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ABSTRACT

In an atmospheric general circulation model (AGCM), the physical bounds on soil moisture content and
the nonlinear relationship between soil moisture and evaporation lead to distinct geographical patterns in
key surface energy and water balance variables. In particular, simple hydrological considerations suggest—
and extensive AGCM simulations confirm—that the variance and skew of seasonally averaged [June–
August (JJA)] air temperature on the planet should be maximized in specific, and different, regions: a
variance maximum should appear on the dry side of the soil moisture variance maximum, and a positive
skew maximum should appear on the wet side of the temperature variance maximum. These ideas are tested
with multidecade observational temperature data from the Global Historical Climatology Network
(GHCN). In the United States, where sufficient data exist, the predicted patterns in the seasonal tempera-
ture moments show up where expected. These results suggest that hydrological considerations do indeed
control the patterns of seasonal temperature variance and skew in nature.

1. Introduction

The characterization of the variability of earth’s cli-
mate has always been limited by insufficient data. Most
global datasets are limited to the satellite era (i.e., cov-
ering about 25 yr or less), and only a handful of high-
resolution, spatially complete regional datasets span 50
yr or more [e.g., the U.S. rainfall dataset of Higgins et
al. (2000)]. A few sources provide spatially limited data
covering the last century [e.g., the Global Historical
Climatology Network (GHCN) dataset (Peterson and
Vose 1997)]. While 100 yr of data may seem substantial,
it is insufficient for determining with confidence the
higher moments of interannual climate variability. Go-
ing back much further than 100 yr requires the proper
interpretation of climate proxies such as water isotope
concentrations and tree ring thicknesses. These proxies
are spatially limited, and their correlations with climate
variables are far from perfect.

Numerical simulations of earth’s climate with atmo-
spheric general circulation models (AGCMs), on the
other hand, can span thousands of years, providing ex-
tensive and comprehensive datasets. AGCMs, of

course, have well-known flaws; even the best models
produce large biases in simulated climate variables.
Nevertheless, if care is taken in the analysis of their
behavior, the models can reveal important physical
mechanisms that control climate and its temporal vari-
ability.

One element of climate variability addressed by
many recent AGCM studies is the impact of the land
surface on the atmosphere, particularly the impact of
soil moisture variations on precipitation generation and
air temperature. Demonstrating that such land–atmo-
sphere feedback exists in an AGCM is straightforward.
While the strength of the simulated land–atmosphere
connection varies significantly between AGCMs (Ko-
ster et al. 2006; Guo et al. 2006), models tend to agree
that atmospheric processes do respond to anomalies in
surface moisture conditions (Delworth and Manabe
1989; Beljaars et al. 1996; Fennessy and Shukla 1999;
Douville and Chauvin 2000; Dirmeyer 2000; and many
other studies). On the other hand, demonstrating un-
equivocally that land–atmosphere feedback occurs in
nature is much more difficult. The observational record
is both spatially and temporally inadequate for this pur-
pose. Decadal soil moisture observations are essentially
limited to point measurements in Asia and Illinois, and
large-scale measurements of evaporation and sensible
heat fluxes—the processes that link soil moisture to the
atmosphere—do not exist across decades. Even if the
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measurements were complete in space and time, diag-
nosing directions of causality can be very difficult given
the complex nature of the land–atmosphere system. For
example, any observed concurrence of high rainfall
rates and high soil moisture values would probably re-
flect rainfall’s impact on soil moisture rather than the
other way around, and lagged analyses of the variables
are clouded by the potential for externally induced per-
sistence in the rainfall.

These problems can be circumvented to some extent
by using an AGCM as a tool in the search for observa-
tional evidence of land–atmosphere feedback. The ba-
sic approach is as follows. First, a feature in the obser-
vations suspected of being a signature of the feedback is
identified. Then, the presence of the feature is sought in
the AGCM output. If it does appear in the model, care-
fully designed sensitivity studies are used to determine
whether or not land–atmosphere feedback is indeed re-
sponsible for it. Demonstration that feedback causes
the feature in the AGCM supports (though does not
prove) the supposition that feedback is responsible for
the feature in the real world as well. Studies following
some form of this approach include those of Huang and
Van den Dool (1993), who examined one-month-
lagged correlations between precipitation and tempera-
ture; Koster et al. (2003), who examined precipitation
autocorrelation patterns in the continental United
States; Koster and Suarez (2004), who examined mid-
latitude precipitation totals conditioned on totals in
previous months; and Koster et al. (2004), who demon-
strated that the realistic initialization of soil moisture in
a forecast model leads to improved subseasonal pre-
cipitation and air temperature forecasts.

