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ABSTRACT

Precipitation estimation from satellite passive microwave radiometer observations is a problem that does
not have a unique solution that is insensitive to errors in the input data. Traditionally, to make this problem
well posed, a priori information derived from physical models or independent, high-quality observations is
incorporated into the solution. In the present study, a database of precipitation profiles and associated
brightness temperatures is constructed to serve as a priori information in a passive microwave radiometer
algorithm. The precipitation profiles are derived from a Tropical Rainfall Measuring Mission (TRMM)
combined radar–radiometer algorithm, and the brightness temperatures are TRMM Microwave Imager
(TMI) observed. Because the observed brightness temperatures are consistent with those derived from a
radiative transfer model embedded in the combined algorithm, the precipitation–brightness temperature
database is considered to be physically consistent. The database examined here is derived from the analysis
of a month-long record of TRMM data that yields more than a million profiles of precipitation and
associated brightness temperatures. These profiles are clustered into a tractable number of classes based on
the local sea surface temperature, a radiometer-based estimate of the echo-top height (the height beyond
which the reflectivity drops below 17 dBZ ), and brightness temperature principal components. For each
class, the mean precipitation profile, brightness temperature principal components, and probability of
occurrence are determined. The precipitation–brightness temperature database supports a radiometer-only
algorithm that incorporates a Bayesian estimation methodology. In the Bayesian framework, precipitation
estimates are weighted averages of the mean precipitation values corresponding to the classes in the
database, with the weights being determined according to the similarity between the observed brightness
temperature principal components and the brightness temperature principal components of the classes.
Because the classes are stratified by the sea surface temperature and the echo-top-height estimator, the
number of classes that are considered for retrieval is significantly smaller than the total number of classes,
making the algorithm computationally efficient. The radiometer-only algorithm is applied to TMI obser-
vations, and precipitation estimates are compared with combined TRMM precipitation radar (PR)–TMI
reference estimates. The TMI-only algorithm, supported by the empirically derived database, produces
estimates that are more consistent with the reference values than the precipitation estimates from the
version-6 TRMM facility TMI algorithm. Cloud-resolving model simulations are used to assign a latent
heating profile to each precipitation profile in the empirically derived database, making it possible to
estimate latent heating using the radiometer-only algorithm. Although the evaluation of latent heating
estimates in this study is preliminary, because realistic conditional probability distribution functions are
attached to latent heating structures in the algorithm’s database, a generally positive impact on latent
heating estimation from passive microwave observations is expected.
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1. Introduction

Precipitation estimation from satellite passive micro-
wave radiometer data is a mathematically ill-posed
problem. That is, the problem does not have a unique
solution that is insensitive to errors in the input data.
Traditionally, to make the problem well posed, a priori
information derived from physical models or indepen-
dent, high-quality observations is incorporated into the
solution. For example, the algorithm used to estimate
precipitation from observations provided by the micro-
wave radiometer aboard the Tropical Rainfall Measur-
ing Mission (TRMM) satellite employs a database de-
rived from cloud-resolving model (CRM) simulations
(Kummerow et al. 2001). This database consists of
CRM-simulated precipitation profiles and associated
brightness temperatures derived from radiative transfer
calculations. For each multispectral set of observed
brightness temperatures, the estimation procedure as-
signs to each precipitation profile in the database the
probability that it is the “observed” profile. The final
estimate is a probabilistic combination of the precipi-
tation profiles in the database. Although other ap-
proaches are possible, for example, the direct maximi-
zation of the posteriori probability distribution of
brightness temperatures (Evans et al. 1995), precipita-
tion databases or parameterizations (which can be
viewed as a compact way of representing the informa-
tion in a database) are necessary in any passive micro-
wave estimation algorithm.

In many instances, CRMs represent a useful tool for
constructing the databases or the parameterizations
needed in passive microwave retrievals. They are physi-
cally based, flexible, and can shed light on phenomena
difficult to understand and investigate from direct ob-
servations. However, there are also drawbacks associ-
ated with the use of CRMs. First, the precipitation dis-
tribution in nature may be different from that simulated
by CRMs. This is because CRMs are initialized using a
relatively small set of large-scale environmental condi-
tions that may not be statistically representative of the
distribution of the large-scale environments in nature.
Second, CRMs might be deficient in handling ice pro-
cesses, resulting in distributions of simulated 85-GHz
brightness temperatures different from those observed
in nature (Bauer 2001). These drawbacks may be re-
sponsible for the differences between precipitation es-
timates from the version-5 TRMM precipitation radar
(PR) and TRMM Microwave Imager (TMI) algorithms
(Kummerow et al. 2001). Although these differences
are reduced in the version-6 algorithms, some discrep-
ancies still exist between the TRMM PR and TMI es-
timates (these will be illustrated in section 3). From this

perspective, but also for the benefit of future precipi-
tation satellite missions, it is desirable to construct a
precipitation–brightness temperature database free
from the weaknesses of databases derived from current
CRM simulations. Such a database can be constructed
from a large set of precipitation profiles and associated
brightness temperatures derived directly from observa-
tions.

Our approach to the radiometer-only algorithm is
illustrated in Fig. 1. First, we construct a database of
coincident precipitation profiles and associated bright-
ness temperatures using TRMM combined active and
passive microwave observations. The combined algo-
rithm developed by Grecu et al. (2004) is used to re-
trieve precipitation profiles from the TRMM PR and
TMI observations. The application of the combined al-
gorithm to 1 month of TRMM observations over ocean
regions yields a database of more than one million re-
trieved profiles and coincident TMI brightness tem-
peratures. The database is organized to facilitate the
efficient application of a Bayesian algorithm to esti-
mate precipitation profiles from radiometer-only obser-
vations. In essence, the database of precipitation pro-
files is searched to find profiles that are compatible with
the TMI observations and ancillary data; the compat-
ible profiles are then combined to form a solution pro-
file.

Radiometer algorithm databases derived from
TRMM observations have been considered before by
Shin and Kummerow (2003). They illustrated the po-
tential of such empirically based Bayesian estimation

FIG. 1. Schematic of the radiometer-only precipitation profile
estimation method. (left) TRMM PR and TMI observations are
combined to retrieve precipitation profiles (vertical lines) in the
overlap swath. These retrieved profiles form the precipitation–
brightness temperature database for the TMI-only algorithm.
(right) TMI brightness temperatures (TBs) are used to find ra-
diatively compatible precipitation profiles in the TRMM PR–TMI
database. The compatible profiles are combined to form the so-
lution profile.
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algorithms but provided only a partial evaluation of
their algorithm, because only simulation-based experi-
ments were considered in their study. In their experi-
ments, brightness temperatures were synthesized from
combined retrievals and used for precipitation retrieval
from radiometer observations only. The radiometer-
only retrievals were then compared with the combined
retrievals used to synthesize the passive observations.
Evaluations of this kind using simulated radiances are
not entirely representative, because applications to real
observations may be affected by errors in the radiative
transfer calculations (and consequently the algorithm
may perform worse than in the synthetic experiments).
Also, because of computational restrictions, only the
profiles within two latitude–longitude boxes with di-
mensions of 15° � 30° over the Pacific Ocean during
December 1999 were used to construct and test the
databases in the Shin and Kummerow (2003) study. A
follow-up study by Masunaga and Kummerow (2005)
refined the combined retrieval methodology used to
construct the database, but no evaluation of its impact
on radiometer-only retrievals was considered.

