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[1] Absorbing aerosols, especially mineral dust and black carbon, play key roles in
climate change by absorbing solar radiation, heating the atmosphere, and contributing to
global warming. In this paper, we first examine the consistency of the Aerosol Index (AI)
product as measured by the Total Ozone Mapping Spectrometer (TOMS) and Ozone
Monitoring Instrument (OMI) instruments and then analyze these AI data sets to
investigate the temporal and spatial variability of UVabsorbing aerosols. In contrast to the
trend in aerosol optical depth found in the advanced very high-resolution radiometer
data, no obvious long-term trend in absorbing aerosols is observed from the time series of
AI records. The comparison between the mean annual cycle in the two data sets shows
that the cycles agree very well both globally and regionally, indicating a consistency
between the AI products from TOMS and OMI. Varimax rotated Empirical Orthogonal
Function (EOF) analysis of detrended, deseasonalized AI data proves to be successful in
isolating major dust and biomass burning source regions, as well as dust transport.
Finally, we find that large, individual events, such as the Kuwait oil fire and Australian
smoke plum, are isolated in individual higher-order principal components.
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1. Introduction

[2] Aerosols have been identified as the largest source of
uncertainty in anthropogenic forcing of global climate
change [Charlson et al., 1992; Hansen et al., 1997],
because of the counteracting effects of absorbing and non-
absorbing aerosols and because of their indirect effects on
clouds. Absorbing aerosols affect the climate directly by
altering radiation balance in the atmosphere [Tegen et al.,
1997; Haywood and Boucher, 2000; Harrison et al., 2001;
Sokolik et al., 2001] and indirectly by affecting cloud
nucleation and optical properties [Levin et al., 1996;
Wurzler et al., 2000]. They also have the semidirect effect
by heating the layer of the atmosphere and thus reducing
cloud fraction [Hansen et al., 1997]. Therefore it is neces-
sary and important to investigate the global distribution and
temporal variation of absorbing aerosols in the study of
climate change. Two satellite instruments, Total Ozone
Mapping Spectrometer (TOMS) and its heritage, Ozone
Monitoring Instrument (OMI) both measure absorbing
aerosols at UV wavelengths and their Aerosol Index (AI)

product is well suited for this purpose. Version 8 AI is
defined as

AI ¼ �100 log10 I331=I360ð Þmeas � log10 I331=I360ð Þcalc
� �

ð1Þ

where Imeas is the measured backscattered radiance at a
given wavelength and Icalc is the backscattered radiance
calculated at that wavelength for a pure Rayleigh atmo-
sphere. Thus by this definition, AI is positive for UV
absorbing aerosols, near zero for clouds and negative for
scattering aerosols. However, because of ocean color
variations and topographic features unresolved by the
coarse resolution of the terrain database, negative AI values
are largely contaminated by noise (O. Torres, personal
communication, 2007). Therefore the current AI product
only includes positive AI and is only useful for studying UV
absorbing aerosols in a qualitative fashion. Quantitative
products such as aerosol optical depth are also available for
TOMS [Torres et al., 2002] and OMI [Torres et al., 2007].
[3] Among all types of UVabsorbing aerosols, dust is the

main contributor to the AI signal. Previously, several studies
used the AI data set to identify dust sources. For example,
Prospero et al. [2002], after specifying an AI threshold
value of 1.0 for Northern Africa, concluded that the largest
and most persistent sources are located in the Northern
Hemisphere, mainly in a broad ‘‘dust belt’’ that extends
from the west coast of North Africa, over the Middle East,
Central and South Asia, to China. Israelevich et al. [2002]
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inferred from long time average AI that Northern Africa is
the most stable dust source in summer and that dust is
transported eastward and northward along the Mediterra-
nean basin. Washington et al. [2003] also used Nimbus 7
TOMS AI to identify dust-storm source areas. Their results
revealed that in addition to Sahara, the Middle East,
Taklimakan, South Asia, Central Australia, the Ethosha
and Mkgadikgadi of Southern Africa, the Salar de Uyuni
in Bolivia, and the Great Basin in the United States are also
important dust-storm sources.
[4] In addition to dust, black carbon and some UV

