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[1] The Poincaré index indicates that the Cluster spacecraft tetrahedron entraps a number
of 3-D magnetic nulls during an encounter with the turbulent magnetosheath. Previous
researchers have found evidence for reconnection at one of the many filamentary current
layers observed by Cluster in this region. We find that many of the entrained nulls are also
associated with strong currents. We dissect the current structure of a pair of spiral nulls that
may be topologically connected. At both nulls, we find a strong current along the spine,
accompanied by a somewhat more modest current perpendicular to the spine that tilts the
fan toward the axis of the spine. The current along the fan is comparable to the that
along the spine. At least one of the nulls manifests a rotational flow pattern in the fan plane
that is consistent with torsional spine reconnection as predicted by theory. These results
emphasize the importance of examining the magnetic topology in interpreting the nature of
currents and reconnection in 3-D turbulence.
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1. Introduction

[2] Recent observations have explored the nature of current
sheets in turbulence [Eastwood et al., 2009; Lazarian et al.,
2009; Matthaeus et al., 2003; Osman and Horbury, 2009;
Osman et al., 2011; Retinò et al., 2007]. The current sheets
within the turbulence are usually affiliated with some kind of
magnetic reconnection that leads to plasma heating and thus
offer one explanation to the problem of non-adiabatic heating
of the solar wind [Boldyrev, 2006; Coleman, 1968; Cranmer
et al., 2009; Goldstein et al., 1995; Lazarian et al., 2009;
Matthaeus et al., 1994; Vasquez et al., 2007; Verma et al.,
1995; Zank et al., 1996]. In turn, simulations have shown that
turbulence can augment the reconnection rate [Matthaeus and
Lamkin, 1985, 1986; Servidio et al., 2009; Servidio et al.,
2010], and observations have likewise associated turbulence
with fast reconnection [Ji et al., 2004; Retinò et al., 2007;
Sundkvist et al., 2007], thus providing one explanation of the
problem of fast reconnection in high-Lundquist-number sys-
tems such as the Sun’s corona and the Earth’s magnetosphere.
Moreover, theory, observations, and simulations have demon-
strated the 3-D nature of reconnection at the Sun and the Earth
[Che et al., 2011; Daughton et al., 2011; Deng et al., 2009;
Parnell et al., 2008; Pontin et al., 2005b; Priest and Titov,
1996]. In fact, 3-D reconnection engenders turbulence in
high-resolution kinetic simulations [Che et al., 2011;Daughton
et al., 2011]. While researchers have observed 3-D turbulent
reconnection in the laboratory and in simulations, and
others have discovered in situ spacecraft observations of

3-D reconnection [Deng et al., 2009; He et al., 2008; Xiao
et al., 2006], in situ observations of turbulent reconnection
have yet to be analyzed from a 3-D perspective. To this date,
analyses of spacecraft observations have treated turbulent
reconnecting current sheets from a 2-D point of view
[Eastwood et al., 2009; Greco et al., 2010; Greco et al.,
2009; Retinò et al., 2007; Sundkvist et al., 2007]. While
this may be appropriate in regions with a guide field, it is
in general not sufficient. In this work, we apply topological
measures to in situ spacecraft observations of turbulent fila-
mentary currents to uncover their 3-D nature.

1.1. Turbulent Reconnection

[3] The role of turbulence in 2-D magnetic reconnection
first acquired attention in the 1980s. In their 2-D MHD
simulations, Matthaeus and Lamkin [1985] and Matthaeus
and Lamkin [1986] found turbulence enabled fast reconnection,
and others [Bhattacharjee et al., 2009; Smith et al., 2004] have
derived 2-D scaling laws for the contribution of secondary
islands and turbulence to the reconnection rate. In recent statis-
tical surveys of 2.5-D MHD turbulence, Servidio et al. [2009]
find reconnecting current sheets with a range of reconnection
rates associated with a range of magnetic island sizes. In a
statistical analysis of dissipation measures in a 2-D particle-
in-cell (PIC) simulation of turbulent reconnection, Wan et al.
[2012] discover coherent structures on ion to electron scales
and a correlation between the strongest current sheets and
the largest dissipation rates.
[4] Theoretical analyses and recent 3-D PIC simulations

of reconnection with a guide field reveal a relationship
between the three dimensions and the development of turbu-
lence and ensuing fast reconnection [Che et al., 2011;
Daughton et al., 2011]. In simulations with 3-D dependence,
turbulence is not assumed, as in the 2-D simulations, but,
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rather, is a consequence of reconnection. Nevertheless, as in
the 2-D simulations, layers of interacting magnetic islands
and vortices that are limned by thin, filamentary current
layers characterize the turbulence. Strauss [1988] derived
fast reconnection rates from a theoretical analysis of low-b,
3-D, MHD tearing mode turbulence.
[5] Space observations of turbulence and embedded,

reconnecting current layers include observations of the
Sun, the solar wind, and the Earth’s magnetosphere. Solar
observations have found reconnection within a framework
of 3-D topology and fragmented, stochastic fields [Albright,
1999; Parnell, 2007; Schrijver and Title, 2002]. Studies of
turbulence in the solar wind [Matthaeus et al., 2003; Osman
and Horbury, 2009; Osman et al., 2011; Sahraoui et al.,
2009; Sahraoui et al., 2010] attribute heating to small-
scale reconnecting current sheets. Several geospace observa-
tions in the magnetotail [Eastwood et al., 2009] and in the
magnetosheath [Retinò et al., 2007; Sundkvist et al., 2007]
have analyzed reconnection in turbulence. These observers,
however, have analyzed the current sheets as 2-D structures,
which may be of limited validity.

1.2. 3-D Reconnection

[6] The 3-D magnetic topological skeleton consists of
magnetic nulls, spines, separators, and separatrices. In strong
background fields, quasi-separatrix layers can take the place
of separatrices and null points. Magnetic null points are pro-
duced in pairs of opposite polarity. A spine and a fan—or
separatrix surface—define a magnetic null point. The spine,
g, consists of a field line that emanates either toward or away
from a null on opposite sides of the null, and the fan planes,
Σ, comprise the surface of field lines that spread away from
or toward the null (see Figure 1a). The polarity of a null in
three dimensions is positive if the spine points toward the
null and negative if it points away from the null. A type A
(type B) null is a negative (positive) null with radial fan field
lines, while a type AS (type BS) null is a negative (positive)
null with spiraling fan field lines [Lau and Finn, 1990;
Parnell et al., 1996] (Figure 1b). Generally, the fan field lines
in type A and type B nulls align themselves more or less
along one fan axis to form what is called an improper radial
null [Parnell et al., 1996]. Magnetic null points may be
potential (current-free) or nonpotential (currents in the spine,
or fan, or both) [Parnell et al., 1996]. The spines and fans
of magnetic nulls and the loci where the fans of pairs of
nulls intersect—i.e., the separator—define the magnetic
topology around the null point (see Figure 1c). A quasi-
separatrix layer is a layer of field lines oriented perpendicular
to an x-type magnetic geometry, but where a strong guide
field may still be present [Priest and Forbes, 2000].
[7] Researchers have shown that reconnection is feasible

on various elements of the magnetic topology. For example,
where topological separators exist, 3-D reconnection often
occurs on the magnetic separator [Dorelli et al., 2007;
Parnell et al., 2008; Priest and Forbes, 2000]. The separator
may be global (such as across the Earth’s dayside magneto-
pause) or local (as in the smaller scales of a turbulent system
or tearing mode) [Priest and Forbes, 2000]. Priest and
Forbes [2000] have proposed that reconnection is possible
in the absence of separators and null points. In this scenario,
reconnection occurs on quasi-separatrix layer field lines that
carry a parallel electric field through a process they call

magnetic flipping. Furthermore, researchers have developed
and tested the theory for reconnection at current-carrying mag-
netic null points [Galsgaard and Pontin, 2011a, 2011b;

(a)

(c)

(b)

Figure 1. (a) Spine g and fan plane Σ of an improper radial
null point. (b) Type Bs spiral null point. (c) Intersection of
the fan planes (shaded surfaces) of a type A and a type B
radial null point defines the separator (yellow line). Figures 1a
and 1c are based on Figure 1 from Pontin [2011].
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Pontin and Galsgaard, 2007; Pontin et al., 2005a; Pontin et al.,
2007; Pontin et al., 2011; Priest and Titov, 1996; Priest and
Pontin, 2009;Wyper and Jain, 2010], while others [Bogdanov
et al., 1994; Lukin and Linton, 2011] have observed null
point current growth and reconnection in the laboratory.
Priest and Pontin [2009] deduce three general categories
of null point reconnection: torsional spine, torsional fan,
and spine-fan reconnection. In torsional spine reconnection,
when current concentrates along the spine from field lines
rotating in the fan plane, nearby field lines can experience
rotational slippage, i.e., elements of the field lines at different
positions along the spine rotate at different rates, thereby sep-
arating plasma elements along parts of the spine from their
original field lines. Torsional fan reconnection occurs when
spine field lines rotate in opposite directions above and below
the fan, building up current within the fan and forcing field
lines near the fan to rotate in opposite directions above and
below the fan. However, there is no flux transfer across
either the spine or the fan in either of these models. Finally,
in spine-fan reconnection, a shearing motion across the spine
causes the null point to collapse into a current sheet and flux
is transported across both the spine and the fan [Parnell et al.,
1997; Priest and Pontin, 2009].
[8] In this article, we initiate a new approach that applies a

