local measure for
the seasonal mean atmospheric internal variability. The
estimate depends on the selection of the least-biased
AGCM among the collection of AGCM simulations
one has. Further, as models improve, the procedure
described in this paper can incorporate ensemble simu-
lations from the next generation models, and estimates
for the observed atmospheric internal variability ob-
tained herein can be easily updated. The procedure for
estimating the atmospheric internal variability is de-

scribed in section 2, and results are presented in section
3. As our estimates for the internal and external vari-
ance in section 3 are based on the specification of SST
boundary conditions alone, a discussion in section 4
includes a review of factors that are not included in our
analysis but may influence estimates of external and
internal variance (e.g., the influence of atmospheric ini-
tial conditions, coupled air–sea interactions, etc.). Con-
cluding remarks are presented in section 5.

2. Analysis procedure and data

Within the paradigm of seasonal atmospheric pre-
dictability due to the observed interannual variability in
SSTs, the observed seasonal mean anomalies Oj for the
season “j” can be written as a sum of the atmospheric
response �oj to SSTs and the component �oj due to the
atmospheric internal variability:

Oj � �oj � �oj . �1�

From the perspective of SSTs as the external forcing,
the atmospheric response is considered to be poten-
tially predictable, while the internal variability repre-
sents the unpredictable component of the observed
variability. For ensemble simulations from the AGCM,
the simulated ensemble mean anomaly Mj can be writ-
ten as the sum of the atmospheric response �mj and the
component �mj due to atmospheric internal variability:

Mj � �mj � �mj . �2�

Because of the AGCM biases, the AGCM-simulated
seasonal mean atmospheric response to the boundary
forcing need not be the same as its observed counter-
part. Further, as the atmospheric internal variability for
the AGCM is based on the ensemble mean, it has
smaller amplitude than its observed counterpart (Ku-
mar and Hoerling 1995). In fact, for large ensemble
sizes, the internal variability component in (2) ap-
proaches zero. The corresponding estimates for ob-
served (�2

o) and model-simulated variance of ensemble
mean (�2

m) are given by

�o
2 � �oe

2 � �oi
2 �3�

and

�m
2 � �me

2 � �mi
2 , �4�

where subscript i and e on the right-hand side of Eqs.
(3) and (4) refer to internal and external variance, re-
spectively. The internal variance for the ensemble
mean of AGCM simulations is related to the internal
variance of a single AGCM simulation by a multiplica-
tive factor of 1/n, where n is the number of realizations
in the ensemble (Kumar and Hoerling 1995). As men-
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tioned earlier, for large ensembles the internal variabil-
ity of the ensemble mean of AGCM simulations ap-
proaches zero.

For a season j, the mean-square error (MSE) of the
ensemble mean prediction is

MSEj � �Mj � Oj�
2, �5�

and its expected value, under the assumption that the
observed and the modeled internal variability are un-
correlated, is given by

MSE � �oi
2 � �mi

2 � 	��mj � �oj�
2
. �6�

The expected value of MSE is the sum of three terms:
the observed internal variability, the internal variability
of the ensemble mean of AGCM simulations, and a
term that is the error in the model-simulated atmo-
spheric response relative to the observed response to
SSTs. For large ensembles and an AGCM with unbi-

ased atmospheric response, MSE equals the observed
internal variability and is the lower bound for the MSE
in the paradigm of boundary-forced seasonal predic-
tions. For other cases (e.g., small ensembles and errors
in the AGCM’s atmospheric response to SSTs), the
MSE for the ensemble mean of AGCM simulations is
constrained to always be larger than the observed in-
ternal variability. We use this property of MSE to esti-
mate the internal variability of the observed seasonal
means.

In the present analysis, ensemble mean simulations
from 11 different AGCMs are used. All the AGCM
simulations are the AMIP-type long integrations for
1951–2000 and are forced by the evolution of the ob-
served SSTs. Depending on the model biases and en-
semble size for each AGCM, the spatial distribution of
MSE for each AGCM differs. At each geographical
location, we next find the minimum value of MSE irre-
spective of which AGCM it came from, and the spatial

FIG. 1. Ensemble mean variance (m2) for DJF seasonal mean 200-mb heights simulated by different AGCMs. AGCM simulations are
forced by the observed SSTs and are from 1951 to 2000, and ensemble sizes for different AGCMs range from 7 to 24. The ensemble
mean variance is indicative of SST-forced atmospheric variability.
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map of the minimum value of MSE is our best estimate
for the observed atmospheric internal variability.