absorbing organic carbon aerosols also produce significant
AI signals, especially with high concentration or altitude.
Habib et al. [2006] found that TOMS AI bore a relation to
anthropogenic aerosol emission strength in all regions of
India except those with a strong mineral dust loading.
Badarinath et al. [2007] also concluded that TOMS-OMI
AI has good correlation in spatial patterns with fires. Ji and
Stocker [2002] used Empirical Orthogonal Function (EOF)
and Singular Spectrum Analysis (SSA) on TOMS data to
study the global distribution and seasonal variation of fires.
All of these studies suggest that biomass burning, which
releases great amounts of black carbon and organic carbon
into the atmosphere, contributes significantly to AI signals.
Moreover, the AI is also sensitive to volcanic ash in the
aftermath of volcanic eruptions [Seftor et al., 1997]. How-
ever, none of the above studies focuses on or includes trend
analysis of the AI record. Since Massie et al. [2004]
observed an increase in Asian aerosols using TOMS Aero-
sol Optical Depth (AOD) data associated with weakly
absorbing aerosols and Mishchenko et al. [2007a, 2007b]
found temporal variations in the global mean advanced very
high-resolution radiometer (AVHRR) aerosol optical depth,
namely an increasing trend until 1991 and a decreasing
trend thereafter, an additional motivation for this study is to
examine the temporal variability, presence or absence of
temporal trends, in UV absorbing aerosols over both land
and ocean. It should be noted that while AVHRR is an
ocean – only data set, the TOMS and OMI AI have
observations over both land and ocean.
[5] In terms of time series analysis, one potential problem

with the AI record is that the TOMS instrument has been
successively placed on board several different satellites, first
Nimbus 7 (N7), then Meteor 3 and Earth Probe (EP), and
finally replaced with OMI on board Aura since 2005.
Considering the disagreement between different aerosol
products from satellite and ground observation found in
previous intercomparison studies [Mishchenko et al., 2007a,
2007b; Liu et al., 2006], it is important to first examine the
consistency of the whole AI record. No such studies on this
purpose have been made previously. Therefore in this paper
we first compared the mean annual cycle of N7 TOMS AI,
EP TOMS AI and OMI AI. Because EP TOMS suffered
from an instrumental degradation in 2000, we selected a
3 year period from 1997 to 1999 instead of the whole
record. Meteor 3 TOMS AI is excluded from this study
because of the unavailability of version 8 data. The reason
to compare the mean annual cycle is that the three data
sets have no overlap in time, making direct comparison
impossible because of interannual variability in aerosol
loading.

[6] Moreover, in order to link the temporal and spatial
patterns in a large, multidimensional data set, the EOF
method appears to be a useful tool, by separating the set
into its constituent empirical orthogonal functions, or EOFs
[Peixoto and Oort, 1992]. For example, Washington et al.
[2003] used Varimax rotated EOF analysis of the annual
TOMS AI anomalies for Sahara and identified Bodélé as the
leading EOF, once the first unrotated EOF related to
Saharan-wide dust had been removed. Camp et al. [2003]
applied EOF analysis to detrended, deseasonalized TOMS
ozone data to study total ozone variability in the tropics. In
this particular study, we also use Varimax rotated EOF
analysis on N7 TOMS, EP TOMS and OMI AI data over
the spatial domain from 45�S to 45�N and 180�W to 180�E.
It will be shown that this technique successfully isolates
dust sources, dust transport, certain biomass burning sour-
ces and strong fire events.

2. Data Sources

[7] The TOMS AI data used in this study is version 8 N7
monthly mean and EP TOMS daily mean data sets, which
are available from NASA GSFC FTP site (ftp://jwocky.
gsfc.nasa.gov/pub/version8/aerosol). The data period for N7
TOMS is from January 1980 to December 1992 and January
1997 to December 1999 for EP TOMS, both with a 1.25� �
1.0� spatial resolution. Moreover, according to Prospero et
al. [2002] and OMTO3 readme file (2008), only the AI
values larger than +1 should be used for aerosol studies.
Thus we set a threshold of +1 the two AI data sets.
However, we also made test studies with smaller thresholds,
and the results will be discussed in later sections. The EOF
analysis of N7 AI data is mainly based on the monthly mean
data. However, because EP TOMS AI has a much shorter
record, we created a five-day mean data set from the daily
data for EOF analysis.
[8] The OMI AI data is version OMTO3 daily data, also

available from NASA GSFC FTP site (ftp://jwocky.gsfc.
nasa.gov/pub/omi/data/aerosol). The data period is from
January 2005 to December 2007 and the spatial resolution
is 1.0� � 1.0�. Similar to Earth Probe TOMS, we also take
five day mean from the daily data for the EOF analysis. The
data has already been processed by the OMI team, with only
AI values greater than +1 left.