The present paper adds to this series, finding signals
of land–atmosphere feedback in a different observa-
tional dataset, one previously untapped for this pur-
pose. The data examined here are the multidecade air
temperature records archived by the Global Historical
Climatology Network (Peterson and Vose 1997). Rela-
tionships are identified between the statistical moments
of seasonally averaged air temperature and soil mois-
ture, relationships that can be expected in the observa-
tions only if feedback is important in the real world—
only if the other factors controlling temperature do not
overwhelm the feedback signal.

We emphasize that the relationships identified and
sought for in the observational temperature record are
subtle, going well beyond the trivial notion that wetter
conditions imply cooler temperatures. In fact, these
subtle relationships allow us to test for more than just
the existence of feedback; they allow us to examine the
behavior of real-world evaporation. Conventional wis-
dom, based on theory and some local site measure-

ments (Budyko 1974; Manabe 1969; Eagleson 1978),
suggests that evaporation increases with soil moisture
for drier soils only. Evaporation is insensitive to soil
moisture for wetter soils, for which the evaporation rate
is controlled instead by atmospheric demand. Such be-
havior is usually built directly into the evaporation for-
mulations used by AGCMs. It has never, however,
been tested with real-world data at the regional to con-
tinental scale, mostly due to the aforementioned pau-
city of large-scale evaporation and soil moisture mea-
surements. Because the temperature signals we identify
follow directly from the idea that evaporation has two
regimes, one controlled by soil moisture and the other
controlled by atmospheric demand, the large-scale ob-
servational temperature record provides a unique op-
portunity to demonstrate the relevance of these two
regimes and thus the correctness of the models’ im-
posed evaporation behavior.

Of course, the discovery of these signals—these
unique feedback “signatures”—in the observational
data cannot prove anything conclusively, since their ap-
pearance could be a coincidence or a statistical fluke.
Nevertheless, the presence of the expected signals can
provide one more crucial piece of evidence that land–
atmosphere feedback occurs in nature and that typical
AGCM evaporation formulations are realistic. As dis-
cussed above, such observational evidence is very dif-
ficult to come by objectively, so each available piece of
evidence—especially if derived from a previously un-
tapped dataset—is of significant value.

Following a brief description of the AGCM simula-
tions examined (section 2), this paper shows how the
statistical moments of evaporation, and thus tempera-
ture, are influenced by soil moisture boundaries and by
the relationship of evaporation to soil moisture (section
3). In section 4, these signatures are sought in the avail-
able observational data.

2. Models used and data analyzed

We use for this analysis the AGCM component of
the seasonal forecast system of the Global Modeling
and Assimilation Office of the National Aeronautics
and Space Administration (NASA). [In earlier studies,
this AGCM was referred to as the NASA Seasonal-
to-Interannual Prediction Project (NSIPP) AGCM.]
The 2° � 2.5° finite-difference model uses the relaxed
Arakawa–Schubert scheme (Moorthi and Suarez 1992)
for convection and the treatments of Chou and Suarez
(1994, 1996) for shortwave and longwave radiation,
with an Earth Radiation Budget Experiment (ERBE)-
and International Satellite Cloud Climatology Project
(ISSCP)-based calibration of the cloud parameteriza-
tion scheme. A fourth-order advection scheme is used
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for vorticity and all scalars in the modeled dynamics.
All land surface calculations are performed with the
Mosaic scheme of Koster and Suarez (1996), a soil–
vegetation–atmosphere transfer (SVAT) scheme that
uses tiling to account for subgrid vegetation distribu-
tions. The coupled land–atmosphere system captures
well the broad features of the climate system and the
global hydrological cycle (Bacmeister et al. 2000; Ko-
ster et al. 2000).

To ensure reasonable statistics, we examine soil
moisture, evaporation, and air temperature data span-
ning over 600 yr of simulation—the data are extracted
from nine parallel Atmospheric Model Intercompari-
son Project (AMIP)-style simulations covering the pe-
riod 1930–2003. To filter out some higher-frequency
effects—the fact, for example, that synoptic-scale
weather can affect air temperature without regard to
soil moisture—all quantities are averaged across boreal
summer months [June–August (JJA)] before being
analyzed. We thus focus on soil moisture’s influence
over slow (seasonal) air temperature variability, during
a season for which evaporation, and thus feedback with
the atmosphere, should be maximized.