To illustrate the application of the proposed proce-
dure, we focus on the December–February (DJF) 200-
mb seasonal mean heights. The National Centers for
Environmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR) reanalysis forms the
basis for the observed anomalies (hereafter referred to
as the observations), and model-simulated heights are
the ensemble mean height anomalies. The minimum
ensemble size for AGCM simulations is 7 while the
maximum ensemble size is 24. We also utilize the av-
erage of ensemble mean anomalies from all 11 AGCMs
and consider the average (or superensemble, hereafter
referred to as the twelfth AGCM) as an additional
specification of the seasonal mean anomaly. The length
of all the AGCM simulations is 49 DJFs from 1951 to
2000. The observed and model-simulated 200-mb
height anomalies are the departures from their respec-
tive climatologies.

3. Results

Shown in Fig. 1 is the ensemble mean variance of
200-mb height anomalies for all 12 AGCMs in our

analysis. This variance corresponds to model variance
in (4) and is dominated by the SST-forced atmospheric
variability. There is a remarkable degree of consistency
in the spatial pattern of variance across different mod-
els. The spatial structure is also consistent with the ex-
pected spatial structure of the atmospheric response to
the tropical SST anomalies related to El Nino–
Southern Oscillation (ENSO; Trenberth et al. 1998).
The amplitude of external variance differs across
AGCMs because of differing model biases influencing
the atmospheric response to imposed SSTs, as well as
the influence of different ensemble sizes leading to dif-
fering contributions of the internal variability [i.e., the
second term on the right-hand side of Eq. (6)].

The total variance of 200-mb observed DJF seasonal
mean 200-mb heights [as in Eq. (3)] is shown in Fig. 2
and is the variance whose internal variability compo-
nent we seek to estimate. Because of the contribution
of the atmospheric internal variability to the seasonal
means, the observed variance, particularly in the extra-
tropical latitudes, is much larger than the variance for
different AGCMs shown in Fig. 1 (where the process of
ensemble averaging leads to a considerable reduction in
the contribution of the model-simulated atmospheric
internal variability).

FIG. 2. Variance of the observed (or reanalysis; m2) DJF seasonal mean 200-mb heights. The variance is computed from the
observed seasonal means from 1951 to 2000.
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The MSE for the ensemble mean AGCM-simulated
anomaly for all 12 AGCMs is shown in Fig. 3. For dif-
ferent AGCMs, such plots correspond to (6) and are
different estimates for the observed seasonal internal
variability of 200-mb heights. Once again, the estimates
for different AGCMs differ because of differing contri-
butions from the AGCMs’ internal variability [the sec-
ond term on the right-hand side of (6)] and because of
differences in AGCMs’ characteristic responses to SSTs
[the third term on the right-hand side of (6)].

At each grid point, the AGCM for which the combi-
nation of the error in the atmospheric response to SSTs
and the contribution of the AGCM-simulated internal
variability adds least to the estimate of the MSE is the
value of MSE closest to the observed internal variabil-
ity. From 12 different estimates of the observed internal
variability, the gridpoint-by-gridpoint minimum value
of MSE across 12 AGCMs is shown in Fig. 4 and is our
best estimate for the internal variability of the observed
200-mb seasonal mean heights. Also shown in Fig. 4
(bottom panel) are the regions over which the mini-

mum value of MSE is significant at the 95% confidence
level based on the Monte Carlo approach (see appendix
for details and further discussion). The estimate of in-
ternal variability in Fig. 4, by design of the experimental
setup of AGCM simulations, is the atmospheric vari-
ability that is not related to the interannual variability
of observed SSTs and cannot be predicted from the
specification of SSTs alone.