3. Methodology: Rotated Empirical Orthogonal
Function Analysis

[9] The object of EOF analysis is to decompose the data
matrix into a set of independent, orthogonal eigenvectors,
with the first eigenvector explaining the most of the
variance, the second eigenvector explaining the most of
the remaining variance, and so on. Assuming X is the data
matrix of M � N, where N is the number of locations
(288 � 180 for TOMS and 360 � 180 for OMI) and M is
the number of observations at each location. Then the EOFs
are found by determining the eigenvectors of the covariance
matrix C, which is

C ¼ 1

M
XXT ð2Þ
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C is an N � N real, semidefinite matrix, and can therefore be
written as

C ¼ ELET ð3Þ

where L is a diagonal matrix whose elements are the N
eigenvalues of C and E is an orthogonal matrix whose
columns are the N orthogonal eigenvectors, i.e., EOFs. Each
EOF has a corresponding time series, the so-called Principal
Components (PCs), and the two satisfy

X ¼ PE ð4Þ

where P is a M � N matrix whose columns are the N PCs.
[10] Combining equations (2), (3), and (4), we can see

that

L ¼ 1

M
PTP ð5Þ

Since L is diagonal, the PCs are mutually orthogonal and
the eigenvalues equal to their variances.
[11] However, the orthogonal constrain on EOFs some-

times causes the spatial structure of EOFs to have signifi-
cant amplitudes all over the spectral domain and as a result,
localized EOF structure cannot be obtained. In this case, it is
usually necessary to apply rotated EOF analysis to relax the
spatial orthogonal constrain, which means one seeks a m �
m rotation matrix Q to construct the rotated EOFs U
according to

U ¼ EQ ð6Þ

here E = [E1, E2, . . . Em] is the matrix of the leading m
EOFs. In orthogonal rotations Q is chosen to be orthogonal.

QQT ¼ I ð7Þ

[12] Varimax criterion is the most popular orthogonal
rotation scheme because of the following criterion [Kaiser,
1958].

max
Xm
k¼1

1

p

Xp
j¼1

u4jk �
1

p2

Xp
j¼1

u2jk

 !2
2
4

3
5

0
@

1
A ð8Þ

Where U = (uij) and m is the number of EOFs chosen for
rotation (m = 24 in this study). In this criterion, the simplicity
of the complete factor matrix is defined as the maximization
of the sum of the simplicities of the individual factors.
[13] EOF analysis is not only able to isolate spatial and

temporal structures of the data set, but can also be used to
detect discontinuity or errors in the data.

4. Results and Discussion

4.1. Time Series of the Two Data Sets

[14] In the study of the temporal variability of UV –
absorbing aerosols, we would like to examine if any trend
exists in global as well as regional absorbing aerosol
loading. The global mean time series for the three data sets
are plotted together in Figure 1, with land and ocean
separated. However, unlike the continuous trend obtained
from AVHRR aerosol optical depth, there is an increase in
AI from 1982 to1985 and essentially no trend afterwards. A
similar pattern is found in West Sahara, Sahel, North
Atlantic and Australia but no trend is seen in other major
absorbing aerosol source regions (figure not shown). The
trend pattern for the West Sahara and Sahel agrees with the
Barbados dust record [Prospero, 1999; Chiapello et al.,
2005] and the results of the study by Anuforom et al. [2007].
At present, trend analysis using the AI data is complicated
by a number of factors. While AVHRR optical depths are
independent of aerosol type and height and depend solely
on the aerosol concentration the AI data depend on aerosol
type (strength and spectral dependence of aerosol UV
absorption) and height of the aerosol layer (strength of the
spectrally dependent molecular Rayleigh scattering contri-
bution). An additional complication is the nature of and
persistence of the aerosol. The lack of a clear long-term
trend in AI data is probably because most of its signal
comes from short-term events such as wind blown dust or
biomass burning, and the sources are mostly natural such as
the Sahara desert, and there is hardly any trend in these
individual events. This is probably also why no ENSO
pattern shows in the time series because the events are too
short to be strongly influenced by ENSO. While for
AVHRR, sea salt, sulfate and nitrate aerosols contribute a
large portion to its optical depth measurement, and these are
persistent signals and many of them are anthropogenic.
Nevertheless, because of the problems in the Meteor 3
TOMS and EP TOMS AI, absorbing aerosol trend infor-
mation for the periods 1992 to 1996 and 2000 to 2004 is not
available, making it impossible to perform a more direct
comparison with the AVHRR optical depth trend at this
time. The lack of an obvious trend in the AI data does not
mean that there is not a trend in one of the types of UV-
absorbing aerosol, because the AI data involves the inter-
action among all absorbing aerosols in the atmosphere, is
sensitive to aerosol height and the results of our analysis are
sensitive to the value of the AI threshold used in the
analysis. It is possible that trends exist for certain types of
absorbing aerosols. For example, Massie et al. [2004]
discovered an increasing trend in India and China aerosols
mostly associated with weakly – absorbing sulfate aerosols
from TOMS AOD data. Habib et al. [2006] also found an
increase in black carbon and inorganic matter emissions
over India from 1981 to 1999. Therefore more accurate