3. Model results

To illustrate the feedback signatures that may appear
in a temperature record, we show in this section how
the hydrological formulations imposed in an AGCM
imply relationships between the statistical moments of
soil moisture, evaporation, and temperature. Some of
these relationships are intuitive, while others are more
subtle. All, however, are indeed shown to be present in
the AGCM’s output diagnostics.

a. Soil moisture moments

Unlike temperature, precipitation, wind speed, and
most other climate variables, soil moisture content (w,
expressed as a degree of saturation) has very sharp up-
per and lower bounds. By definition, it cannot dip be-
low 0, the value for a perfectly dry soil, and it cannot
exceed 1, the value for a fully saturated soil. Indeed,
most models effectively impose more stringent bounds
associated with wilting and runoff processes (Koster
and Milly 1997).

The existence of these physical bounds has a direct
impact on the statistical moments of w. The impact on
the third moment, the skew, is perhaps easiest to see.
Consider a region with a time-averaged soil moisture
close to the lower bound. The soil moisture will be
constrained by this bound during years of low precipi-
tation, but it will be unconstrained during wetter-than-
average years. This asymmetry results in a positive
skew for the temporal distribution. Similarly, if the av-

erage soil moisture at a given grid cell is close to the
upper bound, soil moisture during the wetter-than-
average years will be constrained, whereas that during
the dryer-than-average years will be unconstrained, re-
sulting in a negative skew.

The second moment, the variance, of soil moisture
content is also affected. The lower physical bound im-
plies that soil moisture contents in dry regions have a
limited ability to vary, at least in the dry direction. Soil
moisture variance there should thus be suppressed.
Variance similarly should be reduced in wet regions,
since soil moisture contents there cannot vary much in
the wet direction. Another way to see this is to consider
soil moisture as an integrator of antecedent rainfall and
the two soil moisture bounds as “absorbing states” for
the integration. Consider first a hypothetical wet re-
gion, one with a high JJA precipitation variance. In this
hypothetical region, the rainfall varies greatly from
year to year—it may be 8 mm day�1 in some years and
20 mm day�1 in others—yet it remains high enough in
all years to keep the soil moisture near the saturated
value, resulting in a high mean soil moisture but a low
interannual soil moisture variance. The corresponding
example for the dry case involves a region with consis-
tently low precipitation, leading to both a low mean and
a low variance of soil moisture. Intuitively, variance
should be maximized in regions of intermediate wet-
ness.

These arguments, though overly simple, are fully sup-
ported by the AGCM diagnostics. The histograms in
Fig. 1 show how the variance and skew of AGCM-gen-
erated seasonally averaged (JJA) soil moisture varies
with the climatological mean seasonal soil moisture w.
The binned averages are computed from midlatitude
land points (30°–60°N). [We focus on midlatitudes in
this paper to avoid the large impacts of interannually
varying sea surface temperatures (SSTs) on tropical
precipitation and temperature fields—we seek here to
isolate and identify land effects.] Soil moisture variance
is maximized for intermediate soil moisture values and
approaches zero toward the dry and wet ends of the
operating soil moisture range. The skew of soil mois-
ture is clearly positive on the dry end and negative on
the wet end. The skew approaches zero at the extremes
because it scales with variance to the 3/2 power.

We say that these arguments are overly simple be-
cause the soil moisture moments are also controlled in
large part by the moments of precipitation, the domi-
nant driver of soil moisture. Precipitation, which cannot
be negative, typically has positive skew; this may ex-
plain why the positive soil moisture skew in dry areas is
larger than the negative soil moisture skew in wet areas
(bottom panel of Fig. 1). Furthermore, precipitation is
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known to be very responsive to variations in soil mois-
ture in this AGCM, particularly in regions of interme-
diate soil moisture content (Koster et al. 2000, 2003).
This means that the relationships seen in Fig. 1 reflect
in part an amplification, through feedback, of the rela-
tionships originally established by the presence of the
soil moisture bounds.

Regardless of their source, the soil moisture moment
relationships in Fig. 1 do exist in the AGCM. As will be
seen below, some simple hydrological considerations
allow us to translate these relationships into corre-
sponding relationships for the moments of air tempera-
ture in the AGCM.

b. The relationship between evaporation and soil
moisture

Before looking at the evaporation and temperature
moments, we must illustrate the underlying relationship

in the model between soil moisture and evaporation
fraction (E/Rnet, where E is total evaporation and Rnet

is the net radiation). The histogram in Fig. 2 shows this
relationship for AGCM land cells in Northern Hemi-
sphere midlatitudes. In the AGCM, evaporative frac-
tion tends to increase with soil moisture up to a certain
point (w � 0.5); above this point, the evaporative frac-
tion is largely insensitive to soil moisture. Put simply, in
the wetter regime, the soil can provide moisture to the
atmosphere faster than the atmosphere can remove it.
Note that the plateau at the wet end is not perfectly flat,
presumably due to the mix of vegetation types consid-
ered and the relatively small number of points contrib-
uting to the highest bins. (Substantial scatter is seen
prior to the binning.) Corresponding curves condi-
tioned on vegetation type (Mahanama and Koster
2005) show much flatter plateaus, as expected.