In the current study, a more comprehensive evalua-
tion of a Bayesian algorithm supported by combined
TRMM retrievals is performed. Specifically, we com-
pare estimates from the Bayesian algorithm formulated
in this study with version-6 TRMM facility TMI algo-
rithm estimates, and to estimates from the combined
algorithm of Grecu et al. (2004). The passive micro-
wave observations are provided by the TMI, and the
comparison is made for monthly estimates at 0.5° � 0.5°
resolution. This approach provides direct evidence for
whether or not some of the deficiencies in Bayesian
algorithms using CRM databases can be eliminated and
more consistency with radar–radiometer-based esti-
mates can be achieved using empirically derived data-
bases. Another notable difference from the formulation
of Shin and Kummerow (2003) is the use of a radiom-
eter-based estimator of the echo-top height (ET; the
height beyond which the reflectivity drops below 17
dBZ, i.e., storm height in the terminology of the
TRMM PR products). This estimator facilitates an ef-
ficient exploration of the database in the Bayesian al-
gorithm, but in addition, it helps to establish the con-
nection between precipitation and latent heating (LH)
profiles in the database. Although estimation of pre-
cipitation profiles is the primary focus of this investiga-
tion, latent heating estimation is another important al-
gorithm application that is demonstrated.

In section 2 a description of the database construc-
tion and the Bayesian estimation algorithm is provided.
Results from the application of the newly derived
Bayesian algorithm are discussed in section 3. In sec-

tion 4, the Bayesian algorithm for LH estimation is
described and demonstrated. Conclusions and recom-
mendations for future work are provided in section 6.

2. Formulation

a. Construction of a combined PR–TMI database

In this study, the combined radar–radiometer algo-
rithm of Grecu et al. (2004) is applied to coincident
TRMM PR and TMI observations over ocean regions
to construct a large database of coincident precipitation
profiles and associated brightness temperatures. It
should be mentioned here that because the TRMM ob-
servations are limited to latitudes between 37°S and
37°N, an empirical database constructed from TRMM
data is only appropriate for algorithm applications in
the Tropics and subtropics. However, as already men-
tioned, there is a benefit in considering alternatives to
CRM databases even in these regions. Furthermore,
the methodology can be applied to data collected in
future satellite precipitation missions to extend the da-
tabase derived from TRMM. Although the algorithm is
applicable to both overland and overocean radiometer
data, provided that both overland and overocean com-
bined estimates are included in the database, only the
overocean data are considered in the current investiga-
tion. This is because the rain signature in radiometer
observations is less specific over land, and often it is
difficult to distinguish rain signatures from variations in
surface emission. For this reason, in the past, passive
microwave remote sensing of precipitation over land
has been considered separately from the overocean es-
timation problem (Petty and Krajewski 1996). Here,
the focus is exclusively on precipitation estimation over
ocean surfaces.

The combined radar–radiometer algorithm (Grecu et
al. 2004) is based on physical models that simulate high-
resolution brightness temperatures as functions of ob-
served reflectivity profiles and two additional free vari-
ables associated with each profile. The two additional
variables are the intercept in a normalized gamma pre-
cipitation particle size distribution and the mean den-
sity of the ice phase precipitation. These variables are
determined in an optimal estimation framework that
minimizes the differences between simulated and ob-
served normalized polarizations, as defined by Petty
(1994) (see Grecu et al. 2004). The second variable was
not considered in the original formulation of Grecu et
al. (2004) because it does not significantly affect the
estimation of surface precipitation, but it is important
for the accurate estimation of ice phase precipitation,
and therefore it is considered in the current combined
retrievals used for database construction. The repeated
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application of the combined algorithm to TRMM data
yields a large database of precipitation profiles and as-
sociated TMI brightness temperatures. (This database
will be referenced henceforth as the combined TRMM
PR–TMI database.) In the current study, because the
database is further used for precipitation estimation
from TMI observations, the observed brightness tem-
peratures as well as those simulated by the algorithm
procedure are stored in the database. The reason for
storing both the simulated and observed brightness
temperatures is that there are small but nonnegligible
random differences between the simulated and ob-
served brightness temperatures, especially at high fre-
quencies. To evaluate the impact of these differences
on the retrievals, one can perform retrievals using both
the simulated and observed brightness temperatures
from the database and compare the results. The use of
observed TMI brightness temperatures from the data-
base is expected to lead to smaller errors because it
ensures the statistical consistency of brightness tem-
peratures and combined TRMM PR–TMI-estimated
profiles, and all of the errors in the TMI-only retrievals
can therefore be attributed to ambiguities in the data-
base. Henceforth, the Bayesian TMI-only algorithm
supported by the combined TRMM PR–TMI database
will be called the TRMM PR–TMI-based TMI algo-
rithm. In the future, if the Bayesian radiometer algo-
rithm is to be applied to other sensors [such as the
Special Sensor Microwave Imager (SSM/I)], then
brightness temperatures must be simulated at the sen-
sors’ resolutions and frequencies from the combined
TRMM PR–TMI retrievals and included in the precipi-
tation profile–brightness temperature database.

The spatial resolution of the TRMM PR–TMI-
combined estimates of Grecu et al. (2004) is that of
TRMM PR observations, that is, approximately 4.3 km.
The precipitation profiles saved in the database are ob-
tained by averaging 3 � 3 arrays of combined TRMM
PR–TMI precipitation profiles. Consequently, they
have a resolution of approximately 13 km. We chose to
use the averaged lower-resolution profiles instead of
the initial profiles for two reasons—first, to make our
retrievals more consistent with the Goddard profiling
algorithm (GPROF) retrievals (the GPROF retrievals
have a similar resolution), and second, to reduce the
random errors in retrievals (we noted, based on various
numerical experiments that we carried out, that the re-
trieval performance increases when the estimate reso-
lution decreases, which makes the 13-km resolution a
good compromise between accuracy and resolution).

A large dataset of precipitation profiles and associ-
ated brightness temperatures is necessary to ensure the
correct joint probability distribution function of pre-

cipitation and brightness temperatures. In this study,
we consider 1 month of TRMM observations over
ocean to construct the dataset and perform a sensitivity
analysis to determine whether this amount of data is
sufficient to obtain stable estimates. One month of
TRMM data yields more than one million coincident
(close to subsatellite point) overocean TRMM PR and
TMI observations, including nonprecipitating TRMM
PR–TMI profiles (zero rainfall rate at all heights). Our
TMI-only rain algorithm involves two steps. In the first
step, a discrimination procedure is used to determine
the potentially raining pixels. This procedure is the
same as the one used in Kummerow et al. (2001). Ad-
ditional information on the discrimination may be
found in Ferraro et al. (1998). In the second step, a
Bayesian algorithm is applied only to the potentially
raining pixels while the other pixels are assigned zero
rain. To ensure the consistency between the retrieval
procedure and the database construction procedure, all
combined TRMM PR–TMI profiles that are classified
as potentially raining by the TMI-only rain/no-rain dis-
crimination procedure are included in the database.
The combined TRMM PR–TMI raining pixels wrongly
classified as nonraining by the TMI-only procedure
contribute less than 2% of the total precipitation, and
therefore errors in the TMI-only rain/no-rain discrimi-
nation do not have a large impact on the final results.

