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[1] Estimates of surface fluxes of carbon dioxide (CO2) can be derived from atmospheric
CO2 concentration measurements through the solution of an inverse problem, but the
sparseness of the existing CO2 monitoring network is often cited as a main limiting factor
in constraining fluxes. Existing methods for assessing or designing monitoring networks
either primarily rely on expert knowledge, or are sensitive to the large number of modeling
choices and assumptions inherent to the solution of inverse problems. This study proposes
a monitoring network evaluation and design approach based on the quantification of the
spatial variability in modeled atmospheric CO2. The approach is used to evaluate the
2004–2008 North American network expansion and to create two hypothetical further
expansions. The less stringent expansion guarantees a monitoring tower within one
correlation length (CL) of each location (1 CL), requiring an additional eight towers
relative to 2008. The more stringent network includes a tower within one half of a CL
(½ CL) and requires 35 towers beyond the 1 CL network. The two proposed networks are
evaluated against the network in 2008, which temporarily had the most continuous
monitoring sites in North America thanks to the Mid-Continent Intensive project.
Evaluation using a synthetic data inversion shows a marked improvement in the ability to
constrain both continental- and biome-scale fluxes, especially in areas that are currently
under-sampled. The proposed approach is flexible, computationally inexpensive, and
provides a quantitative design tool that can be used in concert with existing tools to inform
atmospheric monitoring needs.
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1. Introduction

[2] Knowledge of regional carbon dioxide (CO2) sources and
sinks is necessary for understanding the drivers and feedbacks
controlling carbon exchange, and for evaluating carbon
management strategies [Weiss and Prinn, 2011]. The current
atmospheric CO2 monitoring network, however, has been cited
as not being sufficient for constraining fluxes at this scale
[Marquis and Tans, 2008; Scholes et al., 2009; Manning,
2011;Weiss and Prinn, 2011]. Early atmospheric CO2 observa-
tion locations were sited away from areas with strong sources or
sinks, because the goal was primarily to monitor global

atmospheric trends [Keeling et al., 1976a, 1976b]. As the need
to understand CO2 fluxes at finer spatial and temporal scales in-
creased, however, so did the need to increase the spatial
and temporal density of atmospheric CO2 measurements
[GLOBALVIEW-CO2, 2010]. Although the expansion of
the measurement network has improved our understanding
of source and sink activity, atmospheric inversions and data
assimilation studies still cite a lack of CO2 concentration data
as a primary hindrance to the improvement of flux estimates
[Gurney et al., 2002; Baker et al., 2006; Gourdji et al., 2008;
Mueller et al., 2008; Schuh et al., 2009; Peters et al., 2010].
Furthermore, the number of additional monitoring locations
needed to constrain fluxes on subcontinental scales is unclear,
and the optimal locations for these additional monitoring sites
are difficult to assess. Thewell-planned expansion of the current
measurement network is critical to furthering our understanding
of the carbon cycle system and to evaluating the success of any
future efforts at emissions reductions.
[3] Previous methods proposed to assess the existing

monitoring network and to determine the number and optimal
locations of additional CO2 monitoring sites have relied heavily
on either expert opinion [e.g., Tans et al., 1996], which is criti-
cal but potentially subjective and qualitative, or on inverse-
modeling or data assimilation observational system simulation
experiments (OSSEs) [Rayner et al., 1996; Gloor et al., 2000;
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Patra andMaksyutov, 2002;Rayner, 2004;Gurney et al., 2008;
Kaminski et al., 2012], which are computationally expensive
and sensitive to specific model assumptions. A common OSSE
approach relies on augmenting the existing network within in-
version schemes to examine the effectiveness of alternate net-
work configurations and expansions [Rayner et al., 1996;Gloor
et al., 2000;Patra andMaksyutov, 2002;Rayner, 2004;Gurney
et al., 2008; Kaminski and Rayner, 2008; Kaminski et al.,
2012]. This approach is effective at examining the impact of
specific additions to a network, but less so at selecting new
locations.
[4] Rayner et al. [1996] first proposed simulated annealing