As discussed in section 1, the characterization of two
distinct regimes for evaporation—the drier, soil-mois-
ture-controlled regime and the wetter, atmosphere-
controlled regime—has a substantial heritage in the lit-
erature (e.g., Budyko 1974; Manabe 1969; Eagleson
1978). In other words, the presence of two separate
regimes in Fig. 2 is neither a new result nor a unique
model characteristic; the coexistence of the two regimes
has long been assumed for the real world and is indeed
effectively imposed in many models.

c. Hydrological signatures on evaporation moments

The dependence of evaporation variance on mean
soil moisture can be deduced directly from the relation-
ships in Figs. 1 and 2. Consider first the dry, soil-
moisture-controlled evaporation regime. In this regime,

FIG. 1. (top) Average relationship between the variance of soil
moisture and mean soil moisture, as determined from hundreds of
years of AGCM simulations. To generate the histogram, midlati-
tude land points are binned according to their mean soil moisture
(bin size � 0.05), and the average variance is computed for each
set of binned points. (bottom) Same as top, but for the relation-
ship between soil moisture skew and mean soil moisture. The soil
moisture contents analyzed are JJA averages and are expressed in
terms of degree of saturation.

FIG. 2. Average relationship between the evaporative fraction
and mean soil moisture, as determined from hundreds of years of
AGCM simulations. To generate the histogram, midlatitude land
points are binned according to their mean soil moisture, and the
average value of E/Rnet is computed for each set of binned points.
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soil moisture variations lead to evaporation variations;
a large soil moisture variance thus translates to a large
evaporation variance. In contrast, in the wet (atmo-
sphere controlled) regime, soil moisture variations do
not lead to evaporation variations, and evaporation
variance is necessarily quashed. Points near the transi-
tion moisture value (w � 0.5) should also be reduced
somewhat, since variations during wet years are not
large. Based on these considerations, we might expect
the relationship between evaporation variance and w to
look like that between soil moisture variance and w
(top panel of Fig. 1), but with much reduced variance
for wetter conditions (i.e., the right part of the histo-
gram pushed down toward zero).

The top two panels of Fig. 3 show that for the
AGCM, this is indeed the case. The variance of evapo-
ration is close to zero for w greater than about 0.5. Note
that it need not be exactly zero, even for very wet con-
ditions, since evaporation also varies with, for example,
incident energy. (In fact, if we were to look at much
finer time scales, such as daily values, radiation varia-
tions would induce much stronger evaporation vari-
ances, even for very wet soils. The shape of the distri-
bution in the middle panel of Fig. 3 is appropriate for
longer time scales only.) Because of the quashing of
evaporation variance on the wet end, the maximum
evaporation variance occurs at w � 0.33, on the dry side
of the maximum of the soil moisture variance.

The soil moisture–evaporation relationship also has a
profound impact on the skew of evaporation. In wet
areas (w close to 1), where evaporation does not vary
with soil moisture, skew in soil moisture does not trans-
late to skew in evaporation—the skew of evaporation is
quashed, just as the variance is quashed. In dry areas (w
close to 0), on the other hand, evaporation does vary
with soil moisture, and soil moisture skew does lead to
a corresponding skew in evaporation. Now consider in-
termediate soil moisture values (those near the transi-
tion point between soil-moisture-controlled and atmo-
sphere-controlled regimes, at w � 0.5), for which the
shape of the histogram in Fig. 2 has a very interesting
effect. Due to this shape, increases in evaporation dur-
ing wetter-than-average years will be much smaller
than decreases during drier-than-average years. This in-
duces a strong negative skew in the evaporation.

The top two panels of Fig. 4 show the relationships
between w and both soil moisture skew and evapora-
tion skew. All three effects—the direct translation of
skew for low w, the imposition of negative evaporation
skew (or, at the very least, a reduction of positive skew)
for intermediate w, and the quashing of evaporation
skew for high w—are captured by the AGCM. The
overlain dashed lines show how the resulting extrema

of evaporation skew are shifted from the corresponding
extrema of the soil moisture skew.

d. Hydrological signatures on temperature moments

The bottom panels of Figs. 3 and 4 show the rela-
tionships between w and the temperature moments.
The overall shapes of the relationships, including the
locations of the extrema, agree strongly with those for
the evaporation moments. Visual inspection of Fig. 5
shows that evaporation and temperature moments are
indeed strongly correlated across the globe. This is not
a coincidence. Seasonally averaged (JJA) temperature