The amount of data in the combined TRMM PR–
TMI database is prohibitively large for a Bayesian es-
timation algorithm. To reduce the computational bur-
den the following three operations are performed:

1) The empirical orthogonal functions of all observed
brightness temperatures over ocean during 1 month
are determined and the principal components are
evaluated,

PCTB � TB
O EOF, �1�

where PCTB is a matrix of n � m elements (n is the
number of profiles and m � 9 is the number of TMI
channels) containing the principal components,
EOF is an m � m matrix of orthogonal functions
that makes the transformation from the brightness
temperature space to the principal component
space, and TB

O is a matrix of n � m elements con-
taining the observed brightness temperatures in the
combined TRMM PR–TMI database. Equation (1)
provides a more compact representation of the
TMI’s nine brightness temperatures in a smaller
number of variables, because a linear combination
of only a few empirical orthogonal functions (EOF
columns) represents most of the variance of the
brightness temperature observations. Therefore, the
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projection of the brightness temperatures onto the
empirical orthogonal functions results in a matrix
PCTB with only a few significant columns.

2) The precipitation profiles and the associated bright-
ness temperatures are binned by a climatologic es-
timate of the sea surface temperature (SST) and a
TMI-based statistical estimator of the ET. The bin
size is 3 K for SST and 1 km for ET.

3) For each (SST, ET) bin, the precipitation profiles
with similar principal components (PCTB) are clus-
tered into classes containing approximately 40 pro-
files, and all of the profiles in the same class are
replaced by their average. Only the first five princi-
pal components are used in the clustering proce-
dure. These principal components are subsequently
used in the estimation procedure as well. The first
five principal components explain 97% of the
brightness temperature variance. The principal com-
ponents corresponding to the average profile in a
class are determined by averaging the principal com-
ponents of the profiles in that class. It is found that
using more than five principal components does not
improve the estimation performance, and therefore
only five principal components are used in the study.
As already mentioned, the clustering operation is
justified by the large number of profiles in the da-
tabase. Because at the retrieval time only brightness
temperature or PCTB information is available, the
PCTB-based clustering appears more natural than
clustering based on the precipitation profile similar-
ity. This is because similar rain profiles may have
significantly different PCTB vectors, and by averag-
ing in the PCTB space when clustering is based on
rain profile similarity, one may get an average that is
significantly different from any single PCTB vector
in a given class. This results in a rain distribution
conditioned on average PCTB that may be com-
pletely different from the initial (before clustering)
rain distribution conditioned on PCTB. On the other
hand, the clustering based upon PCTB (used in the
current study) does not change the conditional rain
distribution. It just replaces conditional rain distri-
butions by their mean values, but this operation
does not affect the final estimate, which is a proba-
bilistic average of the means of these distributions.

The clustering is achieved using an iterative algo-
rithm. First, the number of classes is determined as

nc � int�n�SST, ET�

40 �� 1, �2�

where n(SST, ET) is the number of profiles within
bin (SST, ET) and int[x] is the greatest integer less
than or equal to x. Second, the profiles are randomly

assigned to the nc classes. Third, the average prin-
cipal components are determined for each class.
Fourth, the profiles are reassigned to the class with
the closest average principal components. Steps
three and four are repeated until convergence is
achieved. Additional details on this clustering pro-
cedure and an example thereof can be found in Jain
et al. (1999). The approximate number of profiles in
a class, that is, 40, is determined by trial and error. A
smaller number of profiles per class does not im-
prove the retrieval performance and just increases
the computational effort, while a larger number of
profiles per class makes the distribution of estimates
look discrete for high-intensity rain situations.

These operations significantly reduce the number of
profiles in the database and make the Bayesian estima-
tion more efficient. They also provide a mechanism to
evaluate the uncertainties in the retrieval: in addition to
the mean, the standard deviation of precipitation cor-
responding to the profiles in a given class is stored in
the database, and this standard deviation represents a
measure of the uncertainty of an estimate for that spe-
cific class. A formal estimate of precipitation uncer-
tainty for a given set of observations is provided in
section 2b.

Step 2 of the database aggregation procedure re-
quires the estimation of the echo-top height from TMI-
only observations. This is accomplished using a nonlin-
ear regression (neural network) to predict the ET as a
function of the first five principal components (PCTB)
and the climatological estimate of the SST. Mathemati-
cally, this is equivalent to solving, in the least squares
sense, the following equation:

ET � f�PCTB, SST, w�, �3�

where ET is the echo-top height of a given TRMM PR
profile, PCTB and SST are the associated principal com-
ponents and sea surface temperatures, respectively, and
w is a set of parameters to be determined. Here, the
TRMM PR ET is not the actual cloud-top height but
the height where the reflectivity drops below the value
that the radar can reliably detect. Nevertheless, the
TRMM PR ET is an important physical variable in
characterizing the physical processes associated with
the precipitation depth. The function f is a two-layer
feed-forward neural network, that is, a nonlinear func-
tion that graphically resembles a network of neurons.
The determination of w is done using a gradient-based
minimization algorithm. Simpler functional forms may
be used for f, for example, just a linear function, but the
ET estimation performance increases significantly with
the complexity of f. For example, the 85-GHz polariza-
tion-corrected temperature (PCT) of Spencer et al.
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(1989) is a reasonably good predictor of the ET, that is,
the correlation coefficient between the 85-GHz PCT
and the ET is 0.7. However, the neural network pro-
vides a more accurate and still computationally efficient
ET estimator. Thus, the correlation coefficient between
the neural network ET estimate and the TRMM PR ET
is 0.78, and the relative root-mean-square is about 30%
smaller than that of the 85-GHz PCT-based estimator.
In the top panel of Fig. 2, a two-dimensional histogram
of the TRMM PR-observed ET versus the predicted
ET is shown. One may note that the most frequent
counts occur around the one-to-one line, which indicate
a good performance of the estimator. Histograms of the
TRMM PR and predicted ETs are shown in the bottom
panel of Fig. 2. The agreement between the observed
and predicted histograms also indicates good perfor-
mance.