One can also estimate the SST-forced external vari-
ability of the observed 200-mb seasonal mean heights
by simply subtracting the total variance in Fig. 2 from
the estimate of internal variability in Fig. 4. This is
shown in Fig. 5 (top panel). This estimate of external
variability is also compared with the variance of 200-mb
observed heights that is linearly associated with Niño-
3.4 SST variability (Fig. 5, bottom panel). In the North-
ern Hemisphere there is a remarkable degree of spatial
resemblance between the two estimates. In the South-
ern Hemisphere, the estimate of SST-related atmo-
spheric variability shows a zonal band of external vari-
ability between 30° and 60°S that is not present in the

FIG. 3. MSE (m2) of the seasonally averaged DJF 200-mb heights for different AGCM simulations. MSE is computed over the
1951–2000 period.
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FIG. 4. (top) The best estimate of the internal variance of observed 200-mb DJF seasonal mean heights (m2). The best estimate is
obtained from the gridpoint-by-gridpoint minimum value of MSE for different AGCMs in Fig. 3. (bottom) A replot of the top panel
with shaded regions indicating where the estimated MSE is significant at the 95% level based on the Monte Carlo approach.
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FIG. 5. (top) The best estimate of the external variance of observed 200-mb DJF seasonal mean heights (m2) obtained by subtracting
the best estimate of internal variance (Fig. 4) from the total variance (Fig. 2). (bottom) Observed 200-mb DJF seasonal mean variance
linearly related to the Niño-3.4 SST index.
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linear estimate based on the Niño-3.4 SSTs. This is re-
lated to the recent trend in the Southern Hemisphere
annular mode (Marshall 2003; Marshall et al. 2004;
Renwick 2004), which to some extent can be replicated
in the AGCM simulations forced with the global SSTs,
however is not present in the atmospheric response to
Niño-3.4 SSTs.

The estimate of SST-forced variability obtained in
the present analysis is slightly larger than the atmo-
spheric variability based on the Niño-3.4 SST index
alone. This is to be expected, as the AGCM simulations
take into account the linear and nonlinear atmospheric
influence of global SSTs. However, the point to note is
that the difference is small in comparison with the mag-
nitude of atmospheric variability that is unrelated to
SSTs (Fig. 4) and will not result in a substantial change
in the signal-to-noise (SN) ratio. The small difference in
the estimate of the external variability based on the
AGCM simulations and that obtained linearly based on
the Niño-3.4 SST index also implies the dominance of
ENSO on the predictability of seasonal means (see also
Hoerling and Kumar 2002).

Shown in Fig. 6 is the spatial pattern of signal-to-
noise ratio obtained from our estimates of the observed

internal and external variability and computed as the
ratio of standard deviation of external and internal vari-
ance. The SN ratio is largest in the tropical latitudes,
decreases in the extratropical latitudes, and conforms
to a long history of the analysis of atmospheric poten-
tial predictability due to SSTs (Kumar and Hoerling
1995; Stern and Miyakoda 1995; Rowell 1998; Zwiers et
al. 2000; Peng et al. 2000; Straus et al. 2003; Kumar et al.
2003).

The SN ratio has direct relevance for the other mea-
sures of seasonal prediction skill (Kumar and Hoerling
2000; Sardeshmukh et al. 2000). In general, the higher
the SN ratio, the higher the skill for the seasonal pre-
diction. The theoretical relationship between the SN
ratio and the expected value of anomaly correlation
(AC) for the atmospheric response as the prediction is
shown in Fig. 7 (top panel). Similar relationships can be
derived for any skill metric (Kumar et al. 2001). The
relationship between the AC and the SN ratio is con-
sistent with our a priori expectations. For example, the
expected value of AC is higher for higher SN ratios,
and asymptotes to one for a large SN ratio.

Also shown in Fig. 7 (bottom panel) is the scatterplot
of SN ratio and the maximum value of the anomaly

FIG. 6. SN ratio estimate for the DJF seasonal mean 200-mb heights computed as the ratio of external-to-internal std dev in Fig. 5
top and Fig. 4, respectively. Higher ratios imply higher potential predictability.
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correlation (which is defined as the point-by-point
maximum value of anomaly correlations from 12
anomaly correlations that are obtained as the temporal
correlation between the AGCM-simulated and the ob-
served anomalies over the 49 DJFs). A close resem-
blance between the scatterplot in Fig. 7 (bottom panel)
and the theoretical relationship in Fig. 7 (top panel) is
striking and reconfirms the theoretical relationship be-
tween the SN ratio and the expected value of predictive
skill.

