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[1] Carbon monoxide (CO) total column observations from the Scanning Imaging
Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) on board
Envisat-1 are assimilated into the Global Modeling and Assimilation Office constituent
assimilation system for the period 1 April to 20 December 2004. The impact of the
assimilation on CO distribution is evaluated using independent surface flask observations
from the National Oceanic and Atmospheric Administration (NOAA)/ESRL global
cooperative air sampling network and Measurement of Ozone and Water Vapor by Airbus
In-Service Aircraft (MOZAIC) in situ CO profiles. Assimilation of SCIAMACHY data
improves agreement of CO assimilation with both of these data sets on both global
and regional scales compared to the free-running model. Regional comparisons with
MOZAIC profiles made in western Europe, the northeastern United States, and the
Arabian Peninsula show improvements at all three locations in the free troposphere and
into the boundary layer over Arabia and the northeastern United States. Comparisons
with NOAA Earth System Research Laboratory data improve at about two thirds of the
surface observation sites. The systematic model errors related to the uncertainty of CO
surface sources and the chemistry of CO losses are investigated through experiments with
increased surface CO emissions over the Arabian Peninsula and/or globally reduced
hydroxyl radical (OH) concentrations. Both model changes decrease mean CO errors at all
altitudes in comparison to MOZAIC data over Dubai and Abu Dhabi. In contrast, errors in
the assimilated CO are reduced by the increased emissions for pressures �800 hPa and by
the reduced OH for pressures �600 hPa. Our analysis suggests that CO emissions over
Dubai in 2004 are more than double those in the 1998 emissions inventory.
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1. Introduction

[2] Carbon monoxide (CO) is an important atmospheric
trace gas for the global carbon cycle and air quality. The two

largest sources of CO emissions, biomass burning and fossil
fuel combustion, are also important sources of carbon
dioxide (CO2) [Pfister et al., 2004]. CO impacts the air
quality directly and as a precursor to tropospheric ozone
[Berntsen et al., 2005]. CO is primarily lost by reaction with
OH and has an atmospheric lifetime of 2 months. Several
satellite missions carry instruments that measure radiances
at wavelengths sensitive to CO, including the Atmospheric
Infrared Sounder (AIRS) [McMillan et al., 2005], Measure-
ments of Pollution in the Troposphere (MOPITT) [Deeter et
al., 2003] and the Scanning Imaging Absorption Spectrom-
eter for Atmospheric Cartography (SCIAMACHY) [Buchwitz
et al., 2007]. Infrared AIRS and MOPITT radiances are most
sensitive to CO between pressures of 400 and 700 hPa.
SCIAMACHY CO is retrieved from reflected solar radiation
in the near infrared band 2324–2335 nm, which is sensitive
to variations within the boundary layer. This sensitivity can
potentially play an important role in forecasting ground level
air quality and inverting for emissions sources.
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[3] Chemical constituent data assimilation involves com-
bining observations with model forecasts in order to im-
prove estimation of the constituent distribution or sources
(in the case of chemical inversion). Assimilation provides a
useful tool to evaluate the accuracy of retrieved satellite data
relative to models or other measurements. Total column
measurements cannot be directly compared with in situ
point observations without knowledge of the complete
atmospheric profile. Three-dimensional analyzed constituent
fields can provide a transfer standard [e.g., Lahoz et al., 2007]
for indirect comparisons since they can be judged against
both the total column and in situ observations. If the analysis
fields are drawn closer to highly accurate independent data as
a result of assimilating satellite observations, this gives a
strong indication that the latter provide useful information.
When direct measurements of CO profiles are available, the
correction made through assimilating total column observa-
tions from a satellite can be evaluated in terms of whether CO
is added (or removed) in the appropriate model level.
[4] Assimilation of CO observations has been undertaken