Once the combined TRMM PR–TMI database is
constructed and organized as described above, a Bayes-
ian algorithm can be formulated to estimate precipita-
tion from TMI-only observations, as described in sec-
tion 2b.

b. TMI-only Bayesian algorithm for precipitation
estimation

The algorithm for precipitation estimation from
TMI-only observations developed in this study differs
to some extent from other Bayesian estimation algo-
rithms [e.g., the algorithm developed by Kummerow
et al. (2001)]. The differences stem from the necessity
of making efficient use of the large a priori database.
As previously described, the database constructed from
the combined TRMM PR–TMI retrievals does not
consist of individual profiles, but averages over small
sets of profiles clustered by their similarity in the space
of brightness temperature principal components.
Therefore, given a set of principal components and es-
timates of SST and ET, a precipitation profile can be
estimated as

Ê�R|PCTB, SST, ET� � �
i�1

nc

Ri · P�Ci|PCTB, SST, ET�,

�4�

where nc is the number of classes within the (SST, ET)
bin, Ri is the average precipitation profile of class Ci,
and P(Ci|PCTB, SST, ET) is the probability that the
observed profile lies in class Ci. Probability P(Ci|PCTB,

SST, ET) can be estimated using Bayesian classification
techniques (Duda et al. 2000). Thus, using Bayes’s
theorem,

P�Ci|PCTB, SST, ET� �
P�PCTB|Ci�P�Ci�

P�PCTB, SST, ET�
. �5�

Variables SST, ET do not explicitly appear in P(PCTB|
Ci) and P(Ci) because class Ci implicitly corresponds to
bin (SST, ET). Assuming that the principal components
are normally distributed within the classes, probability
P(PCTB|Ci) can be estimated from

P�PCTB|Ci� �
exp��0.5�PCTB

O � PCTB
i �T Si

� 1�PCTB
O � PCTB

i �	


�2��npc|Si|
, �6�

FIG. 2. (top) Joint and (bottom) unconditional distributions of
TMI-predicted and TRMM PR-observed echo-top heights.
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where PCO
TB is the observed principal component vec-

tor and PCi
TB is the mean principal component vector

corresponding to class Ci. Here, npc is the number of
components considered in retrievals (five in this study)

and Si is the covariance matrix of the principal compo-
nents corresponding to the profiles that constitute class
Ci. Equations (4), (5), and (6) can be combined, yield-
ing

Ê�R|PCTB, SST, ET� �
1
� �

i�1

nc

Ri

exp��0.5�PCTB
O � PCTB

i �TSi
�1�PCTB

O � PCTB
i �	


�2��npc|Si|
P�Ci�, �7�

where � is the normalization factor,

� � �
i�1

nc exp��0.5�PCTB
O � PCTB

i �TSi
�1�PCTB

O � PCTB
i �	


�2��npc|Si|
P�Ci�, �8�

and P(Ci) is determined from the number of pro-
files within class Ci. Consequently, (7) and (8) can be
used with the combined TRMM PR–TMI database

to retrieve precipitation profiles from TMI-only obser-
vations. The error variance of the precipitation esti-
mate is

V̂�R|PCTB, SST, ET� �
1

�2 �
i�1

nc

V�Ri��exp��0.5�PCTB
O � PCTB

i �TSi
� 1�PCTB

O � PCTB
i �	


�2��npc|Si|
P�Ci��2

, �9�

where V̂(Ri) is the variance of precipitation profiles in
class Ci.

3. Results

There are various alternatives for constructing the
combined TRMM PR–TMI for the TMI-only algo-
rithm. For example, multiple databases can be con-
structed as a function of region and season and applied
as a function of region and season. This alternative,
although possible, is potentially problematic, however.
As the region for which a database is constructed be-
comes smaller, the number of TRMM orbits needed to
create a representative database increases, possibly re-
quiring (given the seasonal dependence) a few years of
data. Also, at the retrieval time the manipulation of
many large databases could be cumbersome. Another
possibility is to include additional geophysical param-
eters that would explain some of the regional and sea-
sonal differences in profile subpopulations within a
global database. The SST is such a parameter, and
given that the database construction explicitly accounts
for its variability, the database is applicable globally.

In this study, 1 month of TRMM PR–TMI data is
used to construct the database and investigate the sea-
sonal variation of the algorithm’s performance. Al-
though in principle an algorithm retrained every month
would have merit, in application it is convenient to use
an algorithm that does not require retraining. In con-
structing the combined TRMM PR–TMI database, we

use all TRMM orbits from July 2000. The SST estimates
employed to organize the database as previously ex-
plained are derived from TMI observations using the
formulation of Wentz (1997). Although, in principle
one can estimate the SSTs from TMI observations si-
multaneously with the precipitation and use short-
period (on the order of days) SST averages in the pre-
cipitation retrieval, the climatological TMI-based SST
estimates are used in this study. An obvious evaluation
of the algorithm performance is the comparison of al-
gorithm estimates with estimates from the combined
TRMM PR–TMI method used in the database con-
struction. Different variants of the TRMM PR–TMI-
based TMI algorithm can be derived as a function of
way in which the information in the database is used.
As described earlier, for TMI retrievals one can use the
observed brightness temperatures and their associated
principal components in the database or the simulated
brightness temperatures and their associated principal
components. Moreover, because the ET estimate is
used only to improve the algorithm efficiency, one can
derive a solution by considering all of the profiles in the
database irrespective of their ET estimates. Similarly,
one can derive an algorithm that retrieves precipitation
by exploring the whole database without discriminating
the profiles as a function of SST. A concise description
of the different alternative formulations considered in
this paper is given in Table 1. Given in Table 1 is also
the performance of the algorithm in terms of the cor-
relation coefficient and the relative root-mean-square
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error (rmse). The correlation coefficient is calculated
between the instantaneous, high-resolution TMI re-
trievals and the TRMM PR–TMI-combined reference
estimates. The relative rmse is calculated as the ratio of
the root-mean-square difference between the TMI re-
trievals and TRMM PR–TMI-combined reference esti-
mates to the standard deviation of the TRMM PR–
TMI-combined reference estimates. One may note
from Table 1 that the random differences between the
observed brightness temperatures and the simulated
brightness temperatures in the combined retrievals
have a small negative impact on the retrievals. The
third formulation exhibits the same performance as the
first, which indicates that neither improvement nor de-
terioration in the performance is obtained through the
ET stratification. However, the ET estimates are an
important ingredient in the algorithm because they sig-
nificantly reduce the computational effort. The fourth
formulation shows performance deterioration relative
to the first, but the SST does not seem to have a large
impact on the retrievals. This is most likely because
other kinds of uncertainties dominate, and also because
a large proportion of precipitation originates in regions
with relatively constant (and high) SSTs. When the re-
trievals are aggregated monthly within 0.5° � 0.5° grid
boxes, the differences among the four formulations be-
come indistinguishable. In the remainder of the study,
only retrievals based on the first formulation are ana-
lyzed. Also, monthly rather than instantaneous retriev-
als are considered.

The precipitation monthly products are determined
by averaging the instantaneous footprint-scale esti-
mates within 0.5° � 0.5° boxes. An additional criterion
for the TMI monthly estimates is that they are based
exclusively on TMI observations within the narrower
TRMM PR swath. Because the TRMM PR and the
TMI have different swaths, and consequently, different
sampling, including TMI estimates from outside the
TRMM PR swath could result in additional differences
between the TMI and TRMM PR-based monthly esti-
mates.

