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ABSTRACT

For air- and spaceborne weather radars, which typically operate at frequencies of 10 GHz and above,
attenuation correction is usually an essential part of any rain estimation procedure. For ground-based
radars, where the maximum range within the precipitation is usually much greater than that from air- or
spaceborne radars, attenuation correction becomes increasingly important at frequencies above about 5
GHz. Although dual-polarization radar algorithms rely on the correlation between raindrop shape and size,
while dual-wavelength weather radar algorithms rely primarily on non-Rayleigh scattering at the shorter
wavelength, the equations for estimating parameters of the drop size distribution (DSD) are nearly identical
in the presence of attenuation. Many of the attenuation correction methods that have been proposed can
be classified as one of two types: those that employ a kZ (specific attenuation–radar reflectivity factor)
relation, and those that use an integral equation formalism where the attenuation is obtained from the DSD
parameters at prior gates, either stepping outward from the radar or inward toward the radar from some
final range gate. The similarity is shown between the dual-polarization and dual-wavelength equations when
either the kZ or the integral equation formulation is used. Differences between the two attenuation
correction procedures are illustrated for simulated measurements from an X-band dual-polarization radar.

1. Introduction

The close connection between dual-polarization and
dual-wavelength radar algorithms can be understood
from similarities in the two sets of measurements. Typi-
cally, two parameters of the hydrometeor size distribu-
tion are estimated from two independent radar reflec-
tivity factor measurements. In the dual-polarization
case, the independent data are the copolarized radar
reflectivity factors at horizontal and vertical polariza-
tions. The dual-wavelength radar provides radar reflec-
tivity factors at two wavelengths at the same polariza-
tion state.

A further similarity between the two situations is that
the measured or apparent reflectivity factors must be

corrected for attenuation before the estimation of the
size distribution parameters can be made. The attenu-
ation correction can proceed either in the forward di-
rection, with increasing radar range, or in the backward
direction, starting from a final gate and progressing in-
ward toward the radar. However, the forward-going so-
lutions tend to be unstable because the attenuation out
to the range of interest becomes “large” in some sense.
This is analogous to the case of a single attenuating-
wavelength radar where the forward solution to the
Hitschfeld–Bordan (Hitschfeld and Bordan 1954) equa-
tion becomes unstable as the attenuation increases. To
circumvent this problem, the equations can be ex-
pressed in a form that includes an independent estimate
of path attenuation. For the dual-polarization radar, it
has been shown that a measurement of the differential
phase between horizontal and vertical polarizations
(Testud et al. 2000; Bringi et al. 2001; Matrosov et al.
2002, 2005) provides a good estimate of path attenua-
tion at the two polarizations. For airborne and space-
borne dual-wavelength measurements, the surface ref-
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erence technique can be used to estimate path attenu-
ation at both wavelengths.

In this paper, two types of attenuation correction
procedures are formulated for application to dual-
wavelength and dual-polarization weather radar data.
In the integral equation approach, which has been used
in the analysis of dual-wavelength airborne radar data,
the parameters of the drop size distribution (DSD) are
used to adjust the path attenuation to the adjacent
range gate, which, in turn, is used to correct the mea-
sured reflectivity factors at that gate. In this way, a
recursion procedure is defined. The most notable use of
the kZ (specific attenuation–radar reflectivity factor)
parameterization approach was provided by Hitschfeld
and Bordan (1954) who analyzed the radar equation for
a single attenuating-wavelength radar. Modification of
this estimate to include an independent path attenua-
tion constraint has led to its application in the analysis
of airborne and spaceborne radar data. An important
recent development is the application of methods of
this type to polarimetric data. The approach has not,
however, been widely used for the analysis of dual-
wavelength radar data.

The primary objective of the paper is to make clear
the relationships between the polarimetric and dual-
wavelength equations in the presence of attenuation for
both the integral equation and kZ parameterization ap-
proaches. We begin by writing the integral equations
for the median mass diameter D0 and number concen-
tration Nt that are applicable to both dual-polarization
and dual-wavelength radar returns for the initial value
and final value cases. This is followed by a similar de-
velopment for the kZ parameterization. For this case,
however, only the final value version is discussed. Simu-
lations of the retrievals are presented for the case of an
X-band polarimetric radar with an emphasis on the dif-
ferences between the backward solutions using the in-
tegral equation and kZ parameterization.

2. Integral equations

The integral equations can be written in a relatively
simple form, but at the expense of requiring several
definitions. The measured radar reflectivity factor at
range r and frequency f, Zm,pp(r, f) (mm6m�3), when
the transmit and receive polarization are along the di-
rection p, can be defined in terms of the radar return
power Pr,pp(r, f) by

Zm,pp�r, f � � Pr,pp�r, f �r2��Cpp� f �|Kw� f �|2�, �1�

where C is the radar constant and |Kw|2 is the dielectric
factor of water, which, by the convention used here, is

taken to be equal to its approximate value (0.93) for
frequencies between 3 and 10 GHz and for tempera-
tures between 0° and 20°C (Battan 1973). The nonat-
tenuated effective radar reflectivity factor, or simply
radar reflectivity factor Z, is related to Zm by