by a number of researchers using measurements from several
different infrared sounders. These include the Measurement
of Air Pollution from Space (MAPS) [Lamarque et al.,
1999]; Interferometric Monitor for Greenhouse Gases
(IMG) [Clerbaux et al., 2001] and MOPITT [Lamarque et
al., 2004; Yudin et al., 2004]. The assimilated CO fields were
compared to independent observations in only some of
these systems, the biggest improvements are generally near
the midtroposphere where the averaging kernels peak. In
contrast, Zubrow et al. [2008] assimilated surface observa-
tions from the Environmental Protection Agency (EPA) into
a regional model, and consistently found a large reduction in
errors relative to independent surface data. However, no
comparisons were made with CO measurements aloft so
the impact of the assimilation to free tropospheric CO is
unknown. SCIAMACHY sensitivity to CO in the boundary
layer and free atmosphere offers potential for improvements
in estimating CO throughout the troposphere.
[5] In this paper we assess the impact of SCIAMACHY

total column CO observations on the CO assimilation system
developed at the Global Modeling and Assimilation Office
(GMAO). This system uses meteorological analyses from the
Goddard Earth Observing System (GEOS), Version 4 [Bloom
et al., 2005; Stajner et al., 2008] to transport CO. The
assimilation is evaluated using the National Oceanic and
Atmospheric Administration (NOAA)/ESRL global cooper-
ative air sampling network [Novelli et al., 2003] and in situ
observations from the Measurement of Ozone, Water Vapor,
CarbonMonoxide, and Nitrogen Oxides by Airbus In-Service
Aircraft (MOZAIC) observing system [Nedelec et al., 2003].
We investigate where assimilation of SCIAMACHY obser-
vations leads to the greatest improvements to CO estimation,
and what information the assimilation and comparisons with
in situ data can provide about the source of errors in the
model. The assimilation system is run for the period 1April to
20 December 2004. The comparisons with NOAA/ESRL and
MOZAIC data is done from May through December.

2. SCIAMACHY Observations

[6] The SCIAMACHY instrument has been operating on
board the environmental satellite, Envisat-1, of the European

Space Agency (ESA) since March 2002. The SCIAMACHY
observations are retrieved from nadir measurements in the
2265–2380 nm spectral range, and have a typical horizontal
resolution of 120 km across track and 30 km along track.
The measurements exhibit seasonal variability expected in
global CO fields [Buchwitz et al., 2007]. Comparisons were
made with MOPITT, which showed an agreement within
roughly 20% without taking into account the differences in
sensitivity with altitude. Figure 1 shows a set of 3-month
averaged total column CO from SCIAMACHY for the year
2004. These indicate hemispheric differences and large-
scale seasonal patterns, such as biomass burning over South
America and Africa, which are qualitatively consistent with
MOPITT observations [Bremer et al., 2004].
[7] Retrievals of total column CO (denoted ctc�) use the

Weighting Function Modified–Differential Optical Absorp-
tion Spectroscopy (WFM-DOAS) algorithm. WFM-DOAS
is a least squares technique that uses the scaling and shifting
of preselected vertical profiles to fit the ratio of the measured
nadir radiance to the solar irradiance spectrum [Buchwitz et
al., 2007]. This approach is valid only for cloud-free pixels,
and a cloud detection algorithm using subpixel information
generates a cloudmask. The SCIAMACHY ctc� observations
are supplied with a cloud contamination flag, as well as a
quality flag, which depends on the magnitude of the residual
of the least squares fit for each retrieval. The estimated
observation error for each total column measurement, sscia,
is calculated from the RMS of the residual and contains
contributions from both random and (unknown) systematic
components. These total error values generally range from
20% to 100% for the observations tagged as ‘‘good.’’ These
error estimates can be verified through data assimilation, and
this is one of the goals of this work. Only the cloud-free,
‘‘good’’ quality data are used in the assimilation.
[8] The sensitivity of measured radiation to variations in

CO at different levels in the atmosphere is characterized by
the vertical column averaging kernels (Figure 2a) [Buchwitz
et al., 2004]. The averaging kernels depend significantly on
the SZA if it is larger than 75�. This is due to the enhanced
atmospheric scattering at larger path length. For SZA below
75�, the averaging kernels are essentially constant and very
close to unity. This indicates that SCIAMACHY can observe
enhancements of CO molecules independent of the altitude
where the enhancement occurs.
[9] Only data for SZA< 75�, whose averaging kernels very

close to unity, are assimilated. Note that there is slightly more
sensitivity to concentrations near 300 hPa than in the lower
Troposphere and that the near-surface sensitivity decreases as
solar zenith angle increases. There is also some dependence
of the averaging kernel on surface reflectivity.