[Kirkpatrick et al., 1983] as a solution to the CO2 network
design optimization problem, while Patra and Maksyutov
[2002] later suggested that an incremental optimization
approach may perform better in terms of both reducing flux
uncertainty per new station and improving the computational
efficiency of network design. Both of these methods, however,
rely on solving the inverse problem of flux estimation thousands
of times, and each inverse problem requires a large number of
runs of the atmospheric transport model. While this is feasible
for inversions that estimate fluxes for large regions and at coarse
time scales (e.g., Gurney et al. [2002]), the computational
limitations become prohibitive when constraining fluxes on
finer spatiotemporal scales [e.g., Göckede et al., 2010; Gourdji
et al., 2012; Schuh et al., 2010], which is needed to understand
variability at process- and policy-relevant scales, as well as to
limit the impact of spatial and temporal aggregation errors
[e.g., Kaminski et al., 2001; Gourdji et al., 2010].
[5] Beyond the computational limitations, the implementa-

tion of OSSE-based approaches within an inverse-modeling or
data assimilation framework also intrinsically ties the network
design to the specific choices made in the setup of the estima-
tion problem, including, among others, the resolution at which
fluxes are estimated, the choice of a priori flux information,
the assessment of the a priori error statistics, and the choice of
a specific atmospheric transport model. These choices have
been shown to strongly affect flux estimates and their uncertain-
ties [e.g., Kaminski et al., 2001; Engelen et al., 2002; Gurney
et al., 2002; Baker et al., 2006; Gourdji et al., 2012] and there-
fore by extension would be expected to strongly impact the
network design. Ideally, however, the assessment of an existing
network, or design recommendation for its expansion, should
reflect the network’s information content irrespective of the
particular choices that accompany specific flux estimation
approaches.
[6] We present a computationally and conceptually simpler

network assessment and design approach that is not based on
a particular inverse-modeling or data assimilation framework.
This method is applicable as a quantitative exploratory tool to
benefit both OSSE and expert-opinion-based approaches. The
proposed method is based on the simple criterion that a network
must be able to resolve the atmospheric CO2 variability or
“signal” if it is to inform any subsequent numerical analysis.
We posit that if the measurement network can capture a suffi-
cient degree of the atmospheric signal, then subsequent
inverse-modeling or data assimilation approaches could
accurately quantify the underlying flux field. In this approach,
the scales on which the CO2 signal is correlated, i.e., the scales
that must be captured by the network, are quantified by
performing a local variogram analysis on CO2 concentrations
generated from carbon flux and atmospheric transport models.

The local variogram analysis can be used to detail the degree of
spatial variability in the underlying field. Network assessment
and design is then based on adequately sampling a region based
on the local heterogeneity, with sampling density increasing in
more heterogeneous regions and decreasing in more homoge-
neous regions.
[7] The main advantage of this approach is that it relies less

strongly on specific modeling assumptions tied to a flux
estimation system, e.g., the spatiotemporal resolution at which
flux estimation would ultimately occur, the choice of an
inverse-modeling framework, the statistics of a priori flux
errors, etc. While the approach does still rely on modeled CO2

concentrations, and therefore the underlying flux and atmo-
spheric transport assumptions, the sensitivity to these choices
is easy to assess by repeating the analysis using alternate
representations of carbon flux and atmospheric transport. The
computational cost of doing so is minimal andmakes it possible
to assess the sensitivity of the network coverage and design to
alternate possible “true” flux distributions and atmospheric
transport representations. In addition, the computational cost
of the approach is massively lower than network design based
on the repeated solution of inverse problems even for a single
set of fluxes and a single atmospheric transport model, because
the approach requires only a single run of the transport model
and does not require the solution of the flux estimation inverse
problem. Conversely, however, the proposed approach is not
directly tied to the sensitivity footprints of observations and
does not directly use the traditional metric of flux uncertainty
as a criterion; the method is therefore also evaluated against
these more direct metrics of network performance.
[8] We apply the proposed approach to the analysis of the