Zpp�r, f � � Zm,pp�r, f �

� exp�c�
0

r

�kr,pp�s, f � � kc�s, f � � kv�s, f �� ds�,

�2�

where kr, kc, and kv are the specific attenuations from
precipitation, cloud water, and water vapor, respec-
tively, and where the precipitation may include rain,
snow, and mixed-phase hydrometeors. Throughout the
paper, the copolarized return powers are denoted by
the subscripts pp, where the first subscript represents
the polarization state of the transmitted wave and the
second the polarization state of the received signal. Be-
cause only horizontal h and vertical v copolarized sig-
nals are considered, pp is equal either to hh or vv. Be-
cause the cloud and water vapor attenuation are polar-
ization independently, we omit subscripts on these
quantities. The units of k are taken to be decibels per
kilometer so that c � 0.2 ln(10) � 0.46. To further
simplify the equations, we let

Z̃m,pp�r, f � � 10 logZm,pp�r, f �,

Z̃pp�r, f � � 10 logZpp�r, f �, �3�

where the logarithms in (3) and throughout the paper
are taken to base 10. Using (3), (2) can be written as

Z̃m,pp�r, f � � Z̃pp�r, f � � App�0, r; f �

� Z̃pp�r, f � � �App�0, rn; f � � App�r, rn; f ��,

�4�

where the two-way path attenuation from r1 to r2 is

App�r1, r2; f � � 2�
r1

r2

�kr,pp�s, f � � kc�s, f � � kv�s, f �� ds

	 Ar,pp�r1,r2; f � � Ac�r1,r2; f � � Av�r1,r2; f �.

�5�

In the equations below, the notation App(0, r; f) �
App(r, f) is used. It should be noted that the nth gate, at
range rn, is taken as the final gate of the path so that the
total path-integrated attenuation (PIA) is App(rn, f).
Next, the raindrop diameter distribution N(D, s) (m�3

mm�1) is expressed as the product of the particle num-
ber concentration Nt (m�3), and a normalized size dis-
tribution n(D) (mm�1),
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N�D� � Ntn�D�, �6�

where, for the gamma distribution,

n�D; �,�� � �����1�D����� � 1�� exp���D�. �7�

In general, 
, � are functions of the radar range. In the
numerical results presented later, we use the median
mass diameter D0 (mm), related to 
, �, by (Ulbrich
1983)

�D0 � 3.67 � �. �8�

Finally, we introduce backscattering and extinction in-
tegrals that are independent of Nt:

Ib,pp�r,f; D0,�� �

10 log�cZ�
0

�

�b,pp�f, D�n�r, D; D0, �� dD�,

�9�

Ie,pp�r,f; D0,�� � ce�
0

�

�e,pp�f, D�n�r, D; D0, �� dD, �10�

where cZ � c0
4 /( f4�5|Kw|2) and ce � 4.343 � 10�3, and

where c0 is the speed of light. Note that kr,pp � NtIe,pp

and Z̃pp � Ib,pp � 10 logNt.
Integral equations for D0 and Nt for the dual-

polarization case can be obtained by writing Z̃m,pp(r, f)
and Z̃m,hh(r, f) � Z̃m,vv(r, f) in terms of D0 and Nt and
expressing the path attenuation to range r in the form
(Meneghini et al. 1992)

App�r, f � � App�rn, f � � App�r, rn; f �

� App�rn, f � � 2�
r

rn

Nt�s�Ie,pp�s� ds.

�11�

In (11), the attenuation from r to rn is written in terms
of the DSD parameters at the range gates within this
range interval. This is the essence of the backward in-
tegral equation approach, where path attenuation to
range r is found from an estimate of the total path
attenuation and the DSD parameters in the range from
r to rn. The equations can be written in the form

Ib,hh�r� � Ib,vv�r� � �Z̃m,hh�r� � Z̃m,vv�r�� � �Ahh�rn� � Avv�rn�� � 2�
r

rn

Nt�s��Ie,hh�s� � Ie,vv�s�� ds, �12�

Ñt�r� � Z̃m�r� � Ib�r� � Ar�rn� � 2�
r

rn

Nt�s�Ie�s� ds

� Ac�r� � Av�r�, �13�

where

Ñt 	 10 log10Nt. �14�

For the dual-wavelength case, (13) remains the same
but (12) is modified to

Ib�r, f1� � Ib�r, f2� � �Z̃m�r, f1� � Z̃m�r, f2�� � �Ar�rn, f1� � Ar�rn, f2�� � 2�
r

rn

Nt�s��Ie�s, f1� � Ie�s, f2�� ds � �Ac�r, f1�

� Ac�r, f2�� � �Av�r, f1� � Av�r, f2��. �15�

Note that the last four terms on the right-hand side of
(15) are absent in (12). The difference arises from
the fact that cloud and water vapor attenuation are
frequency dependent but polarization independent.
We have used the convention of suppressing the polar-
ization (or frequency) dependence if all quantities
in the equation are at the same polarization (or
frequency). For example, in (12) all quantities are at
the same frequency, while in (15) all quantities are at
the same polarization; in (13) all quantities are mea-
sured or evaluated at the same frequency and polariza-
tion.