3-D analysis to filamentary currents in turbulent geospace.
In previous analyses of a 2002 Cluster magnetosheath cross-
ing, Retinò et al. [2007] find filamentary current sheets and
evidence for reconnection and dissipation, while Sundkvist
et al. [2007] establish that the layer is turbulent. Using the
Cluster magnetic field data, we apply multispacecraft
topological analyses to current sheets observed during this
time interval to discover magnetic nulls associated with
many of the current filaments. In particular, we examine a
pair of nulls that may be topologically connected. Because
the current layers cross the spacecraft and the mean
magnetic field fluctuates in about 1 s or less, particle moments
are not useful during this interval. We therefore rely on electric
fields outside the dissipation region to infer neighboring
plasma flows in the null rest frame. We find that the pair of
nulls manifests a current structure and flow pattern consistent
with at least one type of null point reconnection—torsional
spine reconnection—discovered in a number of theoretical
works [Pontin et al., 2007; Pontin et al., 2011; Priest and
Titov, 1996; Priest and Pontin, 2009;Wyper and Jain, 2010].

2. Topological Analysis

[9] On 27 March 2002, from about 9:30 to 11 UT, the
Cluster spacecraft passed downstream of a quasi-parallel
shock through a turbulent magnetosheath filled with thin
current layers [Retinò et al., 2007]. At this time, Cluster’s
orbit passes near the southern cusp on the dawn side of noon
(about 10 magnetic local time). The spacecraft tetrahedron is
highly regular, and the interspacecraft spacing is about
100 km. The flux gate magnetometer (FGM) Bx component
from Cluster 1 (Figure 2a) with 0.015 s cadence shows
the highly filamentary nature of the field, associated with
many thin current sheets. Retinò et al. [2007] analyze a cur-
rent sheet with a very depressed magnetic field and high
ohmic dissipation at about 10:16:52 UT. They find a field
reversal and drift flows consistent with magnetic reconnection.
However, the quasi 2-D dependence of the magnetic field

and currents during the interval did not readily lend them-
selves to a 3-D topological analysis.
[10] In an effort to gain insight into the dimensionality of

some of the current sheets, we apply a few magnetic gradient
analyses to the FGM data from this interval. Cluster four-
point measurements yield the magnetic spatial gradients
averaged over the tetrahedron [Chanteur, 1998; Dunlop
et al., 2002], from which one derives the current. Large
spatial gradients signify strong currents. The spacecraft
four-point position and magnetic field data also provide the
so-called topological degree, or Poincaré index, a measure
of the number of roots—in the case of interest, magnetic
nulls—in a region [Greene, 1992]. The origin, or root, in
magnetic field space corresponds to a magnetic null point
in configuration space. The field in the linear region near a
null may be expanded as B=rB�r, where rB is the matrix
of magnetic spatial gradients @Bi/@xj evaluated at the null.
The eigenvalues of rB correspond to the nature of the spine
and fan of the null. If all three eigenvalues are real, the null is
a type A or type B radial null. In this case, the eigenvalue lg
corresponding to the spine g is of opposite sign to the other
two eigenvalues, and its sign determines whether the spine
points toward (lg< 0) or away (lg> 0) from the null. If
one eigenvalue is real and the other two complex conjugates,
then the null is a type As or type Bs spiral null and the sign of
the real eigenvalue gives the orientation of the spine.
Because the determinant of the matrix is the product of the
eigenvalues, its sign specifies the polarity of the null. The
topological degree D is given by D=Σ nulls sign(det(rB))
and represents a sum of like-type magnetic nulls in a
given region (and will vanish if the region contains a pair
of opposite nulls).
[11] One method of calculating the topological degree is

the bisection method of Greene [1992], whereby knowledge
of the magnetic field at specific points over a volume in
configuration space allows a mapping between configuration
(x, y, z) and magnetic field (Bx, By, Bz) space [Dorelli et al.,
2007]. From this information, one calculates the solid angle
subtended in magnetic field space by the volume in physical
space. The total solid angle thus subtended is either 0 or a

(a)

(b)

Figure 2. (a) The GSE x component of the magnetic field
from the FGM instrument on Cluster 1 shows fluctuations
and discontinuities of the magnetic field in the magnetosheath.
(b) The Poincaré index calculated from all four spacecraft field
measurements from the same time interval reveals a number of
clusters of magnetic nulls entrapped within the tetrahedron.
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multiple of 4p, depending on whether the origin in magnetic
field space (B= 0) is enclosed. Of course, enclosure of nulls
of opposite polarity will have a topological degree of zero,
so the topological degree measures the number of enclosed
isolated nulls. The magnetic field measurements on the trian-
gular surface of the Cluster tetrahedron provide solid angles
in magnetic field space. One projects these onto the unit
sphere in magnetic field space to evaluate the topological
degree. Several researchers have previously applied this
method to detect the entrainment of magnetic nulls by the
Cluster spacecraft [Deng et al., 2009; He et al., 2008; Xiao
et al., 2006] in the magnetotail.
[12] After applying the bisection method to the time inter-

val of the turbulent magnetosheath, we find an abundance of
entrapped magnetic nulls, as evidenced by the Poincaré
index in Figure 2b. There may be many more nulls than
are actually caught within the spacecraft tetrahedron. As
we shall show, many of these nulls are associated with
strong currents. Furthermore, many appear to be paired.
As proposed by Albright [1999] and observed by Parnell
et al. [2007, 2008] and others in solar data, many seem to
cluster. Since Cluster has only four facets, the method as
implemented is not as robust as envisioned by Greene, who
uses a dodecahedron to evaluate D. However, the regularity
and small size of the tetrahedron during this interval reduces
the likelihood the field varies nonlinearly over the volume.
As demonstrated by Retinò et al. [2007], the spacecraft sepa-
ration is on the order of the local ion inertial scale (~100 km).
As further demonstrated by Sundkvist et al. [2007], the
turbulent intermittency scales with the ion inertial length,
indicating that magnetic nonlinearities associated with the
turbulence should dissipate into the particles on these length
scales. Furthermore, as discussed below, the deviation of
r�B from zero provides a measure of the local nonlinearity
in the gradients of the field obtained from the curlometer
method, which intrinsically assumes a linear field. Though
the deviation of the Poincaré index from integer values is
10�15, on the level of the numerical round off, it is still pos-
sible for the bisection method to produce false positives and
false negatives [Haynes and Parnell, 2007]. Therefore, we
apply our analysis to magnetic null points observed for
several consecutive snapshots to strengthen the case that
the observed null points are real. Moreover, none of the
indices exceeds unity, which reduces the likelihood that the
linear interpolation over one of the tetrahedron surfaces
is invalid [Greene, 1992].
[13] The results of this paper come from a detailed analy-

sis of a pair of nulls captured between about 9:48:01 and
9:48:02 UT. We derive their topological characteristics from
the matrix of magnetic spatial gradients derived from the
tetrahedron geometric factors [Chanteur, 1998; Dunlop
et al., 2002]. Figure 3a displays the Poincaré index of the
pair of entrapped nulls that are close to one another and have
opposite polarity. Each null is observed for seven consecu-
tive time steps. The vertical dashed lines locate the peak cur-
rents at each null. Figures 3b–3d show several other of their
topological quantities: the determinant of rB, whose sign
corresponds to the polarity of the nulls and whose magnitude
indicates the size of local currents (Figure 3b); what we call
the null-type index, which is zero for complex eigenvalues,
and nonzero for real eigenvalues, where it takes on the value
of det(rB)—thus revealing whether the null is radial or

spiral (Figure 3c); and a quality index, r�B/|r�B|, which
estimates the quality of both the magnetic gradients and
the current at a given location (Figure 3d). The pair of nulls,
since they are adjacent and have opposite sign, may be
magnetically linked. The Cluster tetrahedron resolves each
null for several consecutive time steps, increasing confi-
dence that the detections are robust. This fact also decreases
the likelihood that the detection involves a null that is very
close to one edge of the tetrahedron. A null that lies very
close to an edge can increase the chance of error arising from
linear interpolation along one side [Greene, 1992]. The
determinant ofrB is consistent with the sign of the Poincaré
index and shows that the first null encountered is a negative
(type A or As) null, and the second a positive (type B or Bs)
null. The null-type index reveals that the first null is a spiral
As null. The index is somewhat more ambiguous for the
second null, since a few time steps have real eigenvalues,
while most of the time steps have complex eigenvalues
during the enclosure of the null. The second null is therefore
most likely a type Bs null, though the changing eigenvalues
may imply that the null characteristics vary over the
observing period.
[14] The quality factor at the leading and trailing edges of

the null entrainment in Figure 3d ranges between about 10
and 20% but, in the center of the interval, is generally less
than 10% and becomes very small, passing through zero at
the peak gradients. The spatial gradients are determined
from a least squares minimization function that exploits the