expansion of the North American (NA) CO2 monitoring
network from 2004 to 2008, and to the siting of additional
monitoring locations. The year 2008 was chosen as an endpoint
because of the relatively large coverage available in that year
thanks to the expansion of the core monitoring network
[e.g., Lauvaux et al., 2012a; Miles et al., 2012] augmented
further by the presence of temporary monitoring sites in
the Midwest as part of the Mid-Continent Intensive
(MCI) experiment [Ogle et al., 2006], which temporarily
yielded the largest network available to date. The sensitivity to
the choice of flux and transport model is evaluated by compar-
ing the main analysis using the PCTM/GEOS-4/CASA-GFED
model, to an analysis based on an alternate set of fluxes and
an alternate representation of atmospheric transport. The tower
placement algorithm is further evaluated by removing the
temporary towers of the MCI region and using the algorithm
to propose replacement towers. The usefulness of the approach
as a screening tool for identifying potential additional monitor-
ing locations is evaluated through a comparison to more
traditional network assessment metrics, including the calcula-
tion of the sensitivity footprints of network locations and the
impact of network expansions on constraining flux estimates
within an inverse-modeling framework.

2. Data and Methods

[9] This section is organized as follows. Section 2.1
details the models used to produce the simulated CO2

concentrations. Sections 2.2–2.4 outline the geostatistical
methods used to analyze the CO2 concentrations, the
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correlation length (CL) criterion, and the approach used for
network design.

2.1. Modeled CO2 Concentrations

[10] Because sampling the actual atmospheric CO2 variabil-
ity everywhere is not possible, modeled CO2 concentrations
are used as a representation of true atmospheric variability.
The main analysis was performed on CO2 concentrations simu-
lated using the PCTM/GEOS-4 transport model [Kawa et al.,
2004], with prescribed surface fluxes from fossil fuels from
Andres et al. [1996], oceans from Takahashi et al. [1999],
biomass burning from Duncan [2003], and the biosphere from
the CASA model [Randerson et al., 1997] for the year 2006.
This model is herein referred to as PCTM-CASA. The model
has a horizontal resolution of 1.25� longitude by 1� latitude with
28 vertical levels and a temporal resolution of 1 h. The lowest
vertical level of the model, representative of roughly the lowest
80m of the atmospheric column, was used to represent CO2

concentrations with synoptic variability representative of
measurements taken at a measurement tower. For this study,
the focus is on the NA land domain of 10�N to 72�N degrees
latitude and 50�W to 170�W degrees longitude, excluding the
Caribbean. The CO2 fields from the year 2003 were analyzed
in addition to the year 2006, to test for sensitivity of the conclu-
sions to inter-annual model differences.
[11] A second set of modeled CO2 concentrations is used to

test the sensitivity of the network design to the specific modeled
CO2 concentrations. This model uses a different set of surface
fluxes, with fossil fuels from EDGAR 3.0 [Olivier and
Berdowski, 2001], ocean fluxes from Takahashi et al. [2002],
wildfire emissions from Global Fire Emissions Database
version 2 [van der Werf et al., 2006], and terrestrial fluxes from
ORCHIDEE [Krinner, 2005], as well as a different transport
model, namely the European Center for Medium-Range
Weather Forecasts (ECMWF) Integrated Forecasting System
[IFS documentation CY37r2, 2011]. This model is herein
referred to as ECMWF-ORCHIDEE. The model output is on
a 1� longitude by 1� latitude grid with 60 vertical levels and a
temporal resolution of 3 h [Engelen et al., 2009]. A pressure-
weighted average of the three lowest model layers was used,
which approximately correspond to the lowest 80m of the
atmosphere and is therefore equivalent to the lowest layer
in PCTM-CASA. The modeled fields were analyzed
throughout the year 2003 in a manner identical to that used
for PCTM-CASA.

2.2. Local Variogram Analysis

[12] The purpose of the local variogram analysis is to assess the
spatial variability of themodeledCO2fields overNA. The analysis
is similar to that of Alkhaled et al. [2008] and Hammerling et al.
[2012] who found that the degree of spatial variability in
column-averaged CO2 concentrations is not constant in
space but varies from location to location. Following these
earlier studies, the spatial variability was determined for each
model grid cell by comparing concentrations within the
surrounding 2000km window to each other and to the concen-
trations outside of the window. Contrary to these previous
studies, however, the surface layer of modeled CO2 concentra-
tions was examined, corresponding to the typical height of a
measurement tower.
[13] The variogram analysis consists of several steps, the

details of which are presented in Alkhaled et al. [2008] and

Hammerling et al. [2012]. The first step is to construct a raw var-
iogram where latitudinally detrended squared CO2 concentration
differences are plotted as a function of their separation distance.
Next, an exponential variogram is fitted to these data, based on
the work by Alkhaled et al. [2008], to represent the spatial corre-
lation structure of the CO2 concentrations. The fitting was done
using a nonlinear least squares method to determine two fitting
parameters, the variance s2 and correlation length L. The two
parameters are used to define the exponential covariance model:

C hð Þ ¼ s2exp � 3h

L

� �
(1)

where h and C(h) represent separation distance and covari-
ance, respectively.
[14] The relevance of the CL parameter as an indicator of the

information content of a measurement is based upon the
covariance function formulation in equation (1). As separation
distance increases, the covariance between any two CO2

concentrations asymptotically decays towards zero. At a separa-
tion distance of h=L, the spatial correlation has dropped to less
than 5%, and CO2 concentrations separated by this distance can
be said to be nearly independent, and therefore uninformative of
one another. The separation distance h=L is thus referred to as
the practical range or simply the CL. The CL can thus be used to
inform the density of a network by providing information on the
scales of variability of the concentration field. The main goal of
network design within the framework proposed here is to
capture the scales of heterogeneity, and the analysis therefore
focuses on L rather than the variance of the field s2.
[15] To determine the highest degree of spatial variability in

CO2 across a year, the local variogram analysis was performed
on concentrations from multiple days in January, April, July,
and September. Concentrations at 2200 UTC were examined
because they represent well-mixed midafternoon conditions
for much of the continent (5 pm EST; 2 pm PST). These times
of the day are also consistent with recommended measurement
times used in atmospheric inversions [Haszpra, 1999;
Geels et al., 2007]. The local variogram analysis was
carried out for each grid cell at the model grid resolution. This
allowed for an investigation of seasonal changes in CO2 spatial
variability and the determination of the shortest CLs throughout
the year for each grid cell, corresponding to the most variable
times of the year at each location. The within-month variation
in observed CLs was greater for the transition months (April
and September), but the shortest CLs were consistently those
observed in July throughout the domain. This is consistent with
the expected high CO2 variability due to strong biospheric
activity during the summer. The minimum CL observed for
each location (Figure 1) is used as the basis for all subsequent
CL-based network design analysis.

2.3. CL Criterion

[16] The minimum CL (section 2.2) is used to define a set of
criteria for network design, the logic being that a network able
to capture a signal that varied on the smallest scales would also
be able to capture all other signals. As the CLs in this studywere
determined from a 1� by 1.25� model, the scales of variability
represented in the CLs are those observable at this resolution,
which is comparable to the resolution of atmospheric transport
models currently in use for global and continental inversion
studies. Higher-resolution models may be necessary for
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network design focusing on regional studies. The minimum CL
can provide a useful proxy to assess the information content of a
CO2 monitoring network, because it can be used to deduce
areas where CO2 concentrations have high (low) spatial vari-
ability and thus need to be sampled more (less) frequently in
space. A fractional CL scale is therefore proposed as a metric
to gauge network performance by coupling knowledge of the
spatial variability with knowledge of the network configuration.
The fractional CL scale (Figure 2) is defined at each location as
the distance to the nearest tower normalized by the
minimum CL observed for that grid cell (Figure 1). The
coverage criterion is based on this fractional CL for each
grid cell: if a tower is within some fraction of a CL of a
given location (e.g., 3/4, ½, ¼, etc.), that location is said to be
covered under that corresponding fractional CL criterion.