Equations (12)–(15) can be written in a form that
makes explicit the unknown parameters of the drop size
distribution and includes both dual-frequency and dual-
polarization cases; specifically, (12) and (15) can be ex-
pressed as

g1�r; D0, �� � h1�r, rn� � 2�
r

rn

Nt�s�f1�s; D0, �� ds,

�16�

while (13) becomes
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g2�r; Nt� � h2�r, rn; D0, �� � 2�
r

rn

Nt�s�f2�s; D0, �� ds,

�17�

with

g1 � �Ib�r�

h1 � ��Z̃m�r� � Ar�rn�� � ��Ac�r� � Av�r��
f1 � �Ie�r�
g2 � 10 logNt�r�

h2 � Z̃m�r� � Ar�rn� � Ib�r� � �Ac�r� � Av�r��
f2 � Ie�r�, �18�

where  is a difference operator, defined in the case of
dual-polarization radar by X 	 pX 	 Xhh � Xvv and
in the case of a dual-frequency radar by X 	 fX 	
X( f1) � X( f2). Note that in the case of the polarization
radar, (Ac � Av) � p(Ac � Av) � 0. Using the defi-
nition of Ib given by (9), the usual differential reflec-
tivity (dB) with respect to polarization is Ib � Zdr,
while the dual-frequency ratio (dB) is Ib � DFR.

The constraints in the above equations are assumed
to be the precipitation path attenuations at the two
frequencies or two polarizations. If the constraint is
total path attenuation from precipitation, cloud, and
water vapor, then h1, h2 should be changed to

h1 � �{Z̃m � A�rn� � �Ac�r, rn� � Av�r, rn��},

h2 � Z̃m � A�rn� � Ib � �Ac�r, rn� � Av�r, rn��,

�19�

where, as before,

A�rn� � Ar�rn� � Ac�rn� � Av�rn�. �20�

The expressions for h1 and h2 in (18) and (19) are iden-
tical. However, if an independent estimate is made of
the precipitation attenuation only, Ar(rn), then contri-
butions from cloud water and water vapor to range r
must be added, as in (18). If an independent estimate is
made of total attenuation, then contributions from
cloud water and water vapor over the range interval (r,
rn) must be subtracted, as in (19). For example, in po-
larimetric applications, the differential phase is well
correlated with the differential attenuation from pre-
cipitation, but will be unaffected by cloud or water va-
por attenuation. In contrast, for dual-wavelength air-
borne or spaceborne applications, if the surface refer-
ence is taken in a rain- and cloud-free environment with
low water vapor, the decrease in the surface return in
the presence of precipitation can be associated with the
total path attenuation.

If the path attenuation is independently measured,
then it can be seen from (16) and (17) that the range

profiles of D0 and Nt can be obtained by starting at the
far range rn, continuing inward toward the radar. At r �
rn, the integrals appearing in (16) and (17) are zero, so
that D0 can be found by numerically solving the equa-
tion g1(D0, �) � h1; once D0 is determined, it is substi-
tuted into (17) to give Nt. Proceeding to the (n � 1)th
gate, the values of D0 and Nt from the nth gate are
substituted into the integrals in (16) and (17); because
the right-hand side of (16) is determined, D0 can be
solved numerically. Substituting this into (17) gives h2

and Nt. The recursion continues in this way until the full
path is traversed.

In solving the equations numerically, the discrete
forms of (16) and (17) take the form of nonlinear alge-
braic equations for D0 and Nt that can be solved by
Broyden’s method (Press et al. 1992). For example, at
the final gate, both (16) and (17) are functions of D0(rn)
and Nt(rn) if the contributions from the last gate are
included. However, if the attenuation per range gate is
small, the approximate and general procedures yield
nearly identical results. It should also be pointed out
that in some cases, such as the dual-wavelength radar
returns in rain or mixed-phase hydrometeors, there can
be more than one value of D0 that satisfies (16). Pro-
cedures exist to reduce the ambiguities but not elimi-
nate them entirely (Liao and Meneghini 2005). More-
over, because there are only two equations, the “shape”
parameter � must either be fixed or expressed as a
function of the other DSD parameters (Zhang et al.
2001; Seifert 2005).

The forward integral equations take the same form as
(16) and (17):

g1�r; D0, �� � H1�r� � 2�
0

r

Nt�s�f1�s; D0, �� ds, �21�

g2�r; Nt� � H2�r; D0, �� � 2�
0

r

Nt�s�f2�s; D0, �� ds,

�22�

where g1, g2, f1, f2 are given by (18) and

H1 � ��Z̃m�r� � Ac�r� � Av�r��,

H2 � Z̃m�r� � Ib�r� � Ac�r� � Av�r�. �23�

The only difference between the forward and backward
equations arises from the estimates of path attenuation
and differential path attenuation. Explicitly, we can
write the estimates of attenuation and differential at-
tenuation in the interval [0, r] for the forward (left-hand
side) and backward (right-hand side) integral equa-
tions:
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�
0

r

Nt�s�f1�s; D0, �� ds ↔ �A�rn� � �
r

rn

Nt�s�f1�s; D0, �� ds,

�
0

r

Nt�s�f2�s; D0, �� ds ↔ A�rn� � �
r

rn

Nt�s�f2�s; D0, �� ds.