In Fig. 3, the zonal mean rainfall estimates for the
same month that was used for database construction

(July 2000) from the TRMM PR–TMI-based TMI al-
gorithm and the combined TRMM PR–TMI method
are shown. The observed TMI brightness temperatures
stored in the database are used in the TRMM PR–TMI-
based TMI algorithm for this particular retrieval, and
unless explicitly specified otherwise, the observed
brightness temperatures in the database are used in the
TMI-only retrievals. The estimates from the two algo-
rithms agree well. For reference, estimates from the
version-6 TRMM facility TMI algorithm (GPROF) are
also shown. The GPROF estimates also agree well with
both the TRMM PR–TMI-based TMI and the com-
bined TRMM PR–TMI estimates, however, some dif-
ferences are apparent in the intertropical convergence
zone (ITCZ). Although not shown in Fig. 3, the ver-
sion-6 TRMM facility TRMM PR algorithm yields es-
timates that are very similar to the combined TRMM
PR–TMI at the monthly level. The disagreement be-
tween the version-5 TRMM facility TMI and TRMM
PR algorithm estimates was evident even at the
monthly level, and systematic differences as large as
23% existed over oceans (Kummerow et al. 2001). Sur-
face rain-rate estimates from the version-6 algorithms
are in much better agreement (as seen in Fig. 3), but
notable differences between the TMI and TRMM PR

FIG. 3. Zonal over-ocean surface rainfall estimates for July 2000
from the TRMM PR–TMI-based TMI algorithm, GPROF, and
the combined TRMM PR–TMI algorithm.

TABLE 1. Performance of various TRMM PR–TMI-based TMI formulations for instantaneous retrievals at the database spatial
resolution.

Formulation Characteristics
Correlation

coef
Rmse
(%)

1 Observed TMI brightness temperatures in the database, ET and SST stratification 0.74 0.52
2 Simulated TMI brightness temperatures in the database, ET and SST stratification 0.68 0.57
3 Observed TMI brightness temperatures in the database, no ET stratification 0.74 0.52
4 Observed TMI brightness temperatures in the database, no SST stratification 0.69 0.56
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estimates still exist. As discussed below, more serious
discrepancies between the algorithms occur at levels
above the surface.

Presented on the left-hand side of Fig. 4 are global
maps of TRMM PR–TMI-based TMI 0.5° � 0.5°
monthly estimates of precipitation water content at
three different altitudes, while on the right-hand side
are differences between the TRMM PR–TMI-based
TMI and combined TRMM PR–TMI 0.5° � 0.5°
monthly estimates. It is apparent from Fig. 4 that the
TRMM PR–TMI-based TMI algorithm performance is
not uniform. In some regions, for example, the central-
eastern part of the ITCZ, the algorithm tends to over-
estimate, while in other regions [e.g., tropical western
Pacific (TWP)] the algorithm generally underestimates
precipitation. These biases are caused by differences
between eastern and western Pacific rain systems (Berg
et al. 2002) and are an indication that the SST and ET
estimators along with the brightness temperature prin-
cipal components at the pixel level are insufficient to
detect subtle differences in the rain systems. Both the
magnitudes of precipitation estimates and the differ-
ences between the two algorithms decrease with alti-
tude.

In Fig. 5, the GPROF monthly estimates and their
differences relative to the combined TRMM PR–TMI

estimates are shown. The 2-km estimates are similar to
the combined TRMM PR–TMI-based estimates, al-
though differences are somewhat larger relative to the
TRMM PR–TMI-based TMI estimates near the south-
ern boundary of the observing domain. On the other
hand, at 4 and 6 km the differences between the
GPROF and the TRMM PR–TMI-based estimates in-
crease significantly. At 4 km the largest differences are
preponderantly located in the South Pacific, along the
edge of the midlatitude storm track in the Southern
Hemisphere. This region is characterized by freezing
levels generally lower than 3 km, and, most likely, the
systematic differences between precipitation distribu-
tions above the freezing level in CRM simulations and
those from the combined TRMM PR–TMI retrievals
are responsible for the differences between the
GPROF and the combined TRMM PR–TMI estimates
at the monthly level. At 6 km, the differences between
the GPROF and combined estimates are even greater
than at 4 km and are evident almost everywhere where
significant precipitation exists. Because of errors in de-
scribing the vertical transition from liquid to ice phase
precipitation, and uncertainties in quantifying the elec-
tromagnetic properties of the ice phase, the combined
TRMM PR–TMI estimates of mixed and ice phase pre-
cipitation have greater uncertainties than liquid phase

FIG. 4. Monthly 0.5° � 0.5° estimates of precipitation water contents from the TRMM PR–TMI-based TMI algorithm at three
different altitudes: (left) the actual estimates and (right) the differences between the TRMM PR–TMI-based TMI and the combined
TRMM PR–TMI estimates.
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precipitation estimates do. However, despite these un-
certainties, the combined TRMM PR–TMI estimates
are more reliable than precipitation distributions based
on CRM simulations.

To investigate the nature of the differences between
GPROF and the combined TRMM PR–TMI estimates,
the following experiment is performed. Here, GPROF
is extended to retrieve not only precipitation profiles
but also reflectivity profiles. This is achieved by calcu-
lating the reflectivity from the precipitation water con-
tents in GPROF’s supporting database. Then the re-
flectivity profiles are retrieved from TMI observations
using GPROF, and the retrieved reflectivity distribu-
tions at 6 km are compared with the reflectivity distri-
butions from the TRMM PR observations. The 4-km
level is not considered in this comparison because many
observations at that level are within the radar bright
band, and, given the uncertainties in modeling the
bright band from CRM hydrometeor profiles, the dif-
ferences are difficult to interpret. Thus, only reflectivity
observations greater than 17 dBZ (the TRMM PR de-
tectability threshold) at the 6-km level are considered
in the comparison. The result of this comparison is that
over the month of July 2000 the average retrieved
reflectivity is about 6–7 dB greater than average ob-
served reflectivity, which suggests that the CRM pro-
files in the GPROF database contain generally larger

amounts of ice phase precipitation than in nature. This
is consistent with the findings of Bauer (2001), who
hypothesized that CRMs produce too much ice phase
precipitation, resulting in simulated high-frequency
brightness temperatures generally lower than those ob-
served by TRMM.

Figure 6 contains scatterplots of TRMM PR–TMI-
based TMI (and GPROF) 0.5° � 0.5° monthly esti-
mates versus combined TRMM PR–TMI estimates at
the same space and time resolution. The scatter of es-
timates in this figure is consistent with the difference
maps shown in Figs. 4 and 5. That is, there is good
agreement between the TRMM PR–TMI-based TMI
and the combined TRMM PR–TMI estimates, while
the agreement between GPROF and the combined
TRMM PR–TMI estimates is good at 2 km, deterio-
rates at 4 km, and is poor at 6 km. It is important to
note, though, that at 6 km the correlation between
GPROF and the combined estimates is still very high
(about 0.9), but the multiplicative bias is extremely
large (the GPROF estimates are larger by a factor of
about 5). As already mentioned, this startling differ-
ence is likely caused by excessive amounts of ice-phase
hydrometers in the CRM simulations supporting
GPROF.