3. Assimilation System

[10] The CO assimilation system used here is based on the
ozone assimilation system developed by Stajner et al. [2001,
2008] and employs the sequential Physical-space Statistical
Analysis System (PSAS) [Cohn et al., 1998], which is an
alternative formulation of 3DVAR. The CO data assimila-
tion system has the capability to include the effect of the
averaging kernel, which takes into account vertical varia-
tions of the sensitivity of the retrieved to actual CO mixing
ratios. Because we limit the observations to those with the
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averaging kernels near unity, the forward (or observation)
operator from model space to total column observation space
is simply a weighted vertical integration. The a priori profile
that was used in SCIAMACHY retrievals is subtracted out
within each layer, and the total column a priori is added to the
final result. For a profile x given on N = 55 model levels by
volumetric mixing ratios xk, k = 1, . . ., N in mol/mol, we
introduce the linear operator H(x):

HðxÞ ¼ 2:12� 1022
XN

k¼1

akðDPkÞxk ; ð1Þ

where ak is the SCIAMACHY averaging kernel, DPk is the
kth layer pressure thickness (hPa). The constant (2.12 �
1022) converts the total column value to molecules/cm2. In
our application ak = 1 (see Figure 2a). The total column
operator that computes the total column CO in molecules/
cm2 is

HðxÞ ¼ Hðx� xapÞ þ c
ap
tc ; ð2Þ

where xap is the a priori CO mixing ratio on model levels
and ctc

ap is the total column a priori.
[11] Equation (2) defines the observation operator that

allows for the calculation of the observed minus forecast
(O � F), or innovation, values in observation space needed
for the assimilation system. These represent the difference
between the observation and forecast, and their magnitude
and sign play an important role in how the assimilation
changes the constituent field. The PSAS algorithm solves
the innovation equation

HPfHT þ R
� �

y ¼ c
tc �Hðxf Þ
� �

ð3Þ

for the vector y, in observation space. The observation
operator,H, is the matrix of the linear operator in equation (1)
and error statistics are represented by the forecast error
covariance, Pf. The observation error covariance, R is a
diagonal matrix made up of observation error variances,
implying that the observation errors are modeled as
uncorrelated.
[12] The solution is then transformed to model space via

xa � xf ¼ PfHTy ð4Þ

to obtain the analysis increment xa � xf, where xa is the
CO analysis and xf is the CO forecast.
[13] The forecast error covariance is specified using a

separable covariance model [Stajner et al., 2001]:

fPi;jg ¼ sisjri;jmi;j; ð5Þ

where {Pi,j} is the covariance between locations i and j, si
and sj are the forecast error standard deviations, ri,j is a
nonisotropic horizontal error correlation and mi,j is the
vertical error correlation. Three tunable parameters are used
in the error covariance models: a specifies the forecast error
standard deviation as a fraction of the local CO mixing
ratio, sf = axf, L is the background error correlation length
scale, and b is used to specify observation error standard
deviation s� = bsscia. Tuning runs were used to determine
optimal values (by minimizing the RMS difference with
MOZAIC observations): a = 0.2 and b = 0.5. The optimal
horizontal correlation length scale was found to be 100 km
in the meridional direction, and varies from 200 km in the
Tropics to 100 km in high latitudes for the zonal direction.
A c2 estimate [see Stajner et al., 2001], normalized with
respect to the number of SCIAMACHY observations at