2.4. Network Design

[17] The 2008 network was augmented to create hypothetical
networks by using a simple objective: that a network should be
able to capture the signal it is being used to measure, namely the
CO2 concentration field. The CL criterion (section 2.3) was
used to define how well a network captures that signal. To
determine the number of measurement locations that would be
needed to capture the (modeled) atmospheric CO2 concentra-
tion field, a minimum requirement based on the covariance
between monitoring locations and possible estimation locations
was developed. A minimum coverage requirement of 1 CL
ensures a minimum of 5% correlation between the concentra-
tions at every estimation location and those at at least one
measurement tower. An analogy is drawn from signal
processing to define a more stringent ½ CL sampling
requirement, analogous to the requirement of providing
two samples per cycle (e.g., Nyquist frequency) used to
avoid aliasing [Franklin et al., 2006]. Finally, a ¼ CL
requirement was found to be representative of regional
networks, based on coverage of the MCI region (section 3).
[18] A simple algorithm was implemented to ensure that the

hypothetical networks satisfied the full coverage criteria, i.e.,
ensuring that each grid cell is within a predefined fraction of a
CL (e.g., 1 CL, ½ CL) from the nearest tower, with tower

1000800700600500400300200100 [km]

Figure 1. Minimum July correlation lengths (CLs), obtained
from local variogram analysis of PCTM-CASA CO2 concen-
trations. Circles represent scales of spatial variability.

Fractional Correlation Length (h/CL)
0 0.25 0.5 0.75 1 1.25

2008

2007

2006

2005

2004

Figure 2. Expansion of the existing tower network (black
stars) from 2004 to 2008. Colors represent degree of cover-
age and are based on each grid cell’s distance to nearest
tower (hi) divided by the grid cell’s correlation length (CL).
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placement being restricted to land. The algorithm sequentially
steps through all possible tower locations (all NA land grid cells)
adding towers that provide the most benefit to the network. The
following steps detail the sequence:
[19] 1. Conduct exhaustive search to find the grid cell

(i.e., location) where an additional tower would maximize
the increase in the covered area
[20] 2. Place tower at selected location
[21] 3. If any portion of the domain remains not covered

under the selected CL criterion, return to Step 1.
[22] This selection algorithm builds the network incre-

mentally, and towers placed earlier in the sequence therefore
provide more incremental coverage relative to towers placed
later. The relative performance of the simple algorithm is
verified through a final culling step, which removes each
tower in random order and uses the search algorithm to ver-
ify that the replacement tower matches the location of the
removed tower. This final step ensured no redundant towers
in the network design. While future work could include a
more rigorous approach to the optimization scheme, network
design differences due to differences in CO2 fields between
models (e.g., PCTM-CASA vs. ECMWF-ORCHIDEE) are
expected to be larger than possible gains from the implemen-
tation of alternate optimization schemes for tower place-
ment. Although a rich literature exists on efficient methods
to solve combinatorial optimization problems [e.g., Dorigo
et al., 1999], the nonstationarity of the field further compli-
cates the implementation of traditional approaches [e.g.,
Fuentes et al., 2007]. More sophisticated approaches do
exist that target nonstationary fields [e.g., Cortes et al.,
2004], but their applicability to the present problem would
need to be explored in future work. Nevertheless, the simple
approach implemented here offers an efficient solution
that guarantees the network to have full coverage under the
CL criterion.

3. Results

3.1. CL Map

[23] Using 2006 PCTM-CASA output, July is found to be
the month with highest observed CO2 variability for all loca-
tions within North America, and the point-wise lowest CL
observed within July is presented in Figure 1. The features
of the minimum CL map are a result of the variability caused
by the various components of CO2 surface fluxes (section
2.1) and atmospheric transport and correspond well with
physical understanding of a region dominated by an active
Northern Hemisphere (NH) summer growing season. The
influence of fossil fuels emissions on variability may be
apparent over the eastern coast of the U.S., but these are dif-
ficult to differentiate from the stronger biospheric signals.
CLs are shorter in the eastern region of the U.S., the
Midwest region, as well as the western Canadian regions.
The high variability can be related to the large and variable
uptake in the NH summer coupled with atmospheric trans-
port across these regions. A sharp gradient from short to
long CLs appears in Quebec and Labrador and can be attrib-
uted to the change from temperate broadleaf and mixed
forests, to boreal forest and the mostly snow-covered taiga
further north. The gradient may also be due in part to trans-
port pathways that travel north along the eastern coast and
out into the Atlantic, mainly bypassing Quebec. The longer