FIG. 3. (top) Average relationship between the variance of soil
moisture and mean soil moisture, as determined from hundreds of
years of AGCM simulations. To generate the histogram, midlati-
tude land points are binned according to their mean soil moisture
(bin size � 0.05), and the average variance is computed for each
set of binned points. (middle) Same as top, but for the relationship
between evaporation variance and mean soil moisture. (bottom)
Same as top, but for the relationship between temperature vari-
ance and mean soil moisture. The soil moisture contents analyzed
are JJA averages and are expressed in terms of degree of satura-
tion.
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anomalies tend to be strongly (and negatively) corre-
lated with seasonally averaged evaporation anomalies,
particularly when the latter are large due to soil mois-
ture variations. The correlation is due in large part to
evaporative cooling—when more of the incident energy
over the season is used to evaporate water, less is avail-
able to heat up the surface. Simply put, by determining
the controls on the moments of seasonal evaporation,
particularly for summer, we automatically determine
critical controls on the moments of seasonal tempera-
ture.

To demonstrate more conclusively that the hydro-
logical mechanisms outlined in sections 3a and 3b are
responsible for the behavior of the temperature mo-
ments, we show in Fig. 6 a comparison of the moments
from the AGCM with those from a supplemental run,
one in which the land’s impact on atmospheric variabil-
ity is artificially disabled. In this supplemental run, we
prescribe climatological, seasonally varying evapora-
tion efficiencies (i.e., ratios between evaporation and
potential evaporation) at the land surface rather than
allow soil moisture, and thus evaporation, to increase

following precipitation events. This “fixed �” approach
is described in more detail by Koster et al. (2000). As in
the original simulation, the SSTs in this 50-yr fixed-�
simulation vary from year to year, giving ocean vari-
ability the opportunity to affect the continental tem-
perature moments. By design, soil moisture data are
not produced in the fixed-� run; the effective mean
moistures, however, are the same as those for the con-
trol AGCM simulations.

Figure 6 shows that when the coupling of surface
hydrological variables to the atmosphere is disabled, all
hints of the temperature moment structure disappear.
Thus, the air temperature moment structures in the
AGCM are indeed fully induced by the coupling (and
not, e.g., by SST variability), presumably through the
mechanisms outlined above—mechanisms involving
soil moisture bounds and the shape of the evaporation–
soil moisture relationship.

To summarize, then, simple hydrological consider-
ations suggest three distinct signatures of hydrological
impacts on seasonal (JJA) temperature distributions,
signatures that appear, as expected, in the AGCM data
and can also be sought in the observational record.
These are as follows.

(i) The temperature variance maximum should lie on
the dry side of the soil moisture variance maxi-
mum, when both are plotted against mean soil
moisture (Fig. 3).

(ii) The temperature skew should be large and posi-
tive on the wet side of the temperature variance
maximum, when both are plotted against mean
soil moisture (Fig. 7).

(iii) The temperature skew should be negative on the
dry side of the temperature variance maximum,
when both are plotted against mean soil moisture
(Fig. 7).

Alternatively, for a continental region such as the
United States with a distinct west-to-east gradient of
soil moisture, maps of soil moisture and temperature
moments should show the temperature variance maxi-
mum to the west of the soil moisture variance maxi-
mum, and they should show positive and negative tem-
perature skew to the east and west, respectively, of the
temperature variance maximum. In the next section, we
will search for these structures in the observational
temperature data, using observations-based soil mois-
ture proxies.

4. Observations

The presence of the three identified feedback signa-
tures in the AGCM data is not surprising, since the
signatures follow directly from the model’s imposed hy-

FIG. 4. Same as in Fig. 3, but for skew.
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drological formulations. Their presence in the observa-
tional data can be considered a much more difficult test,
one that indeed reflects on the correctness of the im-
posed formulations and on the importance of feedback
in the real world.

a. Available data

Gridded temperature data were derived from point
measurements archived by GHCN (Peterson and Vose
1997). More precisely, we used the homogeneity-
adjusted form of the “version 2” GHCN temperature
dataset, as outlined on the Web site of the National
Climatic Data Center (http://www1.ncdc.noaa.gov/pub/
data/ghcn/v2/readme.temperature.Z). Individual mea-
surements tagged as having failed a quality check were
not considered in the analysis.