Figure 1. Total column CO from Scanning Imaging Absorption Spectrometer for Atmospheric
Cartography (SCIAMACHY) averaged over 3-month periods during 2004, plotted on a 0.5� � 0.5� grid.
Typical data density is about 24 observations per box over each 3-month period, though we only plot the
observations flagged as ‘‘good.’’ Plots are for (top left) January–February–March, (top right) April–
May–June, (bottom left) July–August–September, and (bottom right) October–November–December.
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each analysis time was also made for each tuning run. This
normalized mean is closest to unity (0.99) for the same
choice of parameters that provide the best agreement with
MOZAIC data.
[14] These parameter values are used in all the assimila-

tion experiments presented in the next section. The value of
b implies that the observation errors provided with the CO
retrievals are too large (relative to the MOZAIC observa-
tions), possibly due to an overestimation of the systematic
component of the error.
[15] The CO forecasts are produced online in the GEOS-4

GCM, with parameterized chemistry and imposed sources.
The GCM uses the semi-Lagrangian transport finite volume
scheme [Lin, 2004] with 55 levels between the surface and
0.1 hPa. The meteorological analyses are generated using
the GEOS-4 assimilation system [Bloom et al., 2005], and

are then utilized for 6-h GCM runs which drive the constit-
uent transport. Meteorological and constituent fields are
computed on a 1� latitude by 1.25� longitude grid. The model
is employed in two ways. First, it is used to produce a CO
model run, in which CO transport is constrained by the
GEOS-4 meteorological analyses. This run is called the
‘‘CO simulation,’’ and it provides a benchmark to compare
with the assimilation results. Second, the model is used to
forecast CO (provide the background fields) for the ‘‘CO
assimilation,’’ in which the SCIAMACHY observations
are inserted every 6 h to provide new initial conditions
(analyses). Transport fields (winds and cloud convection)
are identical in the two runs.
[16] The CO production rate (P) and loss frequencies (L)

are taken from the GEOS-CHEM model global 3-D model
o tropospheric chemistry. Monthly mean climatological
hydroxyl radical (OH) concentration is used to specify CO
destruction. The treatment of OH fields as independent of
reaction with CO is justified by the abundant sources of OH
in the atmosphere [Duncan et al., 2000]. The net rate of
change in CO mixing ratio on the model grid is then

@½CO�
@t

¼ P � L½CO�: ð6Þ

A general description of GEOS-Chem is given by Bey et al.
[2001] and a specific description of emissions as used here
is given by Park et al. [2004], with modifications described
here. Anthropogenic emissions over the United States are
from the 1999 National Emission Inventory (NEI) with
modifications described by Hudman et al. [2007], including
a generalized 50% decrease in NOx emissions from power
plants and industry reflecting documented changes between
1999–2004, and a 30% decrease in CO emissions to account
for overestimate in the transport sector [Parrish, 2006].
Biomass burning emissions are climatological means as
described by Duncan et al. [2003], with the addition of fire
emissions over North America following Turquety et al.
[2007], which provided them an unbiased comparison with
MOPITT CO observations over summer 2004. Boreal fire
emissions are assigned to both the boundary layer and free
troposphere so as to account for the convection generated by
the fires.

4. Assimilation Results

[17] The impact of SCIAMACHY data for a single anal-
ysis time can be seen in Figure 2b in a vertical slice of the
analysis increment (analysis minus forecast) at 25� E and
1800 UT on 30 September 2004. This increment includes a
number of observations, and the most substantial corrections
correspond to three observations in or near the plane of this
plot at 18�S, 10�S, and 2�S. The corrections extend through a
deep layer andmaximize at the surface. This vertical structure
is due to the assumption that the forecast error standard
deviation is proportional to the local CO mixing ratio, which
is typically highest in the boundary layer. The shape of the
SCIAMACHY analysis increments contrasts with the shape
of MOPITT increments, which tend to peak around 500 hPa,
and then decay toward the surface [Lamarque et al., 2004],
echoing the different shapes of the averaging kernels.