Figure 1. Time series of N7 TOMS AI, EP TOMS AI, and
OMI AI combined. The solid line indicates trend fitted to
the data from 1980 to 1985 and no trend shows afterward.
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trend analysis on absorbing aerosols requires the combina-
tion of other measurements, such as ground observation.

4.2. Mean Annual Cycle Comparison

[15] The mean annual cycle of the three data sets is
compared both globally and regionally. First of all, EOF

analysis is carried out on the original monthly mean N7
TOMS AI, five-day mean EP TOMS AI and five-day mean
OMI AI data sets. In this way, the first EOF, together with
its PC, show the mean status (Figure 2). It is clearly seen
that the three EOFs are identical, with major feature of the
main dust belt extending from West Sahara to Central Asia.
Australian dust, dust transport off West African coast and
dust combined with biomass burning over Sahel and South
Africa can also be identified. The three PCs over the three-
year period are plotted on Figure 2 (bottom). For N7 TOMS
the time period is from 1987 to 1989, for EP TOMS it is
from 1997 to 1999 and for OMI it is from 2005 to 2007.
The three PCs also agree well in terms of the three-year
annual cycle, which indicate that the mean status of N7
TOMS, EP TOMS and OMI data sets are consistent
globally.
[16] Furthermore, in order to make localized compari-

sons, we selected 12 key geographic locations according to
the results of EOF analysis in the next section (Figure 3).
These regions represent the major absorbing aerosol
regimes, e.g., dust from Sahara, Persian Gulf and off the
west coast of Africa; dust in Taklimakan; dust in Australia;
biomass burning of South Africa and South America and
biomass burning combined with southward dust flow in
Sahel. The mean annual cycles are obtained by averaging
the AI data over each month or each five-day period for
these areas. From this comparison it is found that the EP
TOMS and OMI mean annual cycles agree well with the N7
TOMS mean annual cycle, i.e., the variation is found to be
within ± the standard deviation of the N7 TOMS AI cycle
(Figure 4).
[17] The global and regional comparisons between mean

annual cycles of the three data sets clearly indicate that the
three AI data sets are consistent. Although the three data
sets are supposed to be the same product with the same
algorithm, considering they are different instruments, or on
different satellites, and previous disagreement between
MODIS TERRA and MODIS AQUA [Mishchenko et al.,
2007a, 2007b], this result is meaningful for future studies
on UV absorbing aerosols.

4.3. Rotated Empirical Orthogonal Function Analysis

[18] In this section, we present results from Varimax
rotated EOF analysis of detrended and deseasonalized

Figure 2. The first EOF of the three data sets and their
PCs over the three-year period (1987–1989 for N7 TOMS,
1997–1999 for EP TOMS, and 2005–2007 for OMI). The
EOF together with its PC indicates that the global mean
pattern of the three data sets is consistent.

Figure 3. Regions selected according for the EOF analysis for mean annual cycle comparison.
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Figure 4. Mean annual cycle of N7 TOMS, EP TOMS, and OMI monthly mean data over the
12 selected regions. (black) N 7 TOMS; (blue) EP TOMS; (red) OMI; (black dashed) ±standard deviation
of N7 monthly mean TOMS AI. The mean annual cycles of EP TOMS and OMI AI generally vary within
the ±standard deviation of N7 AI data, meaning that the three data sets are consistent regionally.