The point data (consisting of monthly averaged tem-
peratures) were processed as follows. First, all stations
within a given 2° � 2.5° grid cell were identified. (A
2° � 2.5° grid is chosen both for consistency with the
AGCM data and to allow a detailed representation of
the moments’ spatial structures.) For each station n
within the grid cell, the mean JJA temperature over all
years was computed and then subtracted from that sta-

tion’s individual JJA values to produce a time series of
anomalies, T�t,n. The grid cell average JJA temperature
anomaly for each year t, Tt,grid, was computed as the
simple average of T�t,n over the Nt stations within the
cell that contribute during that year. Note that simply
averaging together all of the JJA temperatures in a
given year over the stations in a grid cell and then com-
puting a time series of anomalies from the resulting
time series of temperatures would produce a differ-
ent—and much less defensible—result, since the differ-
ent stations have different record lengths and are af-
fected differently by elevation, aspect, etc. By comput-
ing the anomalies for each station separately and then
averaging the anomalies, we account for the fact that Nt

varies with time.
Individual measurements, of course, are subject to

error, so a grid cell average should be based on as many
measurements as possible. In addition, many years of
data are necessary to provide accurate estimates of the
higher temperature moments. Balancing these two re-
quirements helped us define criteria for constructing
our gridded temperature dataset. If more than three
stations within a grid cell were required to generate a
grid cell value, coverage across the United States (the

FIG. 5. (top left) Variance of seasonal (JJA) evaporation totals (mm2 day�2). (top right) Skew of seasonal (JJA) evaporation totals
(mm3 day�3). (bottom) Corresponding plots for seasonally averaged air temperature in K2 and K3, respectively.
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only large-scale region with comprehensive coverage)
would be largely incomplete for any reasonable mini-
mum number of sample years, making map comparison
difficult. We thus require three station measurements
to compute an average grid cell value. The coverage
across the United States under this criterion is reason-
able for a minimum sample size of 75 but falls off for
minimum sample sizes much larger than this; thus, we
impose a minimum of 75 yr of data to compute the
temperature moments. Figure 8a shows the locations
across the globe where gridded temperature moments
can be computed under these two criteria. Again, for
map comparisons, we focus in this paper on the North
American region encompassing the continental United
States. Thus, for the map comparisons, we effectively
focus on temperature data from the U.S. Historical Cli-

mate Network (USHCN), since the USHCN data ef-
fectively constitute the U.S. subset of the GHCN tem-
perature data. Fortunately, much more than 75 yr of
data are typically available across the United States, as
indicated in Fig. 8b.

Long-term soil moisture records are even more mea-
ger. Outside of spatial interpolations between point
measurements in Asia and retrievals of soil moisture in
the top centimeter of the earth from satellite, direct,
decadal estimates of observational soil moisture data at
regional to continental scales do not exist. Useful prox-
ies, however, are available. Most notably, global offline
land model simulations, when driven with observed me-
teorological forcings, provide a comprehensive set of
soil moisture data at depth. Although the absolute mag-
nitudes of model-generated soil moisture will typically
differ from the observations, the model should compute
realistically the soil moisture’s temporal variability (En-
tin et al. 1999) and thus its higher statistical moments.
Here, we use a 15-yr soil moisture dataset obtained by
driving the Mosaic land surface model (the land model
used in the AGCM analysis above) with 15-yr Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) Re-Analysis (ERA-15) forcing that was cor-
rected on the monthly scale (Berg et al. 2003) with
GPCP precipitation data (Adler et al. 2003) and SRB
radiation data (Gupta et al. 1999). The generation of
these offline land surface data is described in more de-

FIG. 6. (top) Variance (K2) and skew (K3) of seasonal (JJA)
temperature as a function of mean soil moisture. (bottom) Same
as top, but from an AGCM run in which land–atmosphere feed-
back is disabled.

FIG. 7. (top) Variance of seasonal (JJA) temperature as a func-
tion of mean soil moisture. (bottom) Skew of seasonal (JJA) tem-
perature as a function of mean soil moisture.
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tail by Mahanama and Koster (2005). Although 15 yr of
JJA averages are unquestionably insufficient for esti-
mating soil moisture skew, they can provide a useful
first-order estimate of soil moisture variance.

b. Observational results

The observational results are summarized in the his-
togram in Fig. 9, which is constructed using all of the
available Northern Hemisphere midlatitude points in-
dicated in Fig. 8a, not just those in the United States. In
the plot, the maximum of temperature skew does lie on
the wet side of the temperature variance maximum,
which itself lies on the dry side of the soil moisture
variance maximum. The skew never appears negative
in this plot, but it does show a local minimum on the dry

side of the temperature variance maximum. The fea-
tures in Fig. 9 are in general agreement with the signa-
tures of soil moisture impact on air temperature mo-
ments outlined in section 3d.