Figure 2. (a) The SCIAMACHY CO averaging kernel
(dimensionless) at various solar zenith angles and (b) analysis
increment at 25E over southern Africa on 30 September
2004. Units are ppmv.
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[18] Global and regional comparisons with NOAA/ESRL
flask data and MOZAIC observations are used to evaluate
model performance and impact of SCIAMACHY data during
the period 1 May to 20 December 2004. The locations of
the 276 NOAA/ESRL measurements and the impact of
SCIAMACHY assimilation on the mean analysis error are
shown in Figure 3a. The green dots represent locations
where the mean analysis error has been reduced by assim-
ilation of SCIAMACHY, and the red dots indicate where it
has increased. Most regions show decreases in error, with

the notable exceptions of the western United States, and
parts of the equatorial Pacific. These changes can be seen
quantitatively in Figure 3b, in which the locations are
divided into Northern Hemisphere (NH), Southern Hemi-
sphere (SH), and also into five subregions. For each region,
the plot shows the mean error for the CO simulation (blue
square) and the Assimilation (red square). The error stan-
dard deviation is also shown for each region using error
bars. The mean differences were reduced in both the NH
and SH, and all of the subregions except North America. In

Figure 3. Comparison of model simulation and assimilation with National Oceanic and Atmospheric
Administration/ESRL surface flask data during the period May–December 2004. (a) A map of the
measurement locations with the change in mean error relative to the in situ data given by a green dot
when the assimilation errors are lower and a red dot when the CO simulation errors are lower. (b) The
magnitude of these changes which gives the mean and standard deviation errors relative to the in situ
measurements. The CO simulation errors are indicated by the blue lines, and the assimilation errors are
indicated by the red lines.
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North America, the mean model error was essentially zero
making any improvement difficult. In contrast, the standard
deviation of the differences from flask data are generally
larger when SCIAMACHY observations are assimilated.
This is because the variability of the surface layer CO fields
has been increased, since the assimilation creates a sudden
change to the field which gradually returns toward the CO
simulation state due to model biases.
[19] Regional comparisons with MOZAIC data focus on

three 10� latitude � 10� longitude boxes centered near
Frankfurt, Germany; New York, USA; and Dubai, UAE.
Separating the comparisons with independent data in this
manner allows us to consider the impact of the geographic
variability of the accuracy of the source estimates on the

assimilation. Jet takeoffs and landings in each region provide
CO profiles numbering from around 35 (Dubai and Abu
Dhabi) to about 500 (Frankfurt) from near sea level to about
200 hPa for the period from 1 May to 20 December 2004.
Note that the nature of MOZAIC observations means that
spatial coverage and temporal sampling have large geograph-
ical differences [Nedelec et al., 1998].
[20] Comparisons of the mean and root-mean-square

(RMS) differences between MOZAIC observations and the
CO simulation reveal that CO values in the model are
generally too low at pressures lower than 700 hPa. At higher
pressures the model errors depend more strongly on geo-
graphical location, and for this reason we focus on regional
comparisons. Figures 4–6 show the relative mean and RMS
of the difference between the MOZAIC observations and the
CO simulation (solid line) or CO assimilation (dash-dotted
line) interpolated to the MOZAIC observation locations
within the boxes centered on Frankfurt (Germany), Dubai
(United Arab Emirates) and New York City (United States),
respectively. Profiles over Dubai show larger errors than over
New York or Frankfurt. The improvement is particularly
large near Dubai, where larger analysis increments counteract

Figure 4. Relative (a) mean and (b) RMS O � A in the
box containing Measurement of Ozone and Water Vapor by
Airbus In-Service Aircraft (MOZAIC) observations within
5� longitude or latitude of Frankfurt, where ‘‘O’’ refers to the
MOZAIC observations, ‘‘A’’ to the analysis field, and ‘‘M’’
to the CO simulations interpolated to MOZAIC locations.
Solid lines refer to the CO simulation ((O � M)/O average;
RMS ((O � M)/O)) and dash-dotted lines refer to the CO
assimilation ((O � A)/O) average; RMS ((O � A)/O).