Equations (21)–(23) are independent of a path attenu-
ation estimate and are naturally solved in the forward
direction from the radar outward, although, as Mardi-
ana et al. (2004) and Iguchi (2005) have pointed out,
this is not required. The basic forms of the forward and
backward equations are the same except that the path
attenuation to range r in the forward equations is ex-
pressed in terms of the size distribution parameters ob-
tained from prior gates between the range of interest
and the radar. Despite the similarities between (16)–
(18) and (21)–(23), the two formulations show signifi-
cant differences in performance, as will be shown in
section 4.

3. Equations based on the kZ parameterization

Testud et al. (2000) and Bringi et al. (2001) recog-
nized that techniques developed for single attenuating-
wavelength radars can be applied to polarimetric radar
data at attenuating wavelengths. These methods are a
subset of a larger class of polarimetric attenuation cor-
rection methods reviewed by Bringi and Chandrasekar
(2001). Extensions of the basic approach have been
proposed as well (e.g., Lim and Chandrasekar 2006).
Although most formulations begin with the final value
solution of Marzoug and Amayenc (1991, 1994), an
equivalent form follows directly from the “� adjust-
ment” solution (Meneghini et al. 1983; Iguchi and Me-
neghini 1994), where, taking 10 log of (19) of Iguchi and
Meneghini (1994), gives (r � rn)

Z̃�r� � Z̃m�r� � 	�110 logQ, �24�

where

k � 
Z	, �25�

S�r� � �
0

r


�s�Zm
	 �s� ds, �26�

Q � 1 � �10�0.1	A�rn� � 1��S�r��S�rn��. �27�

In the above equations, the parameter � must be taken

as constant in range, whereas � is allowed to vary in
range. An example of this is a path along which distinct
regions of frozen, mixed-phase, and liquid precipita-
tion are present. However, if � can be considered con-
stant with range, then (24) is independent of this pa-
rameter.

For constant � along the path, (24) can also be ob-
tained by taking the expression for k from the final
value solution [(24) of Testud et al. (2000)], integrating
it from 0 to r and using the definition of Zm:

Z̃�r� � Z̃m�r� � 2�
0

r

k�s� ds. �28�

For polarimetric applications, the two-way path attenu-
ation A(rn) can be estimated by the differential phase
shift over the path ��dp (°) by using a relationship
between k and �dp (° km�1) (Testud et al. 2000; Ma-
trosov et al. 2002; Anagnostou et al. 2004). In the case
of a linear k–�dp relationship:

kpp � �pp�dp, �29�

then

App�rn� � 2�
0

rn

kpp�s� ds � 2�pp�
0

rn

�dp�s� ds

� �pp�dp�0, rn�. �30�

For the results to apply to dual-frequency as well as
dual-polarization data, we use the two-way path attenu-
ation A(rn) instead of ��dp. In deriving equations simi-
lar to those obtained for the integral equation ap-
proach, it is convenient to write (27) in the form

Q � 10�0.1	A�rn��100.1	A�rn� � �1 � 100.1	A�rn���S�r��S�rn���,

�31�

so that (24) becomes

Z̃�r� � Z̃m�r� � A�rn� � 	�110 logQ̃, �32�

where

Q̃ � 100.1	A�rn� � �1 � 100.1	A�rn���S�r��S�rn��.

�33�

Using (32), equations analogous to (12) and (13) can be
obtained by expressing Z̃m,pp(r, f) and Z̃m,hh(r, f) �
Z̃m,vv(r, f) in terms of D0 and Nt:

Ib,hh�r� � Ib,vv�r� � �Z̃m,hh�r� � Z̃m,vv�r�� � �Ahh�rn� � Avv�rn�� � 10 log�Q̃hh
1�	hh�Q̃vv

1�	vv�, �34�
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Ñt�r� � Z̃m�r� � Ib�r� � A�rn� � 	�110 logQ̃ � Ac�r�

� Av�r�, �35�

where Ñt 	 10 logNt.
As before, we have suppressed the subscripts in (35)

because all relevant quantities are evaluated at the
same polarization. Other quantities in (34) and (35) are
defined above, but without subscripts. Explicitly,

Q̃pp � 100.1	ppApp�rn� � �1 � 100.1	ppApp�rn��

� �Spp�r��Spp�rn��, �36�

Spp�r� � �
0

r


pp�s�Zm,pp
	pp �s� ds. �37�

For the kZ backward formulation, equations that in-
clude dual-frequency and dual-polarization cases can
be written in a form similar to (16) and (17):

g1�r; D0, �� � h1�r, rn� � 10��logQ̃1�	�, �38�

g2�r; Nt� � h2�r, rn; D0, �� � 10 logQ̃1�	, �39�

where g1, g2, h1, and h2 are given by (18). In the dual-
frequency radar case, the last term in (38) becomes

��logQ̃1�	� 	 �f�logQ̃1�	�

� 	�1� f1� logQ̃� f1� � 	�1� f2� logQ̃� f2�.

�40�

Comparison between (16)–(17) and (38)–(39) show that
the only differences between the two sets of equations
are the terms

2�
r

rn

Nt�s��Ie�s� ds ↔ 10��logQ̃1�	�, �41�

2�
r

rn

Nt�s�Ie�s� ds ↔ 	�110 logQ̃.