Figure 3. (a) Poincaré index, revealing a pair of oppositely
polarized nulls that are the subject of this paper. (b) Determinant
of rB, whose sign indicates the orientation of the magnetic
field, and whose magnitude reveals the strength of the discon-
tinuity. Large values indicate strong currents. The vertical
dashed lines denote the location of the peak currents. (c) The
null-type index is defined to be zero when the eigenvalues
are complex and the product of the eigenvalues when the
eigenvalues are real. Since the index is zero throughout most
of the interval, both nulls are probably of the spiral type.
(d) The quality index r�B/|r�B| indicates the accuracy of
the magnetic spatial gradients. In the interval surrounding
the nulls, it is less than 12%.
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multipoint positions and magnetic field measurements (and
is sometimes referred to as the curlometer method when
applied to find the current) [Harvey, 1998]. Because the
methodology used to derive the gradients of B assumes a
linear field over the span of the tetrahedron, the deviation of
r�B from zero arises primarily from truncation errors due to
the presence of nonlinearities in the field over the volume. A
crude estimate of the resulting error in @Bi/@xj is ~1/3|r�B|,
which for null As is about 0.005 nT/km at the peak
current, and for null Bs is about 0.01 nT/km at the peak current
(see Table A2). The resulting truncation error relative to the
dominant gradients in B is about 4.5% for null As and 2%
for null Bs. Further from the null, the quality factor exceeds
50%, which probably reflects the fact that r�B becomes
small, but also may indicate where the field surrounding the
null point becomes nonlinear.
[15] Initially, we follow the path observers typically

pursue when they encounter discontinuities in the magnetic
field in space and neglect field variations in a third dimen-
sion. We will demonstrate the risk inherent in doing so:
ignoring the field variation along the direction of the current
yields an apparent Hall field structure consistent with 2-D
reconnection, although the field in fact contains a 3-D null
point and is highly complex. First, we perform a minimum
variance analysis to find the LMN boundary normal coordi-
nate system for the currents [Sonnerup and Scheible, 1998].
The currents at both nulls share a common orientation and
therefore a single rotation suffices for both. The eigenvectors
for this rotation are [0.4979, 0.4767, 0.7244; 0.1972, 0.7512,
�0.6299; 0.8445, �0.4565, �0.2800]. Figure 4 shows the
rotated magnetic field components and the magnetic field
magnitude for all four spacecraft. The two nulls are located
between the sets of dashed lines. (As we will show, though
the nulls are separated by roughly the spacecraft spacing,
their motion is such that they are not captured at the same
time. However, it is possible that they are both entrapped

during the brief 0.09 s interval between the null entrapments
during which the Poincaré index vanishes.) First observed
by Cluster 4, and then finally by Cluster 1, the maximum
variance magnetic field along x in the new coordinate system
changes sign, accompanied by a modest normal magnetic
field of about 2 nT in the new z direction, and an intermedi-
ate variance (rotated y component) that also changes sign on
most of the spacecraft. Based on this information alone, the
interval bears the earmarks of a 2-D Hall current sheet: the
magnitude of the magnetic field is depressed to about
5 nT, while, except for the By component on Cluster 2, all
three field components reverse. (The three components do
not necessarily reverse at the same time, but a synchronous
reversal only occurs if the spacecraft crosses the center of
the reconnecting structure.) However, as we already know,
the complete analysis shows that the fields and currents are
not 2-D. Figure 5 shows that the curlometer current compo-
nents at the centroid in the LMN system lie predominantly
along the –y direction of the rotated system. (For a regular
tetrahedron, the relative error in the current is about 10%
[Robert et al., 1998].) In the absence of a topological analysis,
one fails to realize that the roughly 1-D current layer corre-
sponds to a 3-D magnetic structure.
[16] To capture the instantaneous 3-D structure of the

nulls in a turbulent medium, it is necessary to remove the
motion of the nulls and find the positions of the spacecraft
in the null rest frame. One way to achieve this is to take
advantage of the proximity to the null and use a linear
expansion of the fields around the null. By placing the null
at the center of this coordinate system at each point in time,
we produce a superposed epoch snapshot of the magnetic
field structure around the null, in same the manner Wendel
and Reiff [2009] derive a snapshot of a 2-D x-type structure
around a current sheet in the magnetopause. We will show
that not only does this method provide the instantaneous
position of the null in absolute space but, therefore, also
the velocity of the null. From the positions r of the spacecraft,

Figure 4. From top to bottom: x, y, and z components and
magnitude of the magnetic field from all four spacecrafts in
the LMN coordinate system.

Figure 5. The x, y, and z components of the curlometer
current in the LMN coordinate system surrounding the pair
of nulls. The current is predominantly along y, in the same
direction at both nulls, and a somewhat more modest compo-
nent along x changes sign at each null.
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the magnetic field measurements B, and the gradients of the
field, we derive the null position r0, at each point in time
the tetrahedron is near the null, through inversion of the
linear expansion

B ¼ rB r0 � r� r0ð Þ:j (1)

[17] In practice, we could solve for r0 from using the
magnetic field measurements and positions of whichever
spacecraft is closest to the null (based on the magnitude of
the magnetic field.) However, there is a problem in using
the magnitude of the field, since the spacecraft are simulta-
neously very close to two nulls, and the field is more
depressed at one null than at the other. Moreover, since there
is a degree of error involved in the linear approximation, the
error changes when the spacecraft used for the calculation
changes. This can produce a small but artificial jump in r0
and hence in the null velocity v0 when the spacecraft that
is closest changes. For these reasons, and since the gradients
correspond to the centroid, we use the centroid position and
magnetic field for the entire time interval. This approach is
also advantageous in that we do not rely on the magnitude
of the field to find the point of closest approach, but rather
the magnitude of the curlometer current, which is most valid
at the location of the centroid. In equation (1), the spatial
gradients are evaluated at the time tp of peak current near
each null crossing to invert for the null position. Using those
spatial gradients, we perform the inversion for a brief time
interval (roughly corresponding to the interval between
dashed lines in Figure 4) around each null to derive the
instantaneous magnetic structure around each null, and
the position and velocity of each null. The values for rB in
the LMN coordinate system at nulls As and Bs are, respectively,

rBAs ¼
�0:0380 �0:0464 �0:2532
�0:0659 0:0076 0:0227
0:0222 0:0128 �0:0131

0
@

1
AnT=km

rBBs ¼
0:0587 �0:0089 �0:2225
�0:0085 0:0647 0:0730
0:0087 0:0030 �0:0368

0
@

1
AnT=km:

[18] Once we know r0 at a given time, we also know the
position of each spacecraft relative to the null at r0. Prior
to inverting, to aid in accurately capturing the null point,
we filter the magnetic field data with a zero-phase forward
and reverse digital IIR Butterworth band-pass filter between
about 1.5 and 8Hz. This type of filter results in zero-phase
distortion and minimizes endpoint transients. The 1.5 to
8Hz band contains wave power that might affect the
position estimates but is not related to the underlying
current/magnetic structure we are seeking. We retain
frequencies below 1.5Hz because this range corresponds to
the timing of the underlying magnetic structure as it passes
by the spacecraft (~0.7 s). Figure 6 maps the measured value
of Bx in the LMN coordinate system as a function of the
LMN vertical distance z of each spacecraft (color coded)
from null As (top panel) and null Bs (bottom panel). In the
absence of further topological information, the data look like
a 2-D current sheet crossing. As we shall show, the “current
sheet” depicted in Figure 6 is in fact a current along the spine

of each null. The random errors in r0 (on the order of about
2–13 km) come from random errors in the components Bi

and in @Bi/@xj (all summarized in Table A1), which are,
respectively, 0.1 nT and 0.0014 nT/km for both null As

and null Bs. The systematic errors in r0 range from a few
to about 20 km for most of the interval (see Figure 17).
The systematic errors owe primarily to truncation from the
linear approximation for @Bi/@xj, which we estimate to about
0.005 nT/km for null As and 0.01 nT/km for null Bs, for the
values used in the inversion (summarized in Table A2). We
describe the estimation of errors in detail in Appendix A.
There is another source of error in assuming we are close
enough to the null that the linear relation in (1) holds. While
we do not attempt to quantify this error here, in section 3.1,
we demonstrate that the linear approximation is reasonable
over the analysis interval.
[19] From the eigenvectors and eigenvalues of rB, we

derive the direction of the spine and the major fan axis in
the LMN coordinate system. Following Parnell et al.
[1996], we rotate the data into a coordinate system such that
the new z0 direction lies parallel to the spine and the new x0
direction lies along the current perpendicular to the spine.
A 2-D superposed epoch portrait of the magnetic field struc-
ture around the nulls in this new coordinate system, with the
field data color coded according to spacecraft, shows the
rotational fields in the fan planes, oriented at an angle to
the spines (Figures 7 and 8). In Figures 7 and 8, the colored
arrows represent the magnetic field vectors at each space-
craft position around the null, which is placed at the center
of the coordinate system. The black vectors represent the
current. The top panel provides a view along the normal to
the plane defined by the spine and the perpendicular current
(x0 and z0), and the bottom panel shows a view along the
spine of the plane perpendicular to the spine. The spiral