Figure 5. Same as Figure 4, but for Dubai.
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large model errors. For example, the mean error reduction
above Dubai varies from 40% at the surface to 100% just
above the boundary layer. Over New York, the reduction is
around 50% at all levels. In contrast, the mean errors near
Frankfurt are essentially unchanged by the assimilation in the
surface layer. The mean error in the upper troposphere is
substantially reduced by the assimilation over all three cities.
Assimilation of SCIAMACHY data provides closer agree-
ment with MOZAIC CO globally (not shown).
[21] Similarly, the RMS errors show a reduction at all

levels only over Dubai, where the decrease varies from 10%
at the surface to about 50% in the upper troposphere. RMS
reduction over New York varies from 10% (surface) to 30%
(upper troposphere). Above Frankfurt, reduction occurs
only at pressures below 900 hPa, with a maximum reduction
of about 30%. In all three locations, and for pressures lower
than 900 hPa, the analysis RMS errors vary from 15% to
30%. The forecast RMS errors (not shown) are very similar
in magnitude to the analysis RMS errors, indicating that the
estimated forecast error of 20% of the CO mixing ratio is
reasonable outside the boundary layer. Over Dubai, assim-
ilation of SCIAMACHY data decreases mean and RMS

differences with MOZAIC data in the boundary layer.
Over the Arabian Peninsula, favorable conditions for the
assimilation include the frequent availability of cloud-free
SCIAMACHY data and the fact that the model consistently
underestimates CO in the boundary layer and in the total
columns. The former allows frequent corrections due to the
assimilation and the later ensures that the distribution of
analysis increments in the vertical helps improve the repre-
sentation of CO in the boundary layer. Assimilation of
SCIAMACHY data leads to a consistent large decrease in
the RMS differences with MOZAIC data globally and in all
three regions between about 200 and 700 hPa. At these
levels, which are away from the immediate impact of errors
in CO sources (see Figure 2b), the impact of the analysis
increments can accumulate to produce these substantial
corrections.
[22] The height-dependent impact of assimilating

SCIAMACHY can be seen in Figure 7, which shows the
difference between the CO assimilation and CO simulation
(A�M) averaged over September and October 2004 for the
three regions studied. Each plot is for a vertical slice from the
surface to 200 hPa at a latitude that runs through Frankfurt

Figure 6. Same as Figure 4, but for New York City.

Figure 7. Difference between CO assimilation and CO
simulation in parts per billion by volume, averaged over the
period 1 September to 31 October 2004 for vertical slices at
(a) 51�N, spanning Frankfurt, denoted by an open circle;
(b) 25�N, spanningDubai, denoted by a square; and (c) 41�N,
spanning New York, denoted by a solid circle.
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(a), Dubai (b) or New York (c). In the Frankfurt and New
York regions, the corrections are positive at pressures lower
than 800 hPa, and negative near the surface. Analysis incre-
ments from the assimilated SCIAMACHYobservations will
generally be of the same sign at all levels (Figure 2b). Over
Frankfurt and NewYork, this means that the changes made in
the upper troposphere CO cannot be the result of the same
observations as the changes seen at the surface. This indicates
that the upper tropospheric changes result from corrections
made elsewhere and transported to these regions. An example
of this is the upper level increase in CO over New York. The
small changes nearer the surface can be attributed to some
combination of a more accurate emissions model, and a
relatively small number of cloud-free observations. The
negative surface correction is also consistent comparisons
with ICARTT made by Hudman et al. [2008] that indicated
that CO emissions over the U.S. should be reduced in the
model. Above the Arabian Peninsula the assimilation
changes the CO field in a much different way; the corrections
are positive right down to the surface, and have the appear-
ance of ‘‘plumes’’ above Riyadh and Dubai. These are really
corrections to the CO field over the two cities, and they
suggest that the specified CO sources are too low in this
region. The corrections to CO over Dubai might then be
interpreted as the response of the assimilation to locally
underestimated sources.
[23] Because assimilation of SCIAMACHY CO results in

correction to the CO field throughout the troposphere, it is
interesting to plot the surface layer CO fields in the Arabian
Peninsula. Figure 8 shows the average fields for September–
October 2004 in this region. The assimilation increases
surface layer CO throughout the peninsula. This indicates
a substantial underestimation of CO surface layer concen-
tration in the model. In particular, the concentrations around
the two largest sources, Kuwait city and Jedd-ah, increase
substantially. The only two cities with MOZAIC data in the
Arabian Peninsula region during this time period are Dubai
and Abu Dhabi, and there the increase in CO due to the
assimilation improves the agreement with MOZAIC data
(Figure 5). Two possible causes for low bias in the model
are considered: underestimated CO surface sources and