Previous studies have indicated that GPROF perfor-
mance varies regionally and seasonally. For example,

FIG. 5. Same as Fig. 4, but for GPROF instead of the TRMM PR–TMI-based TMI algorithm.
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Ikai and Nakamura (2003) compared the version-5
TRMM facility TMI (GPROF 5) and PR algorithms
and found regional and seasonal dependence in the
agreement. The two estimates were usually highly cor-
related, but systematic differences were found. The au-
thors attributed the differences to errors in the GPROF
estimation of the freezing level and inadequate attenu-
ation–reflectivity, and reflectivity–precipitation rela-
tionships. Although the factors pointed out by Ikai and
Nakamura (2003) indeed affect the agreement between
TMI and TRMM PR retrievals of precipitation, a factor
that can more seriously impact the agreement between
TMI and TRMM PR precipitation estimates is the rep-
resentativeness of the database used in the TMI algo-
rithm. Even if perfect estimation of the freezing level
and perfect TRMM PR retrievals of precipitation are
achieved, the TMI-only estimates would still disagree
with the TRMM PR estimates if the database used in
the TMI-only retrievals does not represent the statisti-
cal distribution of the precipitation profiles derived
from the TRMM PR. To investigate the differences

between TMI and TRMM PR estimates, Ikai and Na-
kamura (2003) selected six geographic domains, as de-
fined in Table 2. We use the same domains to compare
the TRMM PR–TMI-based TMI and the combined
TRMM PR–TMI monthly 0.5° � 0.5° estimates at 2.0-
km altitude. Scatterplots based on these geographic do-
mains are presented in Fig. 7.

It may be noted from Fig. 7 that estimates from the
TRMM PR–TMI-based TMI and the combined TRMM
PR–TMI generally do not exhibit large systematic dif-
ferences. The largest difference, about 20% relative
bias, occurs for domain tropical central Pacific (TCP).
All of the other domains exhibit a slight negative bias of
less than 5%. Ikai and Nakamura (2003) found larger
differences (up to 110% in terms of surface rainfall rate
in TCP), which reinforces our hypothesis that the da-
tabase used in the version-5 TRMM facility TMI algo-
rithm is partly responsible for the differences between
the version-5 TMI and TRMM PR estimates and that a
database consistent with TRMM PR observations pro-
motes agreement between TMI-only retrievals and
TRMM PR-based precipitation estimates. A similar
analysis, that is, the comparison of the monthly 0.5° �
0.5° combined TRMM PR–TMI and GPROF esti-
mates, yields comparable results. The bias is slightly
higher, that is, 25%, than that corresponding to the
TRMM PR–TMI-based TMI algorithm in TCP, and
there is a negative bias of about �10% in TWP. In all
of the other regions, the absolute bias is below 5%. This
analysis indicates significantly better agreement of
GPROF version-6 estimates with TRMM PR-based es-
timates at the surface. However, above the freezing lev-
els large discrepancies still exist as apparent in the pre-
vious results.

Additional issues of practical importance are wheth-
er or not the TRMM PR–TMI-based TMI algorithm

FIG. 6. Scatterplots of monthly 0.5° � 0.5° TRMM PR–TMI-
based (left) TMI precipitation water content estimates and (right)
GPROF estimates against combined TRMM PR–TMI estimates
for (top) 2, (middle) 4, and (bottom) 6 km.

TABLE 2. Domains selected to investigate the regional variation
of the performance of the TRMM PR–TMI-based TMI algorithm.
These domains are the same as those selected by Ikai and Naka-
mura (2003).

Regions Lat Lon

Midlatitude North Atlantic
(MNA)

30°–37°N 45°–75°W

Midlatitude western North
Pacific (MWNP)

30°–3°7N 140°–170°E

Midlatitude central North
Pacific (MCNP)

30°–37°N 150°W–180°

Midlatitude western South
Pacific (MWSP)

30°–37°S 150°W–180°

Tropical western Pacific
(TWP)

0°–10°N 130°–160°E

Tropical central Pacific
(TCP)

0°–10°N 120°–150°W
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derived using just 1 month of data is general, and
whether its performance deteriorates when applied to
TMI observations from a different season. To investi-
gate these issues two databases are constructed. The
first is the database used in the previous examples, that
is, the database constructed using July 2000 combined
TRMM PR–TMI retrievals, and the second is con-
structed using January 1998 combined TRMM PR–
TMI retrievals. The Bayesian algorithm is applied to
TMI data from January 1998 using the two databases in
turn. The zonal mean rainfall estimates derived from
the two databases are shown in Fig. 8. For reference,
the version-6 TRMM facility TMI algorithm (GPROF)
estimates and the combined TRMM PR–TMI estimates
are also shown. One may note that there is essentially
no dependence of the zonal means on the database
used in the TRMM PR–TMI-based TMI algorithm.
Neither do monthly 0.5° � 0.5° rain estimate maps (not
shown) show significant sensitivity to the database uti-
lized. Moreover, estimates from the TRMM PR–TMI-
based TMI algorithm agree well with the combined
TRMM PR–TMI estimates, while GPROF estimates

are somewhat higher in the ITCZ. Version-6 TRMM
facility PR algorithm estimates (not shown) are some-
what lower than the TRMM PR–TMI-based TMI esti-
mates in the ITCZ. Although this investigation does
not validate either GPROF or the TRMM PR-only al-
gorithms, it does show that if unbiased estimates are
derived from a month of combined TMI and TRMM
PR observations, these estimates can be employed to
obtain largely unbiased estimates from TMI-only ob-
servations for other months. At the instantaneous and
database resolution level, the TRMM PR–TMI-based
TMI algorithm’s performance for January 1998 is simi-
lar to that reported in Table 1.

4. Latent heating application

The Bayesian algorithm formulated in section 2 can
be readily extended to estimate LH (i.e., the heating
associated with the phase transformation of water va-
por, cloud, and precipitation particles) from TMI-only
observations. Knowledge of the spatial and temporal
distribution of heating in the Tropics is required for
various applications (see Simpson et al. 1988). These
applications range from long-term climate prediction to
storm-scale diagnostics and forecasting. Further discus-
sion may be found in Olson et al. (1999). The large
spectrum of applications justifies the development of
algorithms for latent heating estimation from observa-
tions provided by spaceborne instruments. Examples of
such algorithms are those derived by Olson et al. (1999)
for passive microwave observations and by Tao et al.
(1993) and Yang and Smith (1999) for both passive and

FIG. 7. Scatterplots of monthly 0.5° � 0.5° TRMM PR–TMI-
based TMI precipitation water contents estimates against com-
bined TRMM PR–TMI estimates for the six different regions de-
fined in Table 2.

FIG. 8. Zonal over-ocean surface rainfall estimates for January
1998 from the TRMM PR–TMI-based TMI algorithm, GPROF,
and the combined TRMM PR–TMI algorithm. Two different sup-
porting databases, that is, derived using observations from July
2000, and January 1998, respectively, are employed in the TRMM
PR–TMI-based TMI algorithm.
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active microwave observations. The Olson et al. (1999)
algorithm is based on a Bayesian procedure that as-
signs, for a given set of observations, probabilities to a
set of latent heating profiles derived from CRM simu-
lations. Tao et al. (1993) use only the surface precipi-
tation, a convective–stratiform classification, and a
table of normalized latent heating profiles (derived also
from CRM simulations) to reconstruct vertical heating
profiles, while Yang and Smith (1999) assume that the
observed precipitation distribution is steady state and
use hydrometeor conservation equations to estimate
the latent heating. Given the lack of information re-
garding the dynamical context of the observed precipi-
tation, only approximate algorithms may be derived,
and various approaches are possible.