Figure 6. The superposed epoch Bx profiles as a function
of distance Z across the current layer in the LMN coordinate
system for null As, above, and null Bs, below. Data are accu-
mulated from each spacecraft during the ~0.3 s interval
crossing of each null, including averaged values calculated
at the centroid. The centroid is used to identify the instanta-
neous position of the null.
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nature of null As is clearly evident in the bottom panel of
Figure 7. While the Bs field lines in Figure 8 are also consis-
tent with a spiral, they appear to have a larger radius of
curvature than those of As. Also apparent are the outward
orientation of the spine of As and the inward orientation of
the spine of Bs. To clarify the orientation of the spines and
the fans, Figure 9 is a view along the normal to the x0–z0
plane of the eigenvectors of the spine (blue arrows)
and one of the major fan axes (red arrows) at each location
of the centroid as it passes near the null. In the case of
complex fan eigenvectors eΣ, the fan plane is defined by
Real(eΣ)� Im(eΣ). The minimum angle between the spine
and the fan is about 23� for null As and about 45� for null
Bs, as determined by the angle between the spine and the
normal to the fan plane. However, the angle between the
spine and the particular fan vector depicted in Figure 9 is
about 45� for null As and 77� for null Bs.
[20] The current at a null point determines its structure. A

current J|| along the spine produces skewed field lines in the
fan plane, and a current J⊥ perpendicular to the spine serves
to tilt the spine toward the fan. A threshold current Jthr based
on the magnetic spatial gradients, or, equivalently, on the
eigenvalues of rB, primarily determines whether the fan
eigenvectors are real or complex, and hence whether fan field
lines are radial or spiral [Parnell et al., 1996]. In terms of the
eigenvalues, the threshold current may be expressed as

Jthr ¼ 1

m0
2 l2Σ1 þ l2Σ2

� �
� l2g þ m0Jjj

� �2h i1=2
; (2)

where lΣ refers to the fan eigenvalues and lg refers to the
spine eigenvalue. The current observed at both nulls is
largest along the spine, though there is a perpendicular
component in both cases. The current along the fan planes
is similar to the current along the spine, though somewhat
smaller in the case of null Bs. The field rotations are in the
same sense above and below the fan plane, consistent with
the fact that the orientation of the spine-aligned current is
the same above and below the fan plane. The perpendicular
component gets stronger at null As farther away from
the null to the point that the current is primarily along
the fan. (There are not enough data at null Bs to determine
if this happens there as well.) For null As, the current
components are J|| = 0.186 mA m�2, J⊥ = 0.112 mA m�2,
and Jthr = 0.163 mA m�2, and for null Bs they are J|| =
0.185 mAm�2, J⊥=0.058 mAm�2, and Jthr = 0.174 mAm�2.
Thus, J|| exceeds Jthr at both nulls, consistent with spirals.
Because of the values for the current components and Jthr,
these nulls correspond to the case VC2 in Parnell et al.
[1996]. The current JΣ within the fan plane of null As is about
the same as that of J||, which means that the net current is
oriented halfway between the spine and the fan. J⊥ is larger
at null As than at null Bs, in accordance with a more highly
tilted fan plane. A current along the spine is generically consis-
tent with torsional spine reconnection, while the current within

Figure 7. Two views of a superposed epoch of the magnetic
field vectors from all four spacecraft and the centroid
surrounding null As in the spine-aligned coordinate system.
The black arrows in the top view represent the current at the
location of the centroid. The top view is along the normal to
the plane defined by the spine (along z0) and the perpendicular
current (along x0). The bottom panel is a view along the spine
of the plane perpendicular to the spine, which reveals the spiral
nature of the field lines around the spine. The current is mostly
spine aligned but has a component perpendicular to the spine
as well.

Figure 8. As in Figure 7, two views of the magnetic vector
fields and the current surrounding null Bs. The fields appear
to be also rotating around null Bs, though they are not as
tightly wound as those around null As. The orientation of
the spine into the null from above and below is consistent
with the field lines in the top panel. Again, the current is
primarily along the spine, in the same sense as null As, but
also has a component perpendicular to the spine, in the
opposite sense to null As.
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the fan is consistent with torsional fan reconnection. Table 1
summarizes the null characteristics discussed so far (as well
as some we shall discuss in the following sections). Some
quantities are presented in both the spine-aligned and the
LMN coordinate system, as noted. Like the magnetic gradi-
ents chosen for the derivation of r0, the stated eigenvalues
and eigenvectors are evaluated at the time of peak current.

3. Velocities

3.1. Null Velocities

[21] Reconstruction of the relative positions of nulls As

and Bs and transformation of drift flows (derived from the
fields) into the null rest frame both require the null point
velocity v0, which we obtain directly from the derivative
of r0(t). This method for determining v0 assumes stationary
fields in that rB is held at a fixed value for all time steps
because of the linear Taylor expansion about a fixed point
(the null point). Because all four spacecraft observe very
similar magnetic fields during the interval surrounding the
nulls, we assume that the interval is reasonably stationary.
However, the inversion of equation (1) also assumes a linear
field. Therefore, it is useful to compare this method of
finding v0 to an existing method that, although likewise
assuming linear gradients and quasi-stationarity, does not
assume a linear expansion of the field about a fixed point.
Therefore, we also derive v0 by the method of Shi et al.
[2006]. This method relies on the assumption that the struc-
ture is quasi-stationary so that the relation

dB

dt
þ v0�rB ¼ 0 (3)

is satisfied. Other caveats apply to spatial and temporal
scales, owing primarily to the truncation errors in the linear
approximation for rB. The spatial constraints are that the
size of the overall structure should exceed the spacecraft
spacing and that the gradient in Bi in any given direction
should exceed the ratio of the uncertainty in Bi to the space-
craft spacing along that direction. The time over which the
structure moves across the spacecraft spacing should exceed
the time step used in the calculation. At the same time, the
time step used in the calculation should exceed the ratio of
the uncertainty in Bi to the rate of change of Bi. The data
during this interval satisfies the above criteria. If we assume
r is approximately constant in equation (1), the derivative of
equation (1) is almost equivalent to equation (3), except that
equation (3) does not assume an expansion about a point.
Therefore, in equation (3), rB is evaluated at each point
in time. By dint of this difference in deriving v0 from the
derivative of equation (1) and from equation (3), results from
the two methods provide a way of gauging the validity of the
linear expansion in equation (1).
[22] From Figure 10, which shows the velocities in the

LMN coordinate system derived using both the superposed
epoch and the Shi et al. [2006] methods at null Bs, we see
that the methods agree very well. The superposed epoch
method, based on the gradient at the time of peak current,
gives a v0 that agrees very closely with that from the magnetic
time derivative. The good comparison provides an estimate of
the validity of the fixed-gradient Taylor expansion about the
null point in the analysis interval. We find from the mean
values of the components over the interval that, in the LMN
system, <v0>= [�106, �300, �28] km/s for null As,
and <v0> = [�150, �52, �117] km/s for null Bs. (Note that
we shall refer to the null position and velocity in the spine-
aligned coordinate system as r00 and v00, respectively.) The
errors in v0 are dominated by the systematic truncation errors
in the estimation of r0 and are summarized in Table A2. They
represent a potential systematic bias dv0 so that the true velocity
may lie anywhere from the stated value to the stated value plus
dv0. In LMN coordinates, they are dv0 = [90, �158, 20] km/s
for null As and dv0 = [56, �33, 14] for null Bs. Though these
values may at first seem significant, we shall see in the follow-
ing section that they do not affect the final results for the
plasma flow around the null in any qualitative way. The
random error bars dv0,rms, summarized in Table A1, come
from statistical uncertainties in Bi and @Bi/@xj in the calcula-
tion of r0 and from statistical uncertainty in the time step dt.
For null As, dv0,rms =�[12.95, 77.02, 11.08] km/s, and for null
Bs, dv0,rms =�[9.26, 5.78, 8.67]. We discuss the derivation of
these and all other sources of error in detail in Appendix A.
[23] From the positions r0 and velocities v0 for each null

as it overtakes the spacecraft, it is possible to make a rough
portrait of the relative positions of the nulls and their relation
to the spacecraft position. At tp, the time of maximum
current in the interval where the null is captured, the position
of null As is [�2.9955, 0.5600, 9.2042]� 104 km (in LMN),
and the corresponding position of null Bs when it is captured
is [�3.0015, 0.5646, 9.2015]� 104. Given the velocity of
null As, this means that, at the time Bs is captured, As has
moved approximately dr = [�23.85, �67.5, �6.3] km, and

Figure 9. A superposed epoch of the spine (blue arrows)
and fan (red arrows) eigenvectors at the position of the cen-
troid around null As (above) and null Bs (below). The view
is along the normal to the spine (along z0) and the perpendic-
ular current (along x0).
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therefore, at this time, the distance between As and Bs is
approximately r0,As – r0,Bs = [41.5, �113.5, 20.7] km. Since
the spacecraft is initially in the �y direction of both nulls,
and null As is moving faster along the �y direction than null
Bs, the spacecraft observes null As first. The spacecraft
velocities are negligible compared to the null velocities.
Figure 11 provides two views in the spine-aligned coordi-
nate system of the superposed epoch of both nulls simulta-
neously, as they would be located at the time that null Bs