4. Discussion

In the analysis above, the decomposition of the ob-
served seasonal variance was based on long AMIP

simulations in which the only externally specified forc-
ing was SSTs. Accordingly, the decomposition of ob-
served variance into external and internal components
and the corresponding SN ratio and predictability esti-
mates relate to an estimate of the potential predictabil-
ity of seasonal mean atmospheric anomalies due to
SSTs alone. There are at least three factors that are
missing from the experimental setup of AMIP simula-
tions that could also have an influence on the decom-
position of seasonal mean variance (and our estimate of
potential predictability). These are discussed next.

a. Influence of atmospheric initial conditions

The outstanding scientific question about the influ-
ence of atmospheric initial conditions on the seasonal
predictability is quantifying the role of atmospheric ini-
tial conditions in the seasonal mean variability of the
subsequent season. In the AMIP simulations, the atmo-
spheric variability is far removed from the initial con-
ditions from which the integrations began, and the sta-
tistical characteristics of seasonal mean anomalies are
consistent with observed SST forcing alone.

One can also envision an ensemble of AGCM pre-
dictions from the observed atmospheric initial states,
with different AGCM integrations starting from slightly
perturbed initial conditions. This is a common practice
for the medium-range weather predictions and can also
be extended to seasonal predictions. In this setup of
model integrations, it is possible that the memory of
atmospheric conditions may persist and influence the
atmospheric seasonal variability.

There have been at least two coordinated efforts to
quantify seasonal atmospheric predictability with
AGCM integrations starting from the observed initial
conditions and forced with the observed SSTs (Branko-
vić and Palmer 2000; Shukla et al. 2000). The MSE
error of heights and corresponding predictability esti-
mates obtained from these runs do not seem to differ
dramatically from the ones obtained here. As an ex-
ample, the root-mean-square error (RMSE) of 500-mb
heights over the Pacific–North America (PNA) region
in Table 2 of Shukla et al. (2000) ranges between 29 and
31 for different AGCMs. One interpretation for the
“narrow range” of RMSE is that it represents the ob-
served internal variability. For the 200-mb heights, the
RMSE in our case varies between 40 and 45 for 12
different AGCMs. Following an alternate approach,
Phelps et al. (2004) and Peng and Kumar (2005) ana-
lyzed differences in seasonal mean atmospheric vari-
ability for a target season with different lead times from
the initial conditions. Their results indicate that the
variability of seasonal means approaches its climato-
logical value within a month of the start of AGCM

FIG. 7. (top) Theoretical relationship between SN (x axis) and
the corresponding expected value of AC ( y axis). (bottom) The
same relationship obtained as a scatterplot between the SN ratio
in Fig. 6 and the maximum value of the AC.
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integrations, implying that memory from the initial con-
ditions is lost rapidly and has little influence on con-
straining the envelope of seasonal atmospheric variability.

Another variant of the AGCM integrations is the use
of predicted SSTs (e.g., persisting the observed SST
anomalies at the start of integrations into the forecast
period; Derome et al. 2001; Frederiksen et al. 2001)
together with the start of integrations from the ob-
served initial conditions. However, it is unlikely that the
predictability estimates based on the use of predicted
SSTs will be higher than the “potential predictability”
estimates when observed SSTs are specified.

b. Influence of coupled air–sea interactions

AGCM simulations with specified observed SSTs
lack another crucial factor (i.e., the coupled ocean–
atmosphere evolution). It is possible that the inclusion
of coupled evolution may lead to a higher estimate of
the variance that is external (or predictable), thereby
reducing the MSE of the prediction and leading to a
smaller estimate for the internal (or unpredictable)
component of the observed variability. Model integra-
tions that are most relevant for this formalism are the
coupled seasonal forecasts from the observed ocean
and atmospheric initial conditions, as long coupled
model simulations that can also replicate the observed
history of SSTs are not feasible.

The above described coupled model integrations are
similar to AGCM integrations with observed atmo-
spheric initial conditions discussed in section 4a, the
difference being that the SSTs are now predicted and
the evolution of SST among different realizations need
not be the same as the observed history of SST. As a
consequence, while on the one hand predictability es-
timates might improve because of the inclusion of
coupled ocean–atmosphere evolution, on the other
hand the predictability estimate might degrade because
SST is no longer predicted perfectly.