The right- and left-hand sides of (41) represent the dif-
ferent ways in which the equations account for the at-
tenuation and differential attenuation in the range in-
terval from r to rn. In the (backward) integral equation
approach, the interval attenuations are expressed as
functions of the DSD parameters obtained from previ-
ous steps in the recursion. In the kZ formulation, the
attenuations are estimated by means of the kZ param-
eterization using path attenuation and measured radar
reflectivity factors in the range from r to rn. In both of
these backward-going solutions, the contributions are
subtracted from the total path attenuation to obtain an
estimate of attenuation to range r.

It is worth pointing out that forward equations based

on the kZ parameterization can be obtained directly
from the Hitschfeld–Bordan equation, and can be writ-
ten in a form similar to that of (38) and (39). However,
the estimates for Nt and D0 based on these equations
are highly sensitive to attenuation and errors in the
various parameters, so that these equations will not be
considered here.

4. Comparisons of formulations for an X-band
polarimetric radar

To illustrate some aspects of the solutions to the
equations based on the integral and kZ formulations,
we construct a simulation for an X-band polarimetric
radar using disdrometer-measured raindrop size distri-
butions as the input data. We assume a 50-km path
consisting of 250 gates with 0.2-km range resolution. In
the general case, a sequence of 250 one-minute-
averaged DSDs provides the particle number concen-
tration and median mass diameter at each range gate.
However, to better understand the behavior of the
equations, the DSD parameters, and therefore the rain
rates, are assumed to be constant in range. Assuming
the Beard and Chuang (1987) shape–size relationship
and a fixed � value along the path, the simulated range
profiles of the measured radar reflectivity factors at the
two polarizations are calculated, that is, [Zm,hh(rj),
Zm,vv(rj)]; j � 1, . . . , 250. To further simplify the dis-
cussion, we assume infinite signal-to-noise ratios with-
out fluctuations in the Z fields from finite sampling.
Moreover, the shape–size relationship is assumed to be
exact and without raindrop canting.

For the backward recursion, the integral and kZ ap-
proaches reduce to the same set of equations at the nth
gate. In particular, (12) and (34) at r � rn reduce to

Ib,hh�rn� � Ib,vv�rn� � �Z̃m,hh�rn� � Z̃m,vv�rn��

� �Ahh�rn� � Avv�rn��. �42�

Also, if cloud and water vapor attenuations are ne-
glected, (13) and (35) become

Ñt�rn� � Z̃m�rn� � Ib�rn� � A�rn�. �43�

The sensitivity to several types of errors can be inferred
from these equations. For example, if the differential
measured reflectivity and differential path attenuation
are unbiased, then Zdr � Ib,hh � Ib,vv is unbiased. How-
ever, if � � �T, where the T subscript denotes the true
or input value, then it can be seen from the top left-
hand plot in Fig. 1 that D0 � D0,T. Also, because Ib, Ie,
Ie are derived from the estimated median mass diam-
eter, these quantities will also be positively biased as
can be seen from an inspection of the Ib, Ie, and Ie plots
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in Fig. 1. From (43) it follows that an overestimate in Ib,
in the absence of other errors, yields an underestimate
in Nt. The opposite behavior occurs if � � �T. These
relationships can be summarized by the following in-
equalities:

� � �T ⇒ D0 � D0,T, Nt � Nt,T,
� � �T ⇒ D0 � D0,T, Nt � Nt,T.

If the right-hand side of (42) and � are unbiased, then
D0, Ib are unbiased. In this case the bias in Ñt is deter-
mined solely by the bias in the quantity Z̃m � A(rn).

Although the two formulations yield the same results
at the final gate, the estimates generally exhibit signifi-
cant differences with range. Figures 2 and 3 show the
range dependence of rain rate (Fig. 2) and D0 (Fig. 3)
estimates for � � (0,2,6), where �T � 2. In all cases, the
rain rate is derived from the estimated (Nt, D0) and
assumed � value. Input values of rain rate, path attenu-
ation, and differential path attenuation are RT �
12.5 mm h–1; Ahh,T(rn) � 33 dB; Ahh,T(rn) � Avv,T(rn) �

5.6 dB. In each figure, the results from the kZ param-
eterization [(34) and (35)] are shown in the upper
panel, and results from the integral equations [(12) and
(13)] are shown in the lower panel. Unless stated oth-
erwise, all results are obtained from a backward recur-
sion. To understand why the results from the kZ pa-
rameterization are range independent, note that (34)
and (35) are identical to (42) and (43) except for the
attenuation correction terms involving Q̃. But, these
terms are determined solely by the path attenuations
and the measured radar reflectivity factors, and are in-
dependent of the DSD parameters derived at other
range gates. As will be seen in subsequent examples,
only errors in the path attenuation yield range depen-
dencies in the kZ attenuation correction method.

One other feature of Fig. 2 and subsequent results is
that even in the absence of errors, the estimated quan-
tity (in this case rain rate) differs from the input value.
There are two reasons for this. The first is that D0 is
estimated by means of a third-order polynomial in Zdr.