(placed at the origin) is captured. Once again, the arrows
are the fields measured by each spacecraft, where dark blue
arrows are associated with spacecraft positions derived
around null As, and red arrows are associated with spacecraft
positions derived around null Bs. The top panel provides a
view along the normal to the x0–z0 plane, and the bottom
panel provides a view along the spine of the plane perpen-
dicular to the spine. It is possible that the fan field lines
emanating away from null Bs wind into null As. To get
a better grasp of the possible connectivity between the nulls,
we evaluate the angles between the fans of each null, the
spines of each null, and the spine and fan of both nulls
(summarized in Table 2). The classic picture of topologically
connected nulls depicts the spine of one null lying in the fan
plane of the other null, and their fan planes then intersecting

along a separator. In our case, the spines of each null are
almost parallel (lying only 6� apart), but the fans are tilted
at different angles from the spines so that the angle between
the fans is 25�. It should be noted that the null As field lines,
currents, and positions appear slightly modified from how
they appear in Figure 7, because in Figure 11, we have used
the null Bs spine-aligned coordinate system for both nulls.
[24] The topological relationship between the null points is

relevant to the question of topological stability and current
closure. Figure 12 is a schematic field line tracing representing
the orientations, positions, and topological features of the two
nulls simultaneously, again captured at their relative positions
at the instant null Bs is isolated. We trace the field lines from
the expression

x tð Þ ¼ C exp �2gtð Þe0 1 þ exp gtð ÞR cos Yt þ ntð Þe0 2
� exp gtð ÞR sin Yt þ ntð Þe0 3

(4)

[Haynes and Parnell, 2007]: where, g and n are the real and
imaginary parts, respectively, of the complex eigenvalues
g� in, the spine eigenvalue is�2g, and e02 and e03 are the real
and imaginary parts of the complex eigenvectors e2 and
e3 = e02� ie03. While the null eigenvalues, eigenvectors, and
positions are determined from the data, the field line tracings

Table 1. Magnetic Null Characteristics

Characteristic As Null Bs Null Units

Time interval of capture 9:45:03.509–9:45:03.732 9:45:03.822–9:45:03.985 h:min:s
Poincaré index 1 �1
Null type 3-D nonpotential negative

spiral, J||> Jthr
3-D nonpotential

positive spiral, J||> Jthr
r�B at tp �0.014 0.031 nT
r�B/|r�B| at tp �0.05 0.12

Eigenvalues 0.0506 �0.0662 nT/km
�0.0253 + 0.0597i 0.0331+ 0.0388i
�0.0253 � 0.0597i 0.0331 � 0.0388i

Eigenvectors (LMN)

ey ¼
�0:477
0:879
�0:019

0
@

1
A;

eΣ1 ¼
0:687

0:301þ 0:598i
�0:063þ 0:275i

0
@

1
A;

eΣ2 ¼
0:687

0:301� 0:598i
�0:063þ 0:275i

0
@

1
A

ey ¼
0:016
0:999
�0:031

0
@

1
A;

eΣ1 ¼
0:969

�0:057þ 0:143i
0:055� 0:186i

0
@

1
A;

eΣ2 ¼
0:687

�0:057þ 0:143i
0:055þ 0:186i

0
@

1
A

Eigenvectors (spine aligned)

ey ¼
0:000
0:038
�0:999

0
@

1
A;

eΣ1 ¼
0:800

0:160þ 0:244i
0:125� 0:509i

0
@

1
A;

eΣ2 ¼
0:800

0:160� 0:244i
0:125þ 0:509i

0
@

1
A

ey ¼
0:000
�0:091
�0:996

0
@

1
A;

eΣ1 ¼
�0:966

�0:085þ 0:181i
0:086� 0:141i

0
@

1
A

eΣ2 ¼
�0:966

�0:085� 0:181i
0:086þ 0:141i

0
@

1
A

Jthr 0.163 0.174 mA/m2

|J||| 0.186 0.185 mA/m2

|J⊥| 0.112 0.058 mA/m2

<v0> during capture (LMN) [�106, �300, �28] [�150, �52, �117] km/s
r0 at tp during capture (LMN) [�2.9955, 0.5600, 9.2042]� 104 [�3.0015, 0.5646, 9.2015]� 104 km
∠ spine and fan 23 45 �
Flow type Spiral ⊥ spine; || spine, toward fan Possible spiral ⊥ spine; || spine, toward fan
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provide a theoretical extrapolation over a larger region than
the spacecraft can directly measure. In expression (4), x(t)
represents the field line, t is the position along the field line,
and C, R, and Y are constants that correspond to and define
each field line. The figure shows the field lines traced for Y
equal to 0 and p radians, for fixed values of R and C. The
depth of color signifies the value of Y. The field line corre-
sponding to Y= p twines the null more loosely and appears
as a distinctive dark blue or yellow line at each null. Inset
(a) shows the pair of nulls from an alternate vantage point
that reveals that the nulls are displaced and are not connected
along their spines, which would be topologically unstable to
small perturbations, while inset (b) depicts a hypothetical
conception of how the nulls might connect through a com-
mon fan line (or lines).
[25] Because the fans are not perpendicular and the spines

are nearly parallel, the fan field lines must undergo a
nonlinear deformation at a certain distance from the null in
order for the fans to intersect along a common field line.
Figure 12b shows a side view of a pair of opposite polarity
nulls where the spines are almost parallel and the fan
surfaces curve further away from the null points. The
diamonds denote sinks and the crosses denote sources, the
nulls (circles) thus produced by a pair of bipolar sources.
Figure 12b depicts a way that the fans of a null As and null
Bs pair with parallel spines could intersect along a separator.
This type of domed fan structure is known to exist between
pairs of prone nulls on the solar photosphere and even at the
Earth’s northern and southern cusps, produced, for example,
by fields from a pair of bipolar sources (see, for example,
Beveridge et al. [2002]). If, as depicted in Figure 12b, a pair
of opposite polarity nulls results from a pair of bipolar

sources where fan field lines at each null connect to different
sources (or sinks), then the domed fan surfaces intersect
along a separator. (By contrast, if all the fan field lines of a
given null connect to a single source (or sink), then the fans
do not intersect along a separator [Beveridge et al., 2002].)
The separator is shown as a purple curve in Figure 12b.
The blue lines are fan field lines that connect null Bs to
two different sinks, and the red lines depict fan field lines
that connect null As to two different sources. Therefore,
though the spines of the pair of nulls of this study point only
6� apart, conceivably they can connect along a separator,
given an appropriate configuration of sources.
[26] A related question is whether the additional component

of current perpendicular to the spine (and hence along the fan
plane) closes the current of the null points. In a low-b or low-
pressure gradient plasma, such as the solar corona, force
balance constrains the current to lie parallel to the field lines
[Cowley et al., 1997; Lau and Finn, 1990]. However, the
magnetosheath plasma during the interval of this study has a
moderate to high b of the order of unity or greater. Therefore,
current closure is not constrained to lie along field lines
connecting the nulls. (Indeed, therefore, the plasma b is
consistent with the fact that a perpendicular current exists at
the null. Because the tilt produced by J⊥ does not necessarily

Figure 11. Two views (as in Figures 7 and 8) of the super-
posed epoch of the pair of nulls (depicted as blue circles) at
their relative positions at the time null Bs is captured. The field
lines corresponding to null As are shown in dark blue, and
those belonging to null Bs in red. The coordinate system in this
case is the spine-aligned system of null Bs. The field lines
suggest that it is possible that the nulls are topologically
connected. The green arrows signify the curlometer current
at the position of the centroid. The reader should note that
the As current, field line structure, and positions may appear
somewhat shifted from those in Figure 7, because in this figure
they are portrayed in the spine-aligned coordinate system of
null Bs as opposed to that of null As.

Figure 10. Null velocity profile for null Bs as determined
by two methods: from the derivative of the superposed
epoch position and from the method of Shi et al. [2006], based
on the time derivative of stationary magnetic structures. The
results of the two methods agree very well. The difference
between the two results gives an estimate of the degree of
nonlinearity of the field around the null.
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tilt the fan about the direction of J⊥, J⊥ does not necessarily
lie within the fan [Parnell et al., 1996].) Though it is not clear
how the current observed in Figure 11 closes, the current
direction is not inconsistent with a current connecting the
two null points, possibly along one of the loops portrayed in
Figure 12b joining the nulls and the sources. Another possible
scenario is that the null points are embedded in a larger current
sheet, directed along the spines, while the current along a
separator joins the two nulls.