Given the limited availability of the observational
data, it is instructive to view these results in map form.
The top two panels of Fig. 10 show the mean soil mois-
ture (degree of saturation) over the United States for
JJA as determined from the AGCM and the ECMWF-
based observational proxy. Both maps—and especially
the “observational” map, which is not influenced by an
unrealistic precipitation maximum in the center of the
country—show a strong west-to-east gradient of soil
moisture. Thus, again, in the United States, saying that
a feature is on the “dry side” of another feature gen-
erally means that it lies to the west. Notice that the

FIG. 8. (a) Map of the locations for which available observations allow an adequate estimation of gridded temperature moments.
(b) Number of data points upon which the temperature moment calculations in the continental United States were based.
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maximum of the “observed” soil moisture variance
[�2(wobs); Fig. 10c] appears, as expected from Fig. 1, at
intermediate mean soil moisture values. Part of the
variance structure takes the form of a “bull’s-eye,” re-
flecting a similar bull’s-eye in the observed summer
precipitation variance field (e.g., Koster et al. 2003).
Keep in mind that the limited time series give imperfect
estimates of the true underlying variances, Monte Carlo
sampling of a perfect normal distribution suggests that
with 15 sampling points, the RMSE of the estimated
soil moisture variance is roughly 37% of the true vari-
ance.

Figure 11c shows the distribution of the observed
temperature variance �2(Tobs) in the United States.
(Monte Carlo analysis shows that for the minimum 75

sampling points considered here, the RMSE of the
temperature variance estimates, assuming an underly-
ing normal distribution, is roughly 16% of the true
variance.) The dots indicate grid cells for which the
“observed” soil moisture variance (from Fig. 10c) ex-
ceeds 0.005. The positioning of the �2(Tobs) maximum
on the dry side of the �2(wobs) maximum—one of the
hydrological signatures identified in section 3d—is very
clear. Perhaps even more convincing (since the obser-
vational proxy soil moistures are not needed) is the
comparison of Fig. 11c with the top two panels of the
figure, which show the temperature variance distribu-
tions obtained from the control AGCM simulations and
from the fixed-� simulation (discussed in conjunction
with Fig. 6). The control simulations’ variances are
much too large relative to observations. Nevertheless,
the pattern of the simulated variance distribution
agrees quite well with that of the observed distribution.
In the AGCM, this pattern disappears when land–
atmosphere feedback is artificially prevented (Fig.
11b). Thus, either the agreement in the patterns in Figs.
11a and 11c is a coincidence, or feedback does deter-
mine the temperature variance distribution in the real
world.

Feedback by itself, however, is not enough—the non-
linearity of the soil moisture/evaporation fraction rela-
tionship is also needed to produce this variance signa-
ture. Interestingly, the model calculations of Huang et
al. (1996; see their Fig. 2) show an evaporation variance
maximum (and thus, presumably, a temperature vari-
ance maximum) roughly coincident with a soil moisture
variance maximum in the central United States, in con-
trast to the findings presented here. Note, however,
that the model used by Huang et al. (1996) relates
evaporation linearly to soil moisture—the plateau and
associated nonlinearity seen in Fig. 2 of the present
paper is not assumed. It is the nonlinearity induced by
the plateau that causes the westward shift in the evapo-
ration (and temperature) variance relative to the soil
moisture variance in our model simulations (Fig. 3) and
apparently in the real world (Fig. 11c).

Figure 12 shows, for the continental United States,
the skew of JJA temperature for the control simula-
tions, for the fixed-� simulation, and for the observa-
tions. Note that the estimation of skew from 50 data
points (for the fixed-� simulation) or 75 data points (for
the observations) carries with it much uncertainty. To
facilitate the comparison in the presence of such sam-
pling error—to weed out the substantial noise in the
figures—any grid cell with a skew not significantly dif-
ferent from zero at the 80% confidence level (as deter-
mined from Monte Carlo analysis considering coeffi-
cient of skewness) is whited out. The great majority of

FIG. 9. (top) “Observed” soil moisture variance vs “observed”
mean soil moisture. Observational soil moisture proxies are ob-
tained by driving a land surface model with observations-based
meteorological forcing. (middle) Temperature variance, as deter-
mined from GHCN temperature data, vs mean (proxy) soil mois-
ture. (bottom) Temperature skew, as determined from GHCN
temperature data, vs mean (proxy) soil moisture. Given the re-
duced data volume relative to that underlying Figs. 3 and 4, the
bin width used here is 0.1.
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the grid cells for the fixed-� and observational analyses
show skews that are statistically indistinguishable from
zero. Note that a skew can be close to zero and still
have a coefficient of skewness that is statistically sig-
nificant, which explains the presence of some gray
patches in the figures.