FIG. 1. Parameters of the polarization radar at 10 GHz vs median mass diameter D0 for several
values of the shape parameter �.
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Although the fit is fairly accurate, small errors in D0 can
translate into larger errors in rain rate. A second source
of error arises in estimating Ib, Ie, and Ie from D0 via
lookup tables and a linear interpolation. (For the kZ
parameterization only the Ib � D0 relationship is
needed.) Improvements in accuracy can be made by
replacing the D0 � Zdr fit with a lookup table and using
more finely sampled lookup tables for estimating Ib, Ie,
and Ie.

For the integral equations, the D0 estimated from
(12) is used to determine both Ib and Ie that are then
used in (13). Moreover, the Nt obtained in (13), along
with the D0 from previous steps, determines the differ-
ential attenuation term given by the last term in (12).
This strong linkage between the equations usually pro-
duces a negative feedback where the biases are reduced
in magnitude when progressing toward ranges closer to
the radar. To see this in detail in the present case, con-
sider the � � 6 example. As noted above, because � �

�T, D0 is overestimated and Nt is underestimated at the
nth gate. At the (n � 1)th gate, the negatively biased Nt

value, along with the positively biased Ie term, is used
to determine the differential attenuation term in (12).
Initially, at the far ranges, this produces a somewhat
larger value than the true value and therefore a smaller
value for the right-hand side of (12). This yields, in turn,
a slight decrease in D0 from its value at the nth gate.
From Fig. 1, a decrease in D0 produces a decrease in Ib

and, in accordance with (13), a reduction in the nega-
tive bias of Nt. For the curves in the bottom panel of
Fig. 2, an inspection of the numerical results shows that
feedback becomes slightly positive for ranges less than
18.4 km for � � 6 and less than 19.2 km for � � 0.

Negative feedback in the integral equation solutions
also occurs for offset errors in Z. For the example
shown in Figs. 4–6, the bias in the differential reflectiv-
ity factor is assumed to zero, but with offsets in Z̃hh, Z̃vv

of �2, �2, or 0. The input data for these examples are
RT � 10.5 mm h–1; Ahh,T(rn) � 17.5 dB; Ahh,T(rn) �

FIG. 2. Rain-rate estimates from the (top) kZ and (bottom)
integral equation formulations for three values of the assumed
shape parameter with input value, �T � 2.

FIG. 3. Estimates of median mass diameter from the (top) kZ
and (bottom) integral equation formulations for three values of
the assumed shape parameter, with input value �T � 2.
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Avv,T(rn) � 2.2 dB. The range dependences of R, D0,
and Ñt are shown in Figs. 4–6, respectively. At the final
gate, and for both solutions, D0 is unbiased while the
biases in Nt are determined by the biases in the Z̃hh, Z̃vv

terms. In the kZ approach, D0 remains unbiased over
the full range and the biases in R and Nt remain con-
stant with range. For the integral equation solution, in
the negatively biased Z case, the underestimate in Nt

produces an underestimate in the differential attenua-
tion term �rn

r NtIe ds in (12), which produces an over-
estimate in D0 as shown in Fig. 5. This overestimate in
D0 produces an overestimate in Ib, which, according to
(13), reduces the bias in Nt. For positive Z̃hh, Z̃vv biases,
the effects are reversed; in particular, a positive bias in
Z̃hh, Z̃vv produces an identical bias in Ñt. This leads to
underestimates in D0 and Ib that reduce the positive
bias in Ñt.

An inspection of (12) and (13) shows that a bias in
Z̃hh(r) has the same effect on the solutions as does an

identical bias in Ahh(rn). Likewise, a bias in Z̃hh(r) �
Z̃vv(r) is equivalent to a bias in Ahh(rn) � Avv(rn). This
equivalence does not hold for the kZ formulation. As
seen in the previous example, offsets in Z̃hh(r) produce
kZ-derived solutions that are constant in range. Offsets
in Ahh(rn), however, produce range-dependent solu-
tions. Moreover, unlike the integral equation method,
the kZ-based results converge to the input values as the
radar range goes to zero. This behavior is shown in Fig.
7, where the kZ solutions are shown for R, D0, and Nt

for offsets in Ahh(rn), Avv(rn) of 2, �2, and 0 dB. The
integral equation results are displayed in the lower pan-
els of Figs. 4–6 because they are identical to the Z-offset
case. To understand the behavior of the kZ solutions in
this case, note that the log(Q̃) and  log(Q̃) terms in
(34) and (35) are functions of the path attenuations that
play the same role as the corresponding terms in the
integral equations. In particular, these terms function as
negative feedback, reducing the magnitude of the bi-
ases as the radar range decreases. Unlike the integral

FIG. 4. Rain-rate estimates from the (top) kZ and (bottom)
integral equation formulations for offset errors in the radar re-
flectivity factors.

FIG. 5. Estimates of median mass diameter from the (top) kZ
and (bottom) integral equation formulations for offset errors in
the radar reflectivity factors.
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equations, however, the kZ formulation yields exact
solutions in the absence of other errors. This follows
from (36) by noting that as r → 0, Q̃pp � 100.1�ppApp(rn),
so that the last term in (35) exactly cancels the quantity
A(rn). In a similar way, the last term in (34) cancels the
quantity Ahh(rn) � Avv(rn) so that the equations reduce
to the dual-polarization equations in the absence of at-
tenuation.