The availability of the Development of a European
Multimodel Ensemble System for Seasonal to Interan-
nual Prediction (DEMETER) dataset (Palmer et al.
2004) provides an opportunity to assess how the inclu-
sion of coupled ocean–atmosphere evolution changes
the component of observed atmospheric variability that
is unpredictable, and how it differs from the estimate of
the unpredictable component obtained from the AMIP
simulations (Fig. 4). Shown in Fig. 8 is the estimate of
observed atmospheric internal (top panel) and external
(bottom panel) variability based on coupled forecasts
from the DEMETER project. In this analysis we used 6
out of 7 models from the DEMETER project, and the
analysis period is for DJF 1974–2000. One of the
DEMETER models was not used and this allowed the

analysis to start from 1974 (instead of starting from
1980), thereby increasing the sample size and adding six
additional years to the analysis. Otherwise, the analysis
procedure is the same as for obtaining Figs. 4, 5 (top
panels).

The estimate of observed internal and external vari-
ability with the inclusion of coupled evolution (Fig. 8) is
similar to the one obtained based on the AMIP simu-
lations (Figs. 4, 5, top panels). In the tropical and
Northern Hemisphere extratropical latitudes, the exter-
nal variability for DEMETER (Fig. 8, bottom panel) is
higher than its AMIP counterpart (Fig. 5, top panel)
because of the tendency for large ENSO events to be
concentrated during this period. This is consistent with
the fact that the linear ENSO signal for the 1974–2000
period (not shown) is also higher than the correspond-
ing signal for the 1951–2000 period (Fig. 5, bottom
panel). In the Southern Hemisphere extratropical lati-
tudes, on the other hand, the estimate of external vari-
ability based on DEMETER is closer to its counterpart
based on ENSO (Fig. 5, bottom panel) and is consistent
with the fact that beyond the core region of ENSO SST
variability in the equatorial tropical eastern Pacific,
SST predictions based on a coupled model are not skill-
ful in maintaining SST trends and also result in the loss
of corresponding atmospheric response.

The analysis of atmospheric variability based on
DEMETER implies that the influence of the coupled
evolution on the seasonal mean atmospheric variability
that is internal to the atmosphere may not be signifi-
cant, and therefore, predictability estimates obtained
from the AMIP simulations may also represent what is
achievable in the short lead coupled forecasts. An ad-
ditional point to note is that DEMETER runs are ini-
tialized with the observed initial conditions and are
consistent with the discussion in the previous section,
implying that the influence of initial conditions on the
predictability of seasonal means is small.

c. Influence of boundary conditions other than SSTs

Another factor that could have an influence on the
predictability of seasonal climate variability is the ini-
tialization of land boundary conditions or interannual
changes in vegetation amount (Bounoua et al. 2000).
On a conceptual level, the assessment of the influence
of land initial boundary conditions on seasonal predict-
ability follows the same approach as the one discussed
for the assessment of coupled ocean–atmosphere inte-
grations (i.e., an ensemble of short model integrations
from perturbed land–atmosphere initial conditions).

A crucial question related to the possible influence of
land boundary conditions on the seasonal atmospheric
variability is their potential to constrain the tropo-
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FIG. 8. (top) The best estimate of the internal variance of observed 200-mb DJF seasonal mean heights obtained from the coupled
models participating in the DEMETER project. This estimate is the same as the one shown in Fig. 4 based on AMIP simulations.
(bottom) The best estimate of the external variance of observed 200-mb DJF seasonal mean heights obtained by subtracting the best
estimate of internal variance in the top panel from the total observed variance (Fig. 2).
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spheric atmospheric variability. For example, if the in-
fluence of anomalous land boundary conditions (e.g.,
snow and soil moisture) remains confined to the lower
troposphere, the time scale of their influence would be
similar to their decay time scale in isolation. On the
other hand, if the influence of anomalous land bound-
ary conditions penetrates to the upper troposphere and
is able to constrain large-scale circulation, predictability
associated with the land initial conditions is expected to
be larger (and longer lasting). Published research so far
points to the former, that is, the influence of land
boundary conditions is confined to the lower tropo-
sphere alone. For example, Kumar and Yang (2003)
compared the vertical extent of the influence of extra-
tropical snow and tropical SST variability over North
America. Their results demonstrate that although the
remote influence of tropical SST variability on the sea-
sonal mean variability over NA extends throughout the
troposphere, the extent of the influence of snow
anomalies was confined to the lower troposphere.