In the present study, a procedure similar to that of
Shige et al. (2004) is used to assign a heating profile
physically consistent with each precipitation profile de-
rived from the combined TRMM PR–TMI algorithm.
First, cloud-resolving model simulations are used to
create lookup tables of the mean latent heating vertical
structure and surface precipitation rate. The model
simulations are produced using the Goddard Cumulus
Ensemble (GCE) model over the South China Sea
(Tao et al. 2003). The model heating vertical profiles
and surface precipitation rates are sorted by convec-
tive–stratiform classification and the radar echo top (17
dBZ is the minimum detectable signal of the TRMM
PR). The stratiform profiles are further sorted by the
ratio of the difference between the precipitation rate at
the bottom of the melting layer and the surface precipi-
tation rate to the precipitation rate at the bottom of the
melting layer. The mean model heating profile and sur-
face rain rate are calculated and tabulated as functions
of convective–stratiform class, radar echo top, and
stratiform precipitation ratio (when applicable).

Given the convective–stratiform classification, echo-
top height, and stratiform precipitation ratio of a com-
bined TRMM PR/TMI profile estimate in the database,
the corresponding tabulated heating profile is extracted
and rescaled by the combined surface precipitation rate
estimate (assuming that net heating in the profile is
approximately equal to the surface rain rate times the
latent heat of condensation L�, at least in the space–
time mean). The reconstructed heating profile, indexed
by its associated brightness temperature principal com-
ponents SST and ET is entered into the algorithm-
supporting database in essentially the same manner as
the given combined TRMM PR–TMI-retrieved precipi-
tation profile.

It should be noted that the method of Shige et al.
(2004), as well as other methods for estimating heating
from precipitation data, yields latent heating estimates

with considerable random error. This error is sup-
pressed by profile clustering in the database and proba-
bilistic averaging using a formula similar to (4),

Ê�LH|PCTB, SST, ET� � �
i�1

nc

LHi · P�Ci|PCTB, SST, ET�,

�10�

where LHi is the average latent heating profile associ-
ated with the profiles in class Ci based on the method-
ology described in section 2a. Equation (10) can be
extended to estimate Q1 � QR, where QR is the heating/
cooling rate associated with radiative processes) if the
eddy heat flux convergence term is added to the LH
(see Yanai et al. 1973). The eddy heat flux term can be
readily calculated in the CRM simulations so that each
precipitation and latent heating profile in the afore-
mentioned lookup table can be associated with an eddy
flux term. Therefore, the Q1 � QR profile (hereinafter
called Q1R) can be estimated in a manner similar to the
LH profile.

The accuracy of TRMM PR–TMI-based TMI latent
heating estimates can be evaluated by comparison with
available rawinsonde-based analyses of diabatic heat-
ing. Rawinsondes are vertical profiling instruments that
measure the pressure, temperature, humidity, and wind
at a given geographical location. By analyzing the data
provided by a network of rawinsondes, one may esti-
mate the large-scale average vertical distribution of
heating sources and sinks within the convex region cir-
cumscribed by the network. Rawinsonde networks
have been deployed in various field experiments to gain
an understanding of large-scale heating and moistening
processes. One such experiment is the South China Sea
Monsoon Experiment (SCSMEX) for which heating
profile estimates have been derived over the Northern
Enhanced Sounding Array (NESA) by Johnson and
Ciesielski (2002). The rawinsonde analysis provides es-
timates of the apparent heat source Q1 (Yanai et al.
1973), while the TMI-only algorithm provides only Q1R.
By adding a domain- and time-invariant QR compo-
nent to the TMI-based Q1R estimates, one can approxi-
mate Q1 from the TMI estimates. Here, the climato-
logical radiative heating profiles of Dopplick (1979)
provide QR.

As mentioned earlier, the procedure used to assign
Q1R profiles to the combined TRMM PR–TMI precipi-
tation profiles in the TMI algorithm’s supporting data-
base represents by itself a complete, stand-alone heat-
ing estimation algorithm from TRMM PR-only or com-
bined TRMM PR–TMI observations. The estimates
from this algorithm are potentially more accurate than
the TMI-only algorithm at the instantaneous level be-
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cause the precipitation profiles are better determined,
but they are, most likely, less accurate in terms of large-
scale daily averages because of the less frequent tem-
poral sampling by the TRMM PR. For reference, Q1

estimates from the TRMM PR–TMI observations are
included in the comparison of the TMI and rawinsonde
estimates. Estimates of Q1 from the TMI and combined
TRMM PR–TMI algorithms are averaged over the
NESA region to match the rawinsonde estimates. In
addition to estimates of Q1, the rawinsonde analyses
provide estimates of the average surface precipitation
rate over the analysis domain. These estimates are de-
rived from a budget equation relating the vertical inte-
gral of the apparent moisture sink Q2, which can be
readily determined from rawinsonde analyses, to the
surface precipitation and evaporation. Evaporation
rate estimates from the Japan Meteorological Agency
(JMA) reanalysis, adjusted by shipboard flux measure-
ments, were used by Johnson and Ciesielski (2002) to
estimate the surface precipitation from Q2, and their
estimates of surface precipitation rate appear here for
the purpose of intercomparison.

Time series of surface precipitation and Q1 from TMI
and the combined TRMM PR–TMI algorithms, as well
as those from the rawinsonde analyses, are shown in
Fig. 9. It may be noted from the figure that the agree-
ment among the three estimates is fairly good. The raw-
insonde surface precipitation estimates are better cor-
related with the TMI surface precipitation estimates
(correlation coefficient 0.87) than with the TRMM PR
surface precipitation estimates (correlation 0.78). Al-
though all of the estimates are affected by sampling
errors, the TRMM PR surface precipitation estimates
are probably subject to the largest sampling errors in
spite of being the most accurate at the footprint instan-
taneous level, leading to a discrepancy with the other
estimates. Sampling errors affect not only the precipi-
tation estimates but also heating estimates, and there-
fore it is expected that for periods when sampling errors
in the precipitation estimates are large, heating esti-
mates will also be subject to large sampling errors. Fig-
ure 9 confirms this hypothesis. It may be noted that
whenever the three precipitation estimates agree, for
example, 6 June, the heating estimates agree as well,
while the largest differences in heating occur when the
largest differences in precipitation rate occur. The abil-
ity of the TRMM PR–TMI-based TMI algorithm to
estimate the echo-top altitude appears to be effective in
capturing the variation in the depth of the layer in
which heating is confined. The heating appears to ex-
tend closer to the ground in the rawinsonde estimates
than in the satellite estimates, which indicates a defi-
ciency in the CRM simulations or in the procedure that

associates heating profiles with stratiform precipitation
profiles. It was demonstrated by Li et al. (2005, manu-
script submitted to J. Atmos. Sci.) that evaporation may
be excessive in GCE model simulations utilizing the
three ice bulk microphysics scheme, which may explain
the more intense low-level cooling in the TMI-only
heating estimates.