In the examples given, moderate rain rates were
used. Similar characteristics of the solutions are ob-
served at lighter rain rates and path attenuations. How-
ever, because of the nonlinear nature of the equations,
the qualitative behavior of the solution can change
abruptly as the rain rate and path attenuation increase.
For the rain-rate estimates shown in Fig. 8, values of
� � [0, 2, 6] are assumed, where �T � 2. In this case, the
input rain rate, path attenuation, and differential path
attenuation are given by RT � 21.5 mm h–1; Ahh,T(rn) �
65 dB; Ahh,T(rn) � Avv,T(rn) � 12 dB. Recall that the
same assumptions regarding � are used for the results
in the lighter rain-rate case shown in Fig. 2. Except for

evidence of numerical instabilities in the kZ formula-
tion at the far ranges (Fig. 8, top panel), the results are
qualitatively similar to those in Fig. 2 (top panel). In
contrast, the integral equation solution, shown in the
bottom panel of Fig. 8, exhibits a slight oscillatory be-
havior so that in moving toward the radar from the far
range the error first decreases, attaining a minimum at
about 36 km, and then begins gradually to increase,
attaining a maximum at 19.4 km for � � 0 and a maxi-
mum at 8.6 km for � � 6. At closer ranges, the error
once more decreases.

For the results in Fig. 9 the same raindrop size dis-
tribution is used, but the behavior of the solutions are
shown for errors in the path attenuation where Ahh and
Avv are either both positively or negatively biased by 2
dB. The kZ solution is qualitatively similar to that
shown in Fig. 7 (top panel) except for numerical insta-
bilities at the far ranges. However, unlike the result
shown in the bottom panel of Fig. 4, the integral equa-
tion solution for rain rate (as well as for D0 and Nt)

FIG. 6. Estimates of particle number concentration from the
(top) kZ and (bottom) integral equation formulations for offset
errors in the radar reflectivity factors.

FIG. 7. Estimates of (top) rain rate, (middle) median mass di-
ameter, and (bottom) number concentration using the kZ formu-
lation for errors in the path attenuations.
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exhibits a damped oscillatory behavior about the true
value. As the rain rate and path attenuation are further
increased, the integral equations continue to yield
damped oscillatory behavior, but with an increase in
amplitude and frequency. For the kZ solution, numeri-
cal instabilities restrict the solution to ranges near the
radar. The reason for the instability can be seen from
(36) where, for large values of attenuation, Spp(r) rap-
idly approaches Spp(rn) as r increases, so that Q̃ is
computed from the difference of large quantities that
are nearly equal in magnitude. An improvement in sta-
bility can be obtained by writing (36) in the form

Q̃pp � 100.1	ppApp�rn�{�Spp�rn� � Spp�r���Spp�rn�}

� Spp�r��Spp�rn�.

However, this form is subject to an instability similar to
that which occurs in the Hitschfeld–Bordan equation;
that is, for large attenuation, the term Spp(rn) � Spp(r)

rapidly approaches zero as r → rn, so that Q̃ is com-
puted from the multiplication of a very large and a very
small number.

To investigate the oscillatory nature of the integral
equation solutions for large path attenuation, we use
phase-state diagrams (Fig. 10) in which the (D0, Nt)
values as a function of radar range are represented by a
trajectory in (D0, Nt) space. The input values of (D0,
Nt), assumed constant in range, is represented by an
“X” and the range-dependent solution to the integral
equation are represented by a curve that begins at 50
km (indicated by the box around the point), which spi-
rals in a counterclockwise direction toward the input
value. For the upper panels in Fig. 10, errors in Zhh, Zvv

of 2 dB are assumed; for the lower panels errors in Zhh,
Zvv of �2 dB are assumed. In moving from left to right,
the input D0 increases from 2.1 (left) to 2.4 (middle) to
2.7 (right) mm. For all cases, the assumed value of Nt is
taken to be 600 m�3. The results show that as D0 and
path attenuation increase, the amplitude and frequency

FIG. 8. Rain-rate estimates from the (top) kZ and (bottom)
integral equation formulations for three values of the assumed
shape parameter with input value, �T � 2.

FIG. 9. Rain-rate estimates from the (top) kZ and (bottom)
integral equation formulations for errors in the path attenuations.
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of the oscillations increase. On the other hand, as the
radar range decreases, the amplitude is damped and the
solution spirals in toward the input values. As pointed
out earlier, at the farthest range (50 km), the value of
D0 is unbiased while the bias in Nt is determined by the
bias in the radar reflectivity factors. Although our focus
is on the behavior of the dual-polarization equations, it
is worth noting that for the dual-wavelength integral
equations, oscillatory solutions do not occur and that
the error decreases uniformly with decreasing range.

This appears to result from the differences in sign be-
tween the Ib, Ie for the two situations; in particular,
for the dual-polarization data, these quantities are of
the same sign (as seen by the data in upper and lower
left-hand panels of Fig. 1), whereas in the dual-
wavelength tables for 13.6 and 35.5 GHz, Ib, Ie are of
opposite sign for D0 greater than about 1 mm.