CLs in the northeastern regions of Canada, Quebec, and
Newfoundland and Labrador can be attributed to less vari-
able CO2 concentrations due to more homogeneous CO2

fluxes in these regions. A similar gradient appears between
longer CLs from desert and xeric shrub lands areas of the
northern Mexico and southwestern U.S. and shorter CLs
from the highly productive and heterogeneous temperate
forests in northwestern U.S. and western Canada. Overall,
the characteristics of the minimum CL map are consistent
with the processes that drive the variability in the underlying
CO2 fluxes and atmospheric transport.
[24] The sensitivity to the underlying modeled CO2 concen-

trations was assessed by repeating the analysis using modeled
CO2 data for 2003 from both the PCTM-CASA and ECMWF-
ORCHIDEE models. This analysis allowed for an examina-
tion of both model inter-annual variability (2003 vs. 2006
PCTM-CASA) and variability between different models
(2003 PCTM-CASA vs. 2003 ECMWF-ORCHIDEE). The
sensitivity to inter-annual variability within a model output
was minor, and the minimum CLmap for 2003 PCTM-CASA
was found to exhibit similar spatial patterns to that of 2006
PCTM-CASA. The overall lengths, while slightly longer,
were quite comparable. The sensitivity to between-model
differences was more pronounced, with the minimum CLs
for the 2003 ECMWF-ORCHIDEE modeled CO2 being con-
siderably shorter overall, but displaying similar spatial patterns
to those from PCTM-CASA. The lower minimum CLs can be
attributed to the higher flux variability known to exist in the
ORCHIDEE biospheric model [D. Huntzinger, personal
communication]. This ability to easily perform such sensitivity
analyses is one benefit of the proposed approach, as it offers
flexibility in testing the robustness of the network analysis.

3.2. 2004 to 2008 Network Expansion

[25] The CL information was used to assess the impact of the
expansion of the atmospheric monitoring network, which grew
from nine towers with continuous observations in 2004 to 39
towers in 2008. The expanding network and the corresponding
expansion of coverage were evaluated using the fractional CL
scale presented in Figure 2. The green areas are those having
a tower located within ¼ CL of a given location and therefore
represent the regions with the best network coverage. The green
regions made up 6% of the NA land area in 2004 and increased
to 21% in 2008. For the MCI region (Figure 5), the ¼ CL
coverage increased from 32% in 2006 to 92% in 2007, demon-
strating the effectiveness of the temporary network set up in this
region. The increase in coverage depends not only on the
number of new tower locations, but also on the CLs near the
towers. For example, in the southern and eastern portions of
the United States, the well-constrained areas are smaller and
tend to be limited to areas immediately surrounding towers,
which can be attributed to shorter CLs (i.e., higher atmospheric
CO2 spatial variability) in these regions.
[26] The coverage of the ½ CL region (green and yellow)

increased from 22% to 51% of the domain and captured nearly
the entire continental U.S. with the 2008 network. The 1 CL
region (all colors) increased from 56% to 76% of the continent
in 2008; however, nearly a quarter of the continent remained
outside of the network’s coverage, including CO2 sink regions
in northern Canada, Alaska, and subtropical Mexico. Overall,
the 2008 network provided extensive coverage over the
continent. While the regions outside of the 2008 network’s

SHIGA ET AL.: MONITORING NETWORK EVALUATION AND DESIGN

2011



coverage are typically less active regions, including the tundra
in northern Canada and arid areas of Mexico, placing towers
in these regions does help to constrain the continental CO2 flux
budget (section 3.5). Additionally, the northern Canadian
tundra regions are of significant interest with changing climate
[e.g., Schaefer et al., 2011], and therefore baseline monitoring
for these regions is of primary importance.
[27] The incremental additional coverage provided per tower

was also examined to give an assessment of per-tower coverage
expansion. The overall trend shows a decrease in incremental
coverage per tower from 2004–2008 in the 1 CL coverage
regime. However, the incremental coverage increase per tower
in the ¼ CL coverage regime remained relatively constant over
the same period. This suggests that during the 2004–2008
expansion, additional towers offered similar per-tower increases
in coverage for regional analysis (¼ CL), while the per-tower
increase in the continental coverage regime (1 CL) diminished.
This is understandable, as the recent expansions in the network
have been targeted towards investigations of regional CO2