overestimated CO loss due to its reaction with OH aloft.
The former would tend to create errors nearer the surface,
while the latter should result in larger errors outside the
boundary layer. Chemical loss of CO from oxidation by OH
is slow relative to boundary layer ventilation and is there-
fore of little consequence.
[24] Additional experiments provide insight on how the

model and assimilation respond to changes in emissions
and/or OH concentrations. Doubling the CO emissions in
the Arabian Peninsula increased CO (and reduced errors) at
all levels in the free running model, but only for pressures
above 800 hPa in the assimilation. Similarly, a global 10%
reduction in OH reduced errors at all levels in the CO
simulation, but only upper tropospheric errors ( p < 600 hPa)
were reduced in the assimilation. We show the mean errors
with and without these changes to emission and global OH
in Figure 9. Combining increased Arabian emission with a
global 10% decrease in OH provides the best agreement
with MOZAIC data for the CO simulation at all levels and
the assimilation at pressures below 600 hPa and above
900 hPa. At the surface in Dubai, doubled regional emis-
sions and globally 10% reduced OH decrease the mean error
in the CO simulation relative to MOZAIC by about 30%
(from 0.39 to 0.27 ppmv). Note that the assimilation of
SCIAMACHY data into this model further reduces the error
by about 50% (from 0.27 to 0.13 ppmv), as can been seen
from the change in the red line from Figures 9a and 9b. This
relative error reduction is very similar to the improvement
from assimilation of SCIAMACHY into the original model
(Figure 5).
[25] The spatial impact of these changes to the chemistry

model can be seen in Figure 10, which shows the total
column differences between SCIAMACHY observations
and CO simulations averaged over the month of October
2004, using standard chemistry (Figure 10a) and chemistry
with doubled Middle East emissions and OH reduced
globally by 10% (Figure 10b). These plots indicate that
the higher levels of CO that result from this modified
chemistry draw the total column CO closer to SCIAMACHY
observations. For example in the region near Dubai and Abu
Dhabi (where the MOZAIC profile measurements are
made), the total column differences are reduced from about
1.0 � 1018 molecules/cm2 to about 0.6 � 1018 molecules/
cm2. Total column O � F values for the assimilation run
using both the original and enhanced chemistry (not shown)
are smaller than those in Figure 10 and show little depen-
dence on the chemistry model used. This is due to the fact
that the assimilation draws the CO total columns strongly
toward the observed values.

5. Concluding Remarks

[26] The assimilation of SCIAMACHY total column CO
observations is found to draw the CO assimilation closer to
an independent data set both globally and in the localized
regions of the northeastern United States, the Arabian
Peninsula and western Europe. The mean errors of surface
CO were reduced at about two-thirds of the NOAA/ESRL
flask data sites, and were improved overall in all of the
regions except North America, where the mean error in the
model is the smallest of all regions. The mean CO mixing
ratio is drawn toward MOZAIC profiles from 200 hPa down

Figure 8. CO field in parts per million by volume for the
lowest model layer averaged over the period 1 September to
31 October 2004 for the (left) CO simulation and (right) CO
assimilation using cloud-free observations in the Middle
East. The cities marked are Kuwait City (diamond), Jeddah
(square), Riyadh (triangle), Abu Dhabi (cross), and Dubai
(circle).
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to the surface at both Dubai and NYC. RMS differences
with MOZAIC are also substantially reduced by the assim-
ilation, with only the lowest layer over Frankfurt showing
no improvement. Reasons for the lack of improvement in
the surface layer over Frankfurt are the very low systematic
error in the model over Europe and the relatively smaller
number of cloud-free observations there (only half that for a
similar sized region in the Middle East). We conclude that
SCIAMACHY observations are most useful in regions with
frequent cloud-free days, and particularly when the CO
production in the model is less accurate. For example, mean
surface errors over Dubai (which had roughly twice as many

Figure 10. Total column differences between observed
and simulated values (molecules/cm2/1.0 � 1018) averaged
over the month of October 2004 for the Arabian Peninsula
using (a) standard chemistry and (b) doubled Middle East
emissions and a global 10% reduction in OH. Symbols for
cities are the same as in Figure 8. Red squares indicate
positive differences, green indicates differences close to zero,
and blue indicates negative differences.