3.2. Plasma Flows

[27] Transforming the electric field data from the Electric
Fields and Waves (EFW) instrument to the rest frame of
the nulls yields the drift velocities in the vicinity of the nulls.
During this interval, EFW samples at 2.2ms. We then

downsample and interpolate the EFW data onto the common
time tags at the FGM cadence so as to calculate the drift
speeds v = (E+Ep)�B/|B|2, where E is the field measured
in the spacecraft frame and Ep = v0�B/|B|2 is the transfor-
mation to the null rest frame (the effect of the spacecraft
velocities is negligible in comparison). The EFW instrument
consists of two pairs of probes in the spin plane from which
the field in the third perpendicular direction along the spin axis
is found from assuming E�B= 0. Though the latter assumption
is clearly invalid in a diffusion region, the flows we observe do
not lie within the diffusion region. As we shall discuss, it is
sufficient that the flows we observe lie on field lines that thread
the diffusion region closer to the spine.
[28] Because the error in the spin axis component of the

field becomes prohibitively large when the angle between
the spin axis and B/|B| is less than 15� or |B|< 2 nT [the
user’s guide to EFW data, Cluster Active Archive], data at
these times are given a fill value. Unfortunately, for this
reason, many data gaps exist during the time interval of
our study, though not usually at all spacecraft simulta-
neously. During the interval the first null (As) is captured,
only the Cluster 1 electric field data exist. Unfortunately,
in 2001, the second probe pair on Cluster 1 failed, leaving
only spin-resolution DC electric field data from Cluster 1,

Table 2. Angles Defining Null Orientations

Angle (�)

Spine As and fan Bs 40
Spine Bs and fan As 29
Fan As and fan Bs 25
Spine As and spine Bs 6

Figure 12. The fields surrounding both nulls at their relative positions at the time null Bs is captured, as
traced from equation (4), based on the eigenvectors and eigenvalues of each null. Null As field lines are
traced in blue, while null Bs field lines are traced in red. Two field lines are traced at each null, correspond-
ing toY equals 0 and p/2 radians, for given values of R and C. The depth of color signifies the value ofY.
The field line corresponding toY =p/2 twines the null more loosely and appears as a distinctive dark blue
or yellow line at each null. Inset (a) shows the pair of nulls from a different vantage point, while inset
(b) depicts a hypothetical conception of how the nulls might be connected by a common fan line (or lines).
In inset (b), the nulls are shown from a side view, with the spines along the vertical axis. The nulls are
produced by a pair of bipoles whose sources are denoted by crosses and whose sinks are depicted by
diamonds. Each null has domed fan lines that connect to different sources (shown in blue and red) and that
intersect along a common separator (shown in purple).

WENDEL AND ADRIAN: NONIDEAL MAGNETOSHEATH MAGNETIC NULLS

1581



and clearly, spin-resolution data are inadequate to resolve
the sub-second-duration current structures under consider-
ation. However, twice per spin, the pair of probes lines up
with the DC electric field in the spin plane, thus at those
times accurately measuring the field. Fortunately, the inter-
val during which Cluster captures null As coincides with
one of those times, as we demonstrate in Figure 13. The
way we establish an alignment is by looking for an agree-
ment between the magnitude of the electric field measured
by Cluster 1 and the other spacecraft approximately every
2 s (1/2 spin). For clarity, in Figure 13, we include only the
Cluster 2 magnetic field magnitude, since its timing most
closely matches that of Cluster 1. The gray-shaded regions
highlight time intervals where the magnitudes appear to
approximately agree, and these intervals occur with a peri-
odicity of 2 s. We therefore conclude that at these times,
the Cluster 1 probes are approximately aligned with the
DC electric field in the spin plane and therefore accurately
measure the field there. The second gray-shaded region
corresponds to the interval where the tetrahedron captures
null As. (Below, we discuss the way we estimated errors
from the slight misalignment between the probe and the
actual field over the 0.24 s interval.) For the interval of null
Bs, as can be seen from Figure 13, Cluster 2 provides a
limited set of high-quality electric field data, while none of
the other spacecraft provides data during this time.
[29] Figures 14 and 15 show the resulting perpendicular

flows around nulls As and Bs. The top two panels show
two different views of a superposed epoch around the null,
and the bottom panel shows the components as a function
of time. The uppermost panel is a view along a normal to
the plane defined by the spine and the perpendicular current,
and the middle panel is a view along the spine. As detected
by Cluster 1, the bottom panel shows that the flow around

null As exhibits a distinct rotational pattern around the spine
in the plane perpendicular to the spine. The view from the
top panel suggests that the flow is actually rotating in the
fan plane. The spacecraft is, at a y0 distance of ~50 km, suffi-
ciently distant from the null as to lie outside the diffusion
region and, thus, in a location where the assumption E�B = 0
is valid. While the magnetic field is also rotational in this
plane, the flow is still perpendicular to the field here. It is
interesting to note that v appears to become more rotational
as the spacecraft gets closer to the z0 = 0 plane and closer to
the spine. The flow pattern at null Bs is consistent with rota-
tion in the fan plane, but the data coverage is insufficient to
be conclusive. Finally, Table 1 summarizes all of the charac-
teristics of nulls As and Bs.
[30] Tables A1 and A2 summarize the random and system-

atic errors that enter into the calculation of v. The random
errors that propagate into errors in v include uncertainties in
v0, Bi, and Ei. We find two dominant random uncertainties in
Ei, i.e., the misalignment of the spin-plane probe with the
direction of the DC field in the spin plane, as discussed above,
and the error in the spin axis alignment (as discussed in the
user’s guide to the EFW data, the Cluster Active Archive).
In LMN, the latter is estimated to be�[0.36, �0.31, �0.14]
mV/m for null As and�[0.06, �0.05, �0.02] mV/m for null
Bs. In Appendix A, we discuss in detail the derivation of the
former and find that it comes to�[0.04, �0.03, 0.18] mV/m
for null As (this error comes from the estimate of the alignment

Figure 13. The magnitude of the electric field from Cluster
1 (blue) and Cluster 2 (red) over a longer interval surrounding
both magnetic nulls. Gaps arise from discarding data at times
where the error from the calculation ofE�B=0 is unacceptably
large. The gray-shaded regions denote time intervals where
the magnitudes of the fields from all spacecraft match, indicat-
ing alignment of the electric probe in the spin plane with the
electric field in the spin plane, which occurs every ½ spin. This
analysis is necessary to verify the validity of Cluster 1 electric
field data during the time interval where null As is analyzed,
since Cluster 1 is the only spacecraft that supplies EFW data
during this interval. Null As is captured in the time interval
of the second gray-shaded region. For legibility, we include
the field data from only Cluster 1 and Cluster 2, because
Cluster 2 is mostly closely synchronized with Cluster 1.

Figure 14. (a) View along the normal to the plane defined
by the spine and the perpendicular current of the drift flows
(black arrows) near null As in the null rest frame. The data
are from Cluster 1 and lie at the position of Cluster 1. The
blue and red arrows are the spine and fan plane, respectively.
The spine and fan directions are determined at the position
of the centroid at closest approach to the null but are here
placed at the null. The dashed gray line is an extrapolation
of the fan plane. (b) View of the same flows along the direc-
tion of the spine. The flows can be seen to rotate around the
spine. (c) Corresponding magnitude of the components of
the drift flows during the same time interval in the spine-
aligned coordinate system.
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of the Cluster 1 probe with the spin-plane field, and
therefore affects only the calculation at null As.) We find that
the net random error dvrms in the LMN coordinate system is
[14.2, 80.0, 28.0] km/s for null As and�[10.9, 34.3, 14.2] km/s
for null Bs, and in the spine-aligned coordinate system, it is
[33.0, 27.5, 74.0] km/s for null As and�[10.7, 13.4, 34.7] km/s
for null Bs. Since the spine lies along the z0 axis, we see that
the largest random error lies along the spine direction, which
does not impact the rotational flow perpendicular to the spine.
At either limit of v� dvrms, the qualitative nature of the flows
around the nulls remains unchanged. The major systematic
error once again arises from the contribution of the truncation
error to the calculation of v0. When we adjust v to account for
the extreme-most systematic error dv0, again the qualitative,
rotational pattern to the flow remains unchanged. Figure 17
shows the time series for the adjusted components of v and
the corresponding truncation errors in r0, and we can see that
the velocity components maintain a qualitatively similar
relationship to one another.
[31] Using kinematic models and simulations, several

authors [Pontin et al., 2004; Priest and Pontin, 2009; Wyper
and Jain, 2010] have explored torsional spine reconnection
for several initial conditions. Assuming a cylindrical diffu-
sion region centered about the spiral null, the solution for v
from the generalized Ohm’s law, i.e.,

v⊥ ¼ E� �Jð Þ � B

B2
(5)

produces a rotational flow about the spine [Pontin et al.,
2004]. In equation (5), J is the current, � is the localized
resistivity model, and E is a nonideal electric field. In the
static case, E can be expressed as E=�rΦ, with Φ a scalar

potential. The solution to equation (5) is local in the sense
that only the field lines that thread the diffusion region
(imagined as a cylindrical volume around the null point)
experience a change in potential Φ, while field lines that
do not pass through the region have constant Φ. Thus, on
field lines that have not passed through the diffusion region,
both E and v⊥ are zero (assuming there is no background
ideal flow). Because the diffusion region is localized about
the spine, there is also a potential drop in the radial direction
perpendicular to the spine. Figure 16 demonstrates the phys-
ical features of the model, where the null field lines (black
curves) pass through the diffusion region (shaded cylinder).
The component of the drop in potential, or electric field
(blue arrow), perpendicular to the null field lines as they exit
the diffusion region induces a flow (red arrows) perpendicu-
lar to it and to the magnetic field. Moreover, Pontin et al.
[2004] demonstrate that the perpendicular potential drop
and, hence, the velocity profile are independent of the model
for � within the diffusion region. This is because the poten-
tial drop results from the localization of the diffusion region
in conjunction with the hyperbolic shape of the field lines at
the null point. As Priest and Pontin [2009] and Pontin and
Galsgaard [2007] explain, the reconnection is a rotational
slippage—or rotational mismatching—of field lines that
spread from the spine current tube through, and outward
from, the diffusion region. The plasma elements above the
diffusion region that share a given field line at t0 with plasma

Figure 15. Drift flows for null Bs equivalent to Figure 14
for null As. The field data and positions correspond in this
case to Cluster 2. Although the flows are consistent with
rotation around the spine, the data coverage is insufficient
to unequivocally verify the true nature of the drift flows.