activity [e.g., Göckede et al., 2010; Gourdji et al., 2012;
Lauvaux et al., 2012a, 2012b]. Additionally, several new
towers have been established since 2008 and 50 new measure-
ment sites are planned for the U.S. as a part of Earth Networks’
Greenhouse Gas Network (http://earthnetworks.com/OurNet-
works/GreenhouseGasNetwork.aspx).
[28] While many external factors are involved in determining

the placement of additional towers, whether they be scientific or
logistical, regions with no existing towers clearly offer the
highest information gain per tower added when focusing on
continental budgets. Therefore, a hypothetical scenario was
explored in the following section where tower placement is
optimized to provide full coverage over NA.

3.3. Augmented Network Design

[29] To investigate a CL-criterion-based expansion of the
monitoring network, two continental-scale hypothetical net-
works were created. The 1 CL and ½ CL networks were
designed with the goal of expanding coverage over the entire
NA land domain. The 1 CL network was designed using the
2008 existing network as a base, and adding towers using the
algorithm in section 2.5. The 1 CL network represents an initial

modest expansion of the network. The ½ CL criterion network
was then created using the 1 CL network as its base, and
expanding until ½ CL criterion was fulfilled over the entire
domain. The ½ CL network simulates a substantial expansion
of the network following the initial expansion. The tower
locations of the three networks are illustrated in Figure 3 and
listed in the Supporting Material. While the fractional CL
criteria are used to conceptually define the network scenarios
in this study, the method could similarly be used to instead
allocate a prespecified number of additional towers.
[30] Under the 1 CL criterion network expansion, all of North

America can be observed with an additional eight towers, bring-
ing the NA total to 47 (Figure 3a). The towers are placed in
Mexico (Baja California, Chiapas, and Oaxaca), the US
(Florida, Alaska), and Canada (British Columbia, Yukon,
Nunavut). The locations of the eight added towers correspond
to regions with known deficiencies in the current network
[e.g., Gourdji et al., 2012]. On average, each additional
tower would expand the 1 CL coverage region by 3% of the
NA continental area, making it the largest per-tower expansion
to the network coverage when compared to the 2004–2008
expansions. The expansion in the coverage at the ½ CL level
is 1.6% per tower, comparable to the actual network expansions
in 2005 and 2006. One limitation in using the simple algorithm
implemented in this study is that two towers may be placed in
very close proximity to one another in an attempt to provide
100% coverage of the domain. This occurs, for example, with
two nearby towers placed in Mexico for the 1 CL network,
where the removal of either tower would cause only a small
fraction of the continent to be unobserved. We note that further
analysis would be needed to define the exact locations of
additional towers; nevertheless, the removal of either of the
closely placed towers is found (section 3.5) to bias the synthetic
data inversion estimates, especially for the regional (Tropical
and Subtropics) estimates. Overall, the total number of recom-
mended towers under the 1 CL network is consistent with
previous assessments, namely 40–50 towers within North
America [Tans et al., 1996].
[31] To increase the coverage to the ½CL level, an additional

35 towers are needed beyond the eight tower expansion of the 1
CL network, increasing the total number of towers over the

Fractional Correlation Length (h/CL)
0 0.25 0.5 0.75 1 1.25

2008 Real Tower Locations

1 CL Tower Additions

½ CL Tower Additions

(b)(a)

Figure 3. The (a) 1 CL and (b) ½ CL network expansions, which added 8 and a further 35 towers,
respectively. As per the CL criterion requirement, the entire continent is covered to within 1 and ½ CLs
for the 1 CL and ½ CL networks, respectively.
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continent to 82 (Figure 3b). The majority of the towers added
are located in the northern latitudes in Canada (20) and Alaska
(9). Towers in Mexico (6) and the southern U.S. (5) fill out the
southern portion of the continent. Overall, the additional towers
are again placed in regions with known data gaps. The additions
increase the total number of towers in Canada to 27, which is
comparable to the total number of towers in the continental
U.S. (38). Each additional tower provides an average
increase of 1% of land area covered at the ½ CL level. Again,
the hypothetical locations are not expected to represent precise
tower placements, as the identification of suitable locations for
towers involves many practical considerations (e.g., accessibil-
ity due to terrain, remoteness of the location, etc.). Nevertheless,
the proposed network offers insight into desirable locations and
the appropriate density of an expanded ground-based NA
network.
[32] The proposed network expansions are also sensitive to