Figure 9. Relative mean (a) O � M and (b) O � A in the
box containing MOZAIC observations within 5� longitude
or latitude of Dubai, where ‘‘O’’ refers to the MOZAIC
observations, ‘‘M’’ refers to the free model run, and ‘‘A’’ is
the analysis field interpolated to MOZAIC locations. The
black lines (with triangles) use the standard (GEOS-CHEM)
anthropogenic emissions, the blue lines use a chemistry
model with doubled CO emission in the Arabian Peninsula,
the green lines contain a 10% global reduction in OH, and
the red lines (with squares) use both model adjustments.

D07307 TANGBORN ET AL.: SCIAMACHY CO ASSIMILATION

9 of 11

D07307



cloud-free observations than the region near Frankfurt) were
reduced by about 30%. The observations have less impact in
regions with more accurate CO sources or with fewer cloud-
free SCIAMACHY observations. The RMS errors in the
assimilation show that the assumption of a forecast error
standard deviation of about 20% is justifiable in the free
troposphere. Nearer the surface, it is more reasonable to
consider the mean O � A values (because of subgrid
variability in the MOZAIC data), and these indicate that
the surface layer forecast errors have substantial spatial
variability, and that future improvements to any CO assim-
ilation system would need to take this into account.
[27] Assimilation experiments reveal that SCIAMACHY

total column observation error standard deviations may be
50% smaller than the values obtained from the retrieval
error estimates. The observation error can be decomposed
into random and systematic components. The former rep-
resents measurement accuracy and cannot be reduced, while
the latter represents the systematic component, and is more
likely to be overestimated.
[28] The basic driving force behind data assimilation is

the observation minus forecast, or (O � F), which repre-
sents the difference between the total columns of CO as seen
by the satellite and predicted by the model. These (O � F)
values represent the sum of forecast and observation errors,
without explicit information on which error source predom-
inates, or what level in the atmosphere should be corrected
the most. This partition is specified through the error covari-
ance estimates and the averaging kernel. For SCIAMACHY,
it results in corrections to the CO field that occur at all levels
in the troposphere.
[29] Over the Arabian Peninsula, assimilation of

SCIAMACHY data has a large impact on the CO field,
which improves comparisons with MOZAIC data (Figure 5).
Apparently large model errors in this region motivated
sensitivity experiments to investigate their origin. The errors
in the CO field relative to MOZAIC data decrease substan-
tially in CO simulation experiments with enhanced CO
emissions over the Arabian Peninsula and/or global reduction
of OH, indicating that both are important components of the
model errors in this region. Even after these changes in the
model, the assimilation of SCIAMACHY data further
reduces CO errors near the surface by about 50% over Dubai.
This indicates the robustness of the beneficial impact of
SCIAMACHY data. Other components of the model error
that could be investigated in the future include errors in the
boundary layer height (which impact mixing of CO into the
free Troposphere), parametrization of the convective trans-
port [e.g., Ott et al., 2009] and underestimation of distant or
unspecified CO surface emissions [e.g., Kar et al., 2006].
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Stajner, I., L. P. Riishöjgaard, and R. B. Rood (2001), The GEOS ozone
data assimilation system: Specification of error statistics,Q. J. R. Meteorol.
Soc., 127, 1069–1094.

Stajner, I., et al. (2008), Assimilated ozone from EOS-Aura: Evaluation of
the tropopause region and tropospheric columns, J. Geophys. Res., 113,
D16S32, doi:10.1029/2007JD008863.

Turquety, S., et al. (2007), Inventory of boreal fire emissions for North
America in 2004: Importance of peat burning and pyroconvective injec-
tion, J. Geophys. Res., 112, D12S03, doi:10.1029/2006JD007281.
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