Figure 16. Field lines (black curves) that pass through the
diffusion region D (shaded cylinder) encounter a nonideal
potential drop E=�rΦ (assuming a static field) that is a
function of nonideal terms, such as �J, in the generalized
Ohm’s law. The figure shows the perpendicular component
of E that contributes to a perpendicular velocity v in the
fan plane outside the diffusion region. For the field lines that
pass through D, the solution to the generalized Ohm’s law
rΦ+ v�B= �J yields a rotational perpendicular velocity
component as displayed in the figure (see equation and red
arrows). On field lines that do not pass through D, v
vanishes, since � is zero and Φ is constant. Initially, L1 and
L2 form segments of the same field line. Segment L1 lies
within a region of constant Φ and hence does not rotate.
Segment L2, however, as part of the outward flux bundle that
has passed through D, is rotating at the rate v. L1 and L2 there-
fore become disconnected. This figure is a modified version of
Figure 5 from Priest and Pontin [2009].
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elements that lie below the diffusion region will, at a later
time t1, no longer share the same field line with the plasma
elements below the diffusion region. Figure 16 depicts the
slippage of field lines. Initially, L1 and L2 form segments
of the same field line. But because of E|| and the field line
rotation, L1 and L2 become disconnected. The observational
implications are that the spacecraft need not lie in or pass
through the nonideal region to detect flows in the fan plane
that identify field lines that have engaged with the nonideal
region. In fact, field lines that have not done so should have
no rotational flow, i.e., v⊥ = 0. (An ideal contribution to v⊥
is possible but will not be rotationally symmetric.) More-
over, simulations have demonstrated the possibility of spiral
type flows about the spine. Wyper and Jain [2010] experi-
ment with different types of twist and different vertical
(along the spine) bounds on the twist. For same-direction
twist above and below the fan plane (consistent with the
currents we observe), they find a rotational flow perpendicular
to the spine as well as a flow along the spine—forming a
spiraling motion around the spine. This is similar to the
nonideal magnetohydrodynamic solution found by Titov and
Hornig [2000] that sustains the spiral null point.
[32] The theoretical prediction of rotational and spiral flow

closely resembles the data. The rotational velocity profile is
confined to smaller radial distances at larger z0. The radius of
rotational flows increases closer to the fan plane. Pontin
et al. [2004] note that, in the z0 = 0 (i.e., the fan) plane, both
the fan field lines and the plasma outside the diffusion region
“rotate like a solid body.” This is because the field lines lying
in the fan plane have all passed through the diffusion region.
The flow we observe, like the prediction, increases for smaller
z0 and smaller x0 and spirals about the spine. Here the observed
perpendicular plasma velocity and current structure are consis-
tent with evidence of the torsional spine reconnection
predicted by theory.While this type of flow is nonideal, it does
not transfer flux across topological boundaries.
[33] Since we have established a local nonideal electric

field and a fan current, the question arises as to whether
fan reconnection is simultaneously occurring. Since the fan
is tilted with respect to the spine, the direction of the fan
current along x0 is antisymmetric about the y0 axis (although
at each null point we only have current data on one side of
the y0 axis). This type of fan current can produce reconnection
which, unlike torsional spine reconnection or torsional fan
reconnection, transfers flux across the fan plane and thus
between topologically distinct regions [Priest and Pontin,
2009]. (Torsional fan reconnection is associated with a current
that is symmetric about y0 and does not tilt the fan. See, for
example, Wyper and Jain [2010].) While the data are insuffi-
cient to establish a stagnation point flow per se, Figure 14
suggests the flow crosses the direction of the fan at an angle.
Indeed, the angle between the flow and the fan plane starts at
about 20� at larger z0 and increases relatively monotonically
to about 38� as Cluster gets closer to the null point. However,
the fan direction is derived at the position of the centroid,
while the flows are derived at the position of Cluster 1, which
introduces some uncertainty into the relative local orientations
of the fan and the flow. Moreover, though there is a vertical
component to the flow and an apparent angle between the flow
and the fan plane, the nature of the flow is not quite consistent
with the hyperbolic stagnation type flow predicted by Pontin
et al. [2005a] for fan reconnection. We therefore argue that it

is inconclusive whether the nulls are also hosting fan plane
reconnection. But theoretical studies to date have examined
the effects of spine and fan currents separately and not
concurrently. The combination of the two currents might
impact the predictions.

4. Summary and Discussion

[34] In this paper, we find in situ evidence for a proposed
type of magnetic null point current structure and reconnection
that until now has been observed only in the laboratory
[Bogdanov et al., 1994; Lukin and Linton, 2011]. In a moder-
ate to high b region (b ≥ 1) of the magnetosheath, associated
by previous authors with filamentary currents, magnetic
reconnection, and turbulence [Retinò et al., 2007; Sundkvist
et al., 2007], we find numerous magnetic null points often
coupled with current filaments, and often paired or even clus-
tered. In the case of the null pair we consider in this paper, we
find oppositely polarized spiral nulls that carry a current and
that may be topologically linked. They bear a current along
the spine, and a lesser current perpendicular to the spine, and
are tilted with respect to their fans. Though the spines of each
null are almost parallel to one another, their fans are oriented
25� apart. A superposed epoch analysis based on the linear
gradients near the nulls creates a snapshot of each null, remov-
ing the motion of the null. The instantaneous field structure of
the nulls is consistent with flow of field lines from one null into
another. The inversion of the linear relation B=rB�r gives
the instantaneous position r0 of the null, and therefore the null
velocity v0. If the fan surfaces are domed and the fan field lines
of each null derive from separate sources, then the fans may
intersect along a separator connecting the nulls, even though
their spines are almost parallel. Currents may close along
looped field lines connecting the nulls. The dominant current
along the spine may be part of the current closure, or a larger
current sheet in which the nulls are embedded. From the null
velocities and a limited set of electric field data, we derive a
perpendicular plasma flow in the rest frame of the null that
lies outside the diffusion region (where E�B = 0 is valid).
The flows around null As are evidence for field lines that pass
through a diffusion region centered around the spine current
of the null. They spiral in a manner consistent with torsional
spine reconnection and may evolve across the fan plane
through a concurrent fan reconnection.
[35] These results impact multiple spacecraft analyses of

current and magnetic structures in geospace and provide in
situ evidence for null point reconnection regimes that are
important in the solar corona [Longcope et al., 2003; Parnell,
2007; Parnell et al., 2008; Parnell et al., 2010; Priest and
Forbes, 2000]. In observations, magnetic spatial variations
ought to be taken into account when possible. Certainly, the
entrainment of nulls indicates 3-D structure. But even in the
case of a current “sheet” in the absence of a null point,
neglecting a magnetic gradient analysis may obscure an
underlying 3-D structure. The 1-D current “sheet” of the spine
discovered here actually corresponds to a 3-D topological
structure. Furthermore, null point reconnection regimes are
important in the solar corona. Antiochos et al. [2002] argue,
for example, that photospheric line tying limits solar coronal
magnetic reconnection to existing null points.
[36] An abundance of magnetic null points observed in the

turbulence is significant in two ways. One is that reconnection
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may occur at them. But the more important implication is
that they represent a topological web of separators that might
be reconnecting. If reconnection is indeed occurring at mag-
netic null points in turbulent regions of the solar wind and
the magnetosphere (in particular, in the absence of a strong
guide field, such as at the subsolar point), then there may be
consequences not only to our interpretation of reconnection
in those regions but also to the means of turbulent dissipation.
But, more importantly, the presence of clusters of linked nulls,
or a web of nulls, is important even where the nulls themselves
are not hosting the reconnection. If, instead, most of the
reconnection is occurring along the network of separators
between the nulls, the network might have a measureable
impact on the net reconnection rate. In their study of an
MHDmodel of solar emerging flux, Parnell et al. [2010] find
that a large rate of flux transfer occurs over a mesh of separa-
tors connecting clusters of nulls. Albright [1999] relates the
density of nulls as a function of the dissipation and integral
length scales of a stochastic field and its spectral exponent,
and he associates webs of nulls and the null-null lines with
current sheet formation and heating. He finds that nulls tend
to cluster. The separator linkage between pairs of nulls can
also be significant. Parnell et al. [2008], for example, deter-
mine that reconnection can occur recursively on multiple sep-
arators connecting a single pair of nulls, effectively boosting
the reconnection rate. Since magnetic null points are observed
in the solar wind (in the absence of a guide field) [Burlaga,
1967], null point reconnection may be relevant to turbulent
dissipation in the solar wind. In their simulation of the 3-D
solar wind with the imposition of structures (e.g., flux ropes),
waves, and turbulence, Roberts et al. [2003] find the develop-
ment of closed field lines and spiral nulls. If 3-D topology
plays a role in increasing the net reconnection rate of the
system through many local reconnections, this also has
repercussions for reconnection rates as observed by MMS.
Dissipation at null point reconnection sites may represent
a special case of the more generic scenario of dissipation
at current sheets in the case of a guide field.