Figure 5. Percentage of variance explained by the first 24 REOFs of the three data sets. The curve for
N7 TOMS data resembles that of most other EOF analysis, with the dominant EOF explaining much
greater variance, whereas for EP TOMS and OMI data, the variance explained is more evenly distributed
among the REOFs.
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TOMS and OMI AI data sets to further examine the
temporal and spatial variability of absorbing aerosols.
Varimax rotated EOF analysis is effective in isolating local
patterns but might not be able to identify global modes
[Dommenget and Latif, 2001]. Because most of the UV
absorbing aerosols arise from local sources, this method
appears to be suitable.
[19] Unlike the results of EOF analyses of other climatic

variables e.g., clouds, precipitation where the dominant
mode of interannual variability is linked to ENSO, the AI
EOF patterns clearly show major dust and biomass burning
sources and strong individual events. The PCs are largely
related to the AI time variation of the source region. Unlike
most EOF analysis studies, the leading EOFs of N7 TOMS
AI data account for only a small portion of the total variance
explained, and even less for EP TOMS and OMI AI data.
Here we present the first 24 Rotated EOFs (REOFs) for the
three data sets. Although the total variances explained by
them are 69.6%, 55.4% and 52.5%, respectively (Figure 5),
their spatial patterns have essentially included most of the
information. The difference between the shape of the curves
between the monthly mean data set and the two five-day
mean data sets is mostly likely caused by the short record of
EP TOMS and OMI AI.

[20] Major dust sources in North Africa are shown
individually in the first few REOFs, for both data sets
(Figure 6). The dust sources can be identified as (1) Western
Sahara, covering east of Mauritania coast and Mali;
(2) Central Bodélé depression in Chad; (3) the Libyan Desert;
(4) Northwest Africa, covering North Algeria; and (5) the
Nubian desert, covering Sudan and South Egypt. These dust
sources are in excellent agreement with Washington et al.
[2003] and Engelstaedter et al. [2006]. The only disagree-
ment is that both of these studies identify the Bodélé
depression as the most important source, but in our study,
Western Sahara appears as the dominant REOF. Considering
that we use a more comprehensive data set than previous
studies, this suggests that Western Sahara is the dominant
dust source over the globe. For OMI data, the order of the
OMI REOFs corresponding to the five source regions differs
from that in the TOMS data. While the mean annual cycles
agree, they have different time variability around the mean
because of temporal changes in dust events. In addition to
the five major North African dust sources, other weaker dust
sources can also be identified, such as Taklimakan desert
and Australian dust (Figure 7). The Australian pattern is
absent in the EP TOMS REOFs. We note however, that the
information for this region is spread over several REOFs,

Figure 6. Major dust sources in North Africa: West Sahara, Central Bodélé depression, Libyan desert,
Northwest Africa, and Nubian Desert are shown in the REOFs of N7 TOMS, EP TOMS, and OMI AI
data. The number on the right corner indicates the order of the EOF. The result supports previous works
but indicates West Sahara as the most important dust source over both Africa and the globe.
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instead of being isolated in a single REOF as the N7 TOMS
and OMI results, probably because this signal is not strong
or persistent enough compared with that in the other two
data sets.
[21] Moreover, biomass burning in South Africa and

biomass burning combined with dust transport over the
Sahel are also clearly indicated in two separate REOFs,
for both data sets (Figure 7). The Sahel region shown in the
N7 TOMS data set is further north compared with the other
two, because the Sahel is separated into two REOFs for this
data set, with the seventh REOF showing the southern part
of this region (figure not shown). The cause of this
phenomenon might be mainly caused by the different time
periods of the data sets.
[22] As mentioned in section 2, we specified an AI

threshold of +1 for the TOMS data set. This successfully
reduces noise over the ocean and cloud contamination but
may also eliminate some of the aerosol signal. For example,
biomass burning in South America produces a compara-
tively weaker AI signal (AI values less than +1 in winter).
Testing the sensitivity of our results to the value of the AI
threshold we find that a coherent feature associated with
biomass burning is isolated in the twenty first REOF for an
AI threshold of 0.3. The importance of this source increases
when no threshold is used. It is isolated in the seventh
REOF with no AI threshold. Moreover its PC agrees very
well with the time series for this region (Figure 8). For the
OMI data set, since all of the AI values are greater than one,
this feature (EOF) is missing. This raises questions of how
best to analyze the AI data and whether or not it is
appropriate to simply set an AI threshold considering the

complicated AI dependence in aerosol type and height
distribution.
[23] Rotated EOF analysis is also able to identify strong,

individual events. For example, the second N7 TOMS
REOF and its PC show the famous Kuwait oil fire in
1991. The PC corresponds well with the time series of the
Kuwait region, with a strong peak in 1991 (Figure 9, left). It
is also worth noting that the Persian Gulf region is also a

Figure 8. After including AI < 1, the seventh REOF of N7
TOMS data shows biomass burning over South America.
The correlation coefficient between PC 7 and the time series
of this region is very high (R = 0.791).