Time-averaged profiles of Q1 estimates from the
combined TRMM PR–TMI and TRMM PR–TMI-
based TMI algorithms, and rawinsondes are shown in
Fig. 10. Also, shown in Fig. 10 is the QR profile used in
this study. One may note in the figure magnitude dif-
ferences among the estimates. These differences are
caused by differences in the average rain from the two
algorithms and rawinsondes. The TRMM PR–TMI-
based TMI rain estimates are larger than the rawin-
sonde rain estimates by about 25% and are larger than
the combined TRMM PR–TMI rain estimates by about
70% (it should be mentioned that the large differences
between the TRMM PR–TMI-based TMI and com-
bined TRMM PR–TMI estimates are mainly caused by
sampling). The Q1 profiles in Fig. 10 are consistent with
the rain estimates. Other differences consist of the
above-mentioned pronounced cooling in the combined
TRMM PR–TMI estimates and a somewhat lower peak
relative to the rawinsonde estimates in the TRMM PR–
TMI-based TMI Q1. The lower peak in the TRMM
PR–TMI-based TMI Q1 may be a consequence of in-
consistencies between the CRM convective–stratiform
classification and the combined TRMM PR–TMI clas-
sification. This is because the TRMM PR–TMI-based
TMI latent heating profiles are probabilistic averages of
CRM latent heating stratiform and convective profiles.
Assuming that the TRMM PR–TMI convective–strati-
form classification is realistic, a lower peak in the Q1

indicates a slight overestimation of the convective
CRM Q1 profile, which may occur if weak convective
profiles are classified as stratiform profiles. Lang et al.
(2003) present a detailed analysis on the uncertainty in
latent heating estimation because of convective–strati-
form classification.

An additional intercomparison (not shown in the pa-
per) reveals that the TRMM PR–TMI-based TMI esti-
mates of Q1 are similar to those from the technique of
Olson et al. (1999) for the SCSMEX NESA region.
Nonetheless, important differences between the
TRMM PR–TMI-based TMI estimates of Q1 and those
from the technique of Olson et al. (1999) are expected
in general. This is because the database upon which the
GPROF and Olson et al. (1999) technique are based
favors the retrieval of deep structures, even in regions
where the TRMM PR indicates shallow structures, for
example, the midlatitude storm track of the South Pa-
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FIG. 9. Time series of surface precipitation rate and apparent heat source Q1 for the SCSMEX NESA region. Shown from top to
bottom are precipitation estimates from different methods, TRMM PR–TMI-based TMI estimates of Q1, combined TRMM PR–TMI
estimates of Q1, and rawinsonde estimates of Q1.
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cific. However, the distribution of LH is a strong func-
tion of height (Shige et al. 2004), and consequently, the
differences resulting from the database constituency
between the GPROF and the TRMM PR–TMI-based
TMI algorithm will manifest themselves not only in
terms of precipitation but also in terms of LH.

Ultimately, the procedure developed in this section
can be used to estimate latent heating globally. How-
ever, realistic estimates will require expanded heating
lookup tables based upon a large variety of CRM simu-
lations. The current heating tables do not realistically
represent the distribution of low-level, shallow precipi-
tating clouds. Consequently, in this initial test the TMI
heating estimation algorithm is applied only to regions
for which we have representative CRM simulations,
such as SCSMEX, and not globally.

5. Conclusions

In this study, an algorithm for estimating precipita-
tion from passive microwave-only observations is de-
rived using a large record of precipitation retrievals
from combined active and passive microwave observa-
tions. The combined active and passive retrievals are
obtained from TRMM PR and TMI observations over
the period of 1 month. The combined active–passive
algorithm is physically based and may be used to derive
a passive microwave-only precipitation estimation

method for any combination of microwave frequencies
and resolutions. A retrieval algorithm applicable to
only TMI observations is investigated in this paper,
however.

The combined TRMM PR–TMI-estimated vertical
precipitation profiles and associated brightness tem-
peratures are stored in a database. In the database, the
profiles are sorted by the local SST and a TMI estimate
of the ET. The profiles are further clustered based on
the similarity of the associated brightness temperatures
using principal components. The database organization
facilitates the use of a computationally efficient Bayes-
ian procedure to estimate the precipitation profile from
TMI-only observations.

The TRMM PR–TMI-based TMI-only algorithm
yields precipitation estimates similar to those from the
combined TRMM PR–TMI algorithm. Although some
regional biases exist even in monthly 0.5° � 0.5°, the
algorithm appears to be effective in capturing the re-
gional differences in vertical precipitation structure. In
contrast, the TRMM facility TMI algorithm (GPROF)
generally estimates significantly larger amounts of ice
phase precipitation above the freezing level. Even
though the combined TRMM PR–TMI algorithm might
be biased above the freezing level because of uncer-
tainties in the modeling of electromagnetic properties
of the ice-phase precipitation particles, the TMI-only
algorithm derived from it is more stable than GPROF
because the uncertainties in modeling the properties of
the ice phase are easier to understand, quantify, and
mitigate than the potential systematic errors in the
CRM simulations that support GPROF. However, the
database constructed directly from retrievals is meant
to be only a practical alternative for databases con-
structed from CRMs, and the effort to improve the
realism, diversity, and overall number of CRM simula-
tions for database construction should continue. This
would not only facilitate a better understanding of the
retrieved precipitation structures, but it would also al-
low for the estimation of variables (such as the vertical
heating profile) that are related to precipitation but are
not directly observed. In addition, it is anticipated that
CRMs will form the basis of improved superparameter-
izations in general circulation models, and therefore
precipitation simulations must be improved if assimila-
tion of microwave data in these models is to be viable.

Results of this study suggest little sensitivity of the
TRMM PR–TMI-based TMI-only estimates to the spe-
cific data used in the database creation, assuming that
at least one month of TRMM PR–TMI observations is
utilized. Here, combined TRMM PR–TMI observa-
tions from July 2000 are used to create the database,
and the retrieval algorithm is applied to TMI observa-

FIG. 10. Time-averaged profiles of Q1 from the TRMM PR–
TMI-based TMI and the combined TRMM PR–TMI algorithms,
and from rawinsondes for the SCSMEX NESA region.
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tions from January 1998. The monthly 0.5° � 0.5° esti-
mates from the TRMM PR–TMI-based TMI-only algo-
rithm, and estimates from the same algorithm but with
a database created using January 1998 combined
TRMM PR–TMI retrievals, are almost indistinguish-
able. This suggests that, given the SST and ET stratifi-
cation of the database, 1 month of combined TRMM
PR–TMI retrievals might be sufficient to provide pre-
cipitation–brightness temperatures relationships that
do not exhibit significant seasonal and regional varia-
tions.

Using CRM simulations, the database of retrieved
profiles, precipitation profiles, and associated bright-
ness temperatures is augmented with physically consis-
tent latent heating profiles. That is, a latent heating
profile is associated with each precipitation profile in
the database, making it possible to estimate latent heat-
ing with the TRMM PR–TMI-based TMI-only algo-
rithm. The TMI latent heating algorithm is applied to
TRMM observations made within the SCSMEX NESA
region during the field campaign’s intensive observing
period. An intercomparison reveals fairly good agree-
ment between the TMI and rawinsonde network esti-
mates of Q1. The heating estimation algorithm can be
applied to other regions as well, provided that the pre-
cipitation database is augmented with heating profiles
from realistic CRM simulations representative of those
regions.

In conclusion, combined TRMM PR–TMI precipita-
tion retrievals provide valuable information that can be
used to support passive microwave precipitation esti-
mation algorithms. Such algorithms may be used to
overcome deficiencies in current precipitation algo-
rithms that are supported by cloud-resolving model
simulations. At the same time, cloud-resolving model
simulations may still be used to augment the informa-
tion inferred from TRMM PR–TMI precipitation re-
trievals and enhance the algorithms they support.
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