The stronger of the two skew-related hydrological
signatures on air temperature can be seen in the obser-

vational data. The dots in the bottom panel of Fig. 12
locate the observed temperature variance maximum
from Fig. 11c [showing where �2(Tobs) exceeds 1.1 K2].
In accordance with Fig. 7, a significant region of posi-
tive skew appears on the wet side of the variance maxi-
mum, toward the southeast. Its appearance there could,
of course, be a reflection of sampling error; for ex-
ample, the similarly sized region of negative skew pro-

FIG. 10. (a) Mean soil moisture in the root zone (expressed as a degree of saturation) for
JJA, as computed by the AGCM–land surface model (LSM) simulations. (b) Same as (a), but
for the land surface model driven offline by realistic observational forcing spanning 15 yr.
(c) Variance of root zone soil moisture, as determined in the 15-yr offline simulation.
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duced in the fixed-� simulation (middle panel) is pre-
sumably consistent with that plot’s field significance
levels. Nevertheless, the fact that the positive skew re-
gion appears where expected from basic hydrological
considerations supports the idea that it is a real signal.
Notice also that a hint of a negative skew appears

where expected on the dry side of the variance maxi-
mum, though this signal is too small to merit much
consideration. The substantial signal in the AGCM
(Fig. 12a) disappears in the fixed-� run, again showing
that the signal in the AGCM, and thus possibly in the
observations, is indeed induced by feedback.

FIG. 11. (a) Variance of JJA air temperature, as obtained from the AGCM control simu-
lations. (b) Same as (a), but for the AGCM fixed-� simulation, in which land–atmosphere
feedback is artificially suppressed. (c) Same as (a), but for the GHCN observations. The dots
show where the “observed” soil moisture variance (from the observational proxy) exceeds
0.005. Whited-out areas are regions of inadequate station coverage.
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5. Summary and discussion

GHCN observations show that seasonal (JJA) air
temperatures have a maximum variance in the central
Great Plains (Fig. 11c), on the dry side of a soil mois-

ture variance maximum determined from an observa-
tional proxy. The map of observed temperature skew
(bottom panel of Fig. 12) suggests that temperature
extremes in a region centered around Arkansas and
Missouri (on the wet side of the temperature variance

FIG. 12. (a) Skew of JJA air temperature, as obtained from the AGCM control simulations.
(b) Same as (a), but for the AGCM fixed-� simulation, in which land–atmosphere feedback
is artificially suppressed. (c) Same as (a), but for the GHCN observations. The dots show
where the observed air temperature variance exceeds 1.1 K2. Whited-out areas either have
inadequate station coverage or have skews that are statistically indistinguishable from zero at
the 80% confidence level.
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maximum) will tend to be warm rather than cool. The
same general behavior (in pattern, though not in mag-
nitude) is also seen in the AGCM; the simulated ex-
trema in the moments are located geographically in
roughly the same places (Figs. 11a and 12a). The un-
derlying relationships between mean soil moisture and
the temperature moments appear to be about the same
in the observations and the model (Figs. 3, 4, and 9).

The AGCM’s behavior is intuitively explained by
simple hydrological mechanisms, mechanisms that are
fully supported by the joint analysis of AGCM soil
moisture, evaporation, and temperature fields. Figures
6, 11, and 12 provide further evidence for these mecha-
nisms—when land–atmosphere interaction is artificially
disabled, the relationships between the temperature
moments and mean soil moisture disappear. The agree-
ment between the observational and control model re-
sults suggests that the identified mechanisms are also
operating in nature.

Shorter, such as daily, time scales are not addressed
here; presumably the relationships involved at shorter
time scales would be much more complex, since tem-
peratures at these time scales would be influenced more
by synoptic weather patterns. Also, the moments ex-
amined are not strongly affected by long-term (dec-
adal) trends, despite evidence for such trends in mea-
sured time series of such variables as precipitation and
potential evaporation (e.g., Lawrimore and Peterson
2000). When the observational temperature data at
each grid cell is regressed against time and the resulting
linear trend is subtracted from the grid cell’s tempera-
ture time series, the resulting moments (not shown) are
very close to those shown in Figs. 11 and 12. Again, this
paper focuses on soil moisture/air temperature feed-
back at seasonal time scales.

The comparisons in Figs. 3, 4, 9, 11, and 12, in con-
junction with the hydrological analysis outlined in sec-
tion 3, give us reason to believe that the seasonal (JJA)
variance and skew distributions seen in the observa-
tional air temperature record are largely explained by
basic subsurface hydrological processes, namely, by the
nonlinear relationship between evaporation and soil
moisture and by the moments in soil moisture induced
by its unavoidable upper and lower bounds. In other
words, through the use of a long-term observational
dataset—the GHCN air temperature dataset—this
study provides further support for the supposition that
land moisture variables have a first-order impact on the
temporal variability of meteorological fields on sea-
sonal time scales.
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