Figure 7. REOFs of N7 TOMS, EP TOMS, and OMI show Taklimakan, Australia, South Africa, and
Sahel. The Australia pattern is distributed in several REOFs in the EP TOMS AI data set instead of being
isolated in a single one. Similarly, the southern part of the Sahel region appears in another REOF for the
N7 TOMS data set. Therefore the pattern of the third REOF is further north compared with EP TOMS
and OMI AI data.
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dust source, so this region appears in the ninth EOF of OMI
data when there were no strong fires. The seventh REOF
and its PC of the OMI AI data set correspond to a strong
smoke plume triggered by brush fires in Australia and
traveled over the South Oceans in December 2006
(Figure 9, right) [Torres et al., 2007]. The small peak in
the PC series in December 2005 is very likely an artifact of
the EOF analysis, as no significant feature is observed in the
AI map during that period.
[24] Our REOFs also provide information on the transport

of dust from source regions. For example, the eighth OMI
REOF, plotted in Figure 10 (top) is suggestive of transport
from the source shown in the second OMI REOF (Figure 6).
Supporting this interpretation is the correlation between
PC 8 and PC 2 which is found to be higher at lag �15
(Figure 10, bottom). Moreover, this result agrees with the
trajectories of the dust transport indicated by Engelstaedter
et al. [2006]. Similar patterns are also seen in the N7 TOMS
and EP TOMS REOFs suggesting that REOF analysis is
useful for transport studies.

5. Conclusion

[25] Motivated by the disagreements between various
satellite aerosol products and the recently revealed aerosol
trend, we carried out this study to examine the consistency
of the TOMS and OMI AI records and to investigate the
spatial and temporal variability of UVabsorbing aerosols. In
contrast to the continuous trend in AVHRR aerosol optical
thickness data, except for an increase in AI from 1982 to
1985, there is no long-term trend in the AI record. The most
important conclusion is that monthly mean EP TOMS AI
and OMI AI annual cycles agree very well with monthly
mean N7 TOMS AI both globally and regionally, indicating
that the AI product is a consistent absorbing aerosol record.
This result provides a basis for combined studies using both
TOMS and OMI data in the future. Moreover, Varimax
rotated EOF analysis of the two data sets reveals useful

spatial and temporal information identifying source regions
and dust trajectories as well as providing quantitative
information on the relative strengths of the sources. Strong,
individual events, such the Kuwait oil fire and a strong
Australia smoke plume, are captured in individual, high
order, REOFs. Furthermore, dust transport over the North
Atlantic Ocean is also separated in an individual EOF in the
OMI data set.
[26] The results of our EOF analysis of AI data show that

this technique is useful to objectively identify aerosol
sources, study aerosol transport trajectories and isolated
aerosol events. It also supports regional comparison studies

Figure 9. (left) The second REOF of N7 TOMS AI data shows the great Kuwait oil fire in June 1991.
The PC again has high correlation with the time series of the Persian Gulf region (R = 0.874) with a
strong peak in 1991. (right) The seventh REOF of the OMI AI data set shows a smoke plume over the
South Oceans in December 2006 from Australian brush fires.

Figure 10. Dust transport over North Atlantic Ocean
appears in the eighth REOF of OMI AI data. The bottom is
the cross correlation between PC 8 and PC 2; the two dotted
lines indicate the 95% confidence interval and that the two
series are uncorrelated. It can be seen that there is a peak at
lag �15 (75 days) in the cross-correlation function.
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by objectively confirming the relevant spatial domain.
Nonetheless, our results indicate that because of the qual-
itative nature of the AI product and its dependence on
aerosol type and height further investigation using correla-
tive measurements is required to completely address tem-
poral trends in the AI product.

[27] Acknowledgments. We thank the TOMS and OMI science team
for providing the AI data used in this study. We also thank Omar Torres for
providing useful information regarding the AI data.
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