Although the backward formulations are generally
preferable because of their more robust behavior, some
features of the forward integral equations are worth

FIG. 10. Solutions of integral equation for (D0, Nt). Solution at 50 km from the radar is enclosed by box;
counterclockwise trajectory from this point represents decreasing radar range. Input (D0, Nt) value is represented
by “X.” (top) Solutions for �2 dB offset in Zhh, Zvv; (bottom) solutions for �2 dB offset in Zhh, Zvv. Input values
of D0 from (left) 2.1, (middle) 2.4, and (right) 2.7 mm.

MAY 2007 M E N E G H I N I A N D L I A O 817



noting. As mentioned in section 2, for the backward
recursion, the interval attenuation [r, rn] is subtracted
from the total attenuation, while in the forward case it
is simply the interval attenuation [0, r] that is used in
the equations. In the backward recursion, the bias er-
rors are usually reduced by negative feedback; in the
forward recursion, however, the bias errors from this
term are usually amplified by positive feedback. This
difference between the formulations leads to behavior
in which errors in the forward solution grow rapidly
with increasing attenuation. On the other hand, be-
cause the method does not require an estimate of path
attenuation, it can have better accuracies than the back-
ward solutions for either light rain rates or when the
independent estimate of path attenuation is inaccurate.
In Figs. 11–12 estimates of R, D0, and Nt are shown for
the forward and backward integral equations, respec-
tively, for the case of calibration errors in Z of 0 and �2

dB. Even in this relatively light rain-rate case [RT � 4.1
mm/h; Ahh,T(rn) � 5 dB; Ahh,T(rn) � Avv,T(rn) � 0.6
dB], instabilities in the forward estimates can be seen,
particularly in the D0 estimates shown in the center
panel of Fig. 11. On the other hand, in the absence of
errors in Z but with errors in the path attenuations, the
forward estimates (given by the zero offset case in Fig.
11) would generally be more accurate than those from
either of the backward recursion methods.

As noted by Iguchi (2005), the backward integral
equations without path attenuation constraints (Mardi-
ana et al. 2004) are mathematically the same as the
forward integral equations given here. For light rain-
rate cases, this has been verified using the present simu-
lation. Although the solutions diverge as the rain rate
increases, this can be attributed to numerical instabili-
ties in both formulations. For the modified backward
iterative procedure of Rose and Chandrasekar (2006),

FIG. 11. Estimates of (top) rain rate, (middle) median mass
diameter, and (bottom) number concentration using the forward
integral equation formulation for offset errors in the radar reflec-
tivity factors.

FIG. 12. Estimates of (top) rain rate, (middle) median mass
diameter, and (bottom) number concentration using the back-
ward integral equation formulation for offset errors in the radar
reflectivity factors.
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we expect a similar equivalence to an appropriately
modified forward procedure. However, this has not
been checked.

5. Discussion and summary

Integral equations for the parameters of the particle
size distribution have several useful features in that
they explicitly include path attenuation constraints and
provide attenuation correction in terms of the particle
size distribution parameters determined in earlier steps
(range gates) of the procedure. Because the dual-
wavelength and dual-polarization radar data are gov-
erned by essentially the same equations, a common
theoretical framework is provided by which errors in
the retrievals can be assessed. This should be beneficial
to the proposed Global Precipitation Measurement
Mission (Iguchi et al. 2002) where quantities derived
from a dual-wavelength spaceborne radar can be ex-
pected to be compared with similar quantities derived
from ground-based dual-polarization radars. Making
good use of these data will depend on an understanding
of the inherent errors in both spaceborne and ground-
based algorithms.

By using the kZ parameterization, similar sets of
equations applicable to dual-wavelength and dual-
polarization radars can be derived. For the polarization
radar, these equations are similar in content to those
derived by Testud et al. (2000) and Bringi et al. (2001),
and recently analyzed by Gorgucci and Chandrasekar
(2005). As illustrated in the examples of section 4, de-
spite differences, the two formulations function in a
somewhat similar manner. Advantages of the integral
equation approach were noted in cases of errors in the
shape parameter � or in Z. On the other hand, the kZ
formulation was seen to be more accurate than the in-
tegral equation solution in the presence of errors in
path attenuation.

In a study comparing what is here called the kZ for-
mulation with an attenuation correction obtained di-
rectly from the differential phase estimate (Matrosov et
al. 2002), Gorgucci and Chandrasekar (2005) concluded
that neither approach was best in all cases. A similar
conclusion can be drawn for the kZ and integral equa-
tion approaches, implying that for polarimetric data at
attenuating wavelengths, comparisons among the three
approaches should be useful as a diagnostic tool. Com-
parisons of results from kZ and integral equation for-
mulations should also be useful for dual-wavelength
data.

It is worth noting that apart from the integral equa-
tion and kZ parameterization formulations, other dual-
wavelength techniques have been proposed (e.g., Mar-

zoug and Amayenc 1994; Adhikari and Nakamura
2003; Grecu and Anagnostou 2004; Iguchi 2005). In
view of the close relationship between dual-wavelength
and dual-polarization algorithms, some of these formu-
lations may also be applicable to both types of data.
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