Appendix A

[37] In this section, we derive the random and systematic
errors associated with our analyses and their propagation.
First, we derive the sources and propagation of random errors
(Table A1). The primary source of random error in Bi is the
spin axis offset error, which is the order of tenths of a nT dur-
ing the dayside season where spacecraft intercalibration is per-
formed (Elizabeth Lucek, former FGM principal investigator
(PI), personal communication). Random errors in the magnetic
gradients arise from random uncertainties in Bi and the space-
craft positions rsc. We base an order of magnitude estimate
for the case of a regular tetrahedron from equation (A1) below,
following equation 14.34 derived by Chanteur [1998] with
i =m and j = n, which thus becomes

@Bi

@xj

� �2

¼ dBi

2a

� �2

þ drsc
2a

� �2 1

4a2
3

4
B2
1i þ B2

2i þ B2
3i þ B2

4i

� �� 	
(A1)

for each gradient component. Here a~50 km, ½ the spacecraft
separation, drsc is the uncertainty in spacecraft position, and

dBi is the random uncertainty in Bi (~0.1 nT). Customarily,
drsc/(2a) ~0.01 for Cluster [Chanteur, 1998]. Thus, as an
approximation to the rms uncertainty in the gradients, we
have

@Bi

@xj

� �2
* +1=2

ffi 0:01

50

� �2 3

4
B2
0i þ

0:1

100

� �2
" #1=2

¼ 0:0014 nT=km;

(A2)

where B0i is the average Bi over all four spacecraft and is
evaluated the point of peak current (denoted by tp in the
tables). The errors in the current Ji come from errors in the
field gradients, and a relative error of less than 10% is typical
for a regular tetrahedron [Robert et al, 1997], such as we
have in this case.
[38] The random uncertainty in the null position and

velocity propagates from the uncertainties in the gradients
and the magnetic fields. Since r � r0 =rB�1B, the error
propagates as

dr0ð Þ2
D E1=2

¼ d rB�1
� �

B
� �2 þ rB�1dB

� �2h i1=2
: (A3)

If we assume that the error is the same in each gradient term,
then d(rB�1)B=�d(rB)rB�2B=�d(rB) rB�1(r – r0).
Thus, for the values evaluated at peak current, d(rB)
0.0014 nT/km, and dBi = 0.1 nT, expression (A3) yields
the rms uncertainties for r0 listed in Table A1. The ensuing
rms uncertainties in the null velocity v0 scale as

dv0ð Þ2
D E1=2

¼ ddr0
dt

� �2

þ v0ddtð Þ2
" #1=2

; (A4)

where ddt is the uncertainty in the time step, which has an
average value of 0.067 s. The resulting average value for dv0
for each null is listed in Table A1 in both the spine-aligned
and LMN coordinate systems.
[39] The electric field and drift velocity random errors

derive from rms uncertainties in Ei and in Bi:

dvd;k


 

 ¼ j 1B2 fdEiBj � dEjBi

þ Ei � Ej

� �� 6

B
EiBj � EjBi

� �� 	
dBigj⇒ dvd;k

� �2D E1=2

¼ ð dEiBj

� �2 þ EjBi

� �2 þ f½ Ei � Ej

� �

� 6

B
ðEiBj � EjBiÞ�dBig

i

2Þ1=2:
(A5)

The rms uncertainty in the final null frame plasma flow
velocity v also includes adjustments for the rms error in v0.
The uncertainties dEi and dEj include contributions from
the error in the spin component of E and in any misalignment
of the spin-plane probe with the actual DC spin-plane field
that affects the computation of E from Cluster 1 (using the
assumption that, in a certain time window, the probes line
up with the spin plane (DC) field). The former is computed
by the instrument data team and provided with the data set.
(It will propagate into all three components of E once the
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field is rotated out of the spacecraft spin-aligned coordinates.)
We estimate the latter by the following argument. We examine
the electric fields around null As using Cluster 1 data over a
time window of 16 time steps dt, where we assume that the
probe and he field are approximately aligned. Thus, over
~�8dt=�0.12 s, the spacecraft has spun through ~�5.4�.
The corresponding relative error in the spin-plane Ex and Ey

is therefore approximately sin(5.4), 10%. (Of course, these

propagate into all components after rotations from the spin
coordinate system.) The tally for these contributions pro-
duces a random uncertainty in the transformed plasma flow v
as shown in Table A1, where Ep = v0�B/B2.
[40] The dominant contribution to the systematic errors

is the truncation in the gradients and the effect this has
on the calculation of r0. There is also a small contribu-
tion from a systematic difference of 0.2% between B
measured by FGM by two other instruments (Elizabeth
Lucek, personal communication). To estimate the trunca-
tion error in the magnetic gradients at any point, we
assume that the error is distributed equally across all gra-
dients, such that d(@Bi/@xj)t ~r�B/3, where d(@Bi/@xj)t is
the truncation error in (@Bi/@xj). At the time tp of peak
current at which the gradients are chosen for the position
analysis, r�B is very small. This, along with the system-
atic uncertainty in B, dBs, leads to a systematic error in
null position r0 of the form

dr0;s ¼ � rB�1dBs þ d rB�1
� �

B
� �

¼ �rB�1 dBs � d rBð Þ r� r0ð Þ½ � (A6)

with d(rB )ij = d(@Bi/@xj), and where we have used the
same mathematical arguments to derive dr0,s as described
above in the derivation of the rms uncertainty<(dr0)

2>1/2.
The resulting systematic errors are displayed in Figure 17.
Table A2 includes the subsequent systematic errors in v0
averaged over the interval analyzed about each null in both
the LMN and the spine-aligned coordinate systems.

Figure 17. (a) Net systematic error in the three compo-
nents of the null position. The components are in the
spine-aligned coordinate system. (b) Components of the drift
flows adjusted for the systematic error in the spine-aligned
coordinate system. (c) Corresponding systematic errors in
position of null Bs. (d) Adjusted velocity components around
null Bs. Though the velocity magnitudes may be affected,
the qualitative nature of the flows remains unchanged by
adjusting for the systematic errors.

Table A1. Random Errors

Quantity Error at As Error at Bs Units

Bi, |B| 0.1 nT, 0.3 nT 0.1 nT, 0.3 nT nT
Ji 0.1 0.1 |J|
@Bi/@xj, from Bi, rsc 0.0014 0.0014 nT/km
r00, from Bi, @Bi/@xj [4.63, 2.32, 13.03] [10.19, 2.31, 4.79] km
r0, from Bi, @Bi/@xj (LMN)
Time step dt 0.067 0.067 dt
v00 from Bi, @Bi/@xj, dt [32.38, 11.30, 70.80] [9.26, 5.78, 8.67] km/s
v0 from Bi, @Bi/@xj, dt (LMN) [12.95, 77.02, 11.08] [9.18, 8.71, 5.83] km/s
Ei, from spin axis (LMN) [0.36, �0.31, �0.14] [0.06, �0.05, �0.02] mV/m
Ei, from single-probe pair alignment,
~�0.1 Ei (As only) (LMN)

[0.04, �0.03, 0.18] mV/m

Ei from single-probe pair alignment and
spin axis combined (As only) (LMN)

[0.39, �0.34, 0.04] mV/m

v0d =E0 �B0/|B|2 [5.41, 24.99, 21.30] [3.75, 9.57, 33.65] km/s
vd =E�B/|B|2 (LMN) [5.73, 20.66, 25.48] [4.22, 33.30,12.85] km/s
v0 = (E0 +E0

p)�B0/|B0|2 in null rest frame [33.0, 27.5, 74.0] [10.7, 13.4, 34.7] km/s
v= (E+Ep)�B/|B|2 in null rest frame (LMN) [14.2, 80.0, 28.0] [10.9, 34.3, 14.2] km/s
v0 average relative error (dvi/<vi>) in null rest frame [0.16, 0.60, 0.20] [0.08, 0.11, 0.09]

Table A2. Systematic Errors

Quantity Error at As Error at Bs Units

@Bi/@xj (at tp) ~r�B/3 0.005 0.010 nT/km
Bi ~ 0.002|B| 0.0097 0.005 nT
r0 from truncation See figure See figure km
<v00> from truncation [0, �20, 182] [�56, �15, 32] km/s
<v0> from truncation (LMN) [90, �158, 20] [56, �33, 14] km/s
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