Also consistent with above results are the estimates
of lag correlations between the soil moisture, surface
temperature, and rainfall anomalies. Almost all obser-
vational and model results suggest the larger influence
of soil moisture anomalies on the surface temperature
on 1–2-month time scales (which results from the direct
influence of soil moisture anomalies on the partitioning
of sensible and latent heat fluxes) and a much weaker
influence on the rainfall anomalies (which are more a
reflection of large-scale circulation features; Wu and
Dickinson 2004; Kanamitsu et al. 2003; Wang and Ku-
mar 1998; Huang et al. 1996).

5. Concluding remarks

The estimate for the internal variability of DJF 200-
mb observed seasonal mean heights in Fig. 4 is our best
estimate of the observed internal (or unpredictable)
component of variability based on the current genera-
tion of AGCMs (and data available to us) that is not
related to the observed history of SSTs. Similarly, Fig.
8 replicates the best estimate of the predictability of
seasonal atmospheric climate anomalies based on the
DEMETER dataset that includes the influence of ob-
served ocean, atmosphere, and land initial states, as
well as the influence of realistic coupling between dif-
ferent components of the earth’s system. Simulations
from the future generation of model integrations and
the corresponding spatial map for MSE can be used to
update the spatial map of the unpredictable component
of variability in Fig. 4 (and in Fig. 8). At the geographi-
cal locations, where the MSE for models is higher than
the current estimate, this will not lead to any update in

the estimate of the unpredictable component of vari-
ability. Only at the geographical location where the es-
timate of MSE is lower than the estimate of variability
in Fig. 4 (Fig. 8) will a lower (higher) estimate of at-
mospheric internal variability seasonal climate predict-
ability be found. It remains to be seen how much of the
internal variability from estimates based on the current
generation of the model simulations, and shown in Figs.
4, 8, can be moved to the variance that is predictable
because of the improved models, higher resolution, im-
proved initial conditions, etc. Based on the unique
properties of MSE, in this paper we provide a method-
ology that could be used to document such improve-
ments.
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APPENDIX

Test of Significance

The statistical significance for the internal variability
in Fig. 4 (and therefore for the external variability in
Fig. 5, top panel) is tested based on the Monte Carlo
approach. Recall that the internal variability estimate
in Fig. 4 is based on the following steps:

• computing the mean-square error between the ob-
served and model-simulated ensemble mean 200-mb
heights

• repeating the above step for 12 different models pro-
viding 12 different estimates for the MSE

• finding the point-by-point minimum value of MSE
resulting in the estimate of internal variability shown
in Fig. 4.

To test what the probability is that this MSE can be
obtained by chance alone, steps 1–3 were repeated after
first randomizing observed and model-simulated time
series. This randomization was done for the observed
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and the modeled time series independently. For each
randomized sample, the minimum value of MSE, which
is equivalent to Fig. 4, is computed. Following this pro-
cedure, we generated 10 000 estimates of the MSE.
From these estimates of the MSE, the percent of
samples for which the MSE was smaller than the one in
Fig. 4 is obtained. Based on this procedure, regions
where the MSE in Fig. 4 is smaller than other estimates
of the MSE (based on 10 000 samples) 95% of the time
are highlighted. In other words, regions where the MSE
shown in Fig. 4 is highly likely to be different from what
could be obtained by chance alone are highlighted.

The randomization for the observed and the modeled
time series could be achieved in two different ways (i.e.,
with and without replacement). Randomization with-
out replacement was chosen since reshuffling the years
between 1951 and 2000 preserves the total variance of
the observed and modeled time series. This constraint
is not guaranteed for randomization with replacement
(e.g., just by chance years with low anomalies can be
repeated, leading to small variance for the observed
anomalies). This has the consequence that for lots of
samples, the MSE could be less than the one in Fig. 4
because variability for the randomized sample itself is
lower.

From a comparison of the shaded region in Fig. 4
(bottom panel) with Fig. 6, it is immediately apparent
that in almost all regions where the signal-to-noise ratio
exceeds 0.25, the MSE is also significant and cannot be
obtained by chance alone. Recall that at a gridpoint
level, the MSE in Fig. 4 is the minimum of that obtained
from 12 different models. The MSE for that particular
model is minimized because of the covarying observed
and the ensemble mean model-simulated signal. This
can be easily inferred from expanding Eq. (6). For re-
gions where the signal-to-noise ratio exceeds 0.25, any
randomization of the observed or the model-simulated
time series by making the covariability term close to
zero leads to an increase in the estimated value of MSE.
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