the model used to represent atmospheric CO2, with the 1 CL
network based on the ECMWF-ORCHIDEE model requiring
17 new towers, rather than the eight obtained using PCTM-
CASA. The larger number of towers follows from the higher
variability in ECMWF-ORCHIDEE modeled CO2 field dis-
cussed in section 3.1. The locations of new towers (northeastern
Canada, Alaska, Mexico, and southeastern U.S.) are consistent
between models, however. While the specific model used to
create the network does affect the number of hypothetical
towers placed, such a comparison is relatively simple and
computationally efficient for the CL criterion method. The
flexibility to interchange models is a desirable trait when con-
sidering both the spread in modeled biospheric CO2 predictions
[e.g.,Huntzinger et al., 2012] and possible transport model dif-
ferences [e.g., Gurney et al., 2002]. Sensitivity to inter-annual
variability, on the other hand, was again found to beminor, with
the hypothetical 1 CL network created from the 2003 PCTM-
CASAmodel also requiring eight towers, placed in very similar
locations to those presented in Figure 3a. The similar network
design between model years supports the analysis and method
as being fairly robust to inter-annual variability.
[33] One further network design investigationwas carried out

examining the CL criterion required for a more refined regional
network. This was performed over theMCI region by removing
the five temporary towers added as part of the MCI effort, and
then using the proposed algorithm to place towers until the
region was covered back to the same ¼ CL coverage (92%)
of 2008. This provided an opportunity to investigate the
appropriate CL criterion for intensive regional studies and to
evaluate the performance of the network design algorithm. Four
towers were placed in the region to replace the MCI ring using
the PCTM-CASA-based CLs, while seven were placed using
the ECMWF-ORCHIDEE-based CLs. These results help to
verify the ability of the algorithm to place towers in a manner
consistent with the expert knowledge used to place towers in
the MCI region and also suggests that networks designed using
a ¼ CL criterion could achieve results comparable to studies
performed using the 2008 MCI tower arrangement [Lauvaux
et al., 2012a].
[34] Finally, one possible limitation of the CL criterion

method is its tendency to place towers along the coast, which
follows from the shorter CLs found in these areas due to higher
spatial variability. Coastal towers are influenced by ocean air
and are often not especially informative of land fluxes in inver-
sion studies. On the other hand, coastal towers provide needed

constraints on boundary conditions for regional inversions,
shown to be an important factor in constraining regional CO2

estimates [Göckede et al., 2010; Gourdji et al., 2012]. Overall,
the addition of new monitoring towers always involves many
external decision factors that merit further investigation, and
we therefore are not advocating the tools proposed here as a
standalone method. For example, preexisting telecommunica-
tion towers are desirable candidates, because they minimize
costs. In this context, the CL criterion could also be used to
aid in the evaluation of the potential coverage provided by a
set of preexisting candidate towers.

3.4. Comparison to Coverage as Implied by Sensitivity
Footprints

[35] In this section, we compare the network coverage as
implied using the CL criterion against source-receptor sensitiv-
ity footprints calculated for the 2004 nine-tower network. The
purpose of comparing the fractional CL scale to sensitivity
footprints obtained from a transport model is twofold: (1) to
better understand the information provided by the CL analysis
and (2) to compare the CL criterion to a familiar metric used
in inverse modeling, namely the sensitivity of observations to
underlying fluxes. Inverse-modeling methods use transport
models to determine the influence of surface fluxes on observa-
tions at monitoring locations, essentially tracing the pathways
of the air masses that encounter measurement towers. The
footprint map, Figure 4, represents the average sensitivity of
the 2004 atmospheric measurement network to surface CO2

fluxes, as evaluated by Gourdji et al. [2010] using the
Stochastic Time-Inverted Lagrangian Transport (STILT) model
[Lin, 2003] driven by meteorological fields from the Weather
Research and Forecast (WRF) model [Skamarock et al.,
2005], herein STILT. The high-sensitivity regions in Figure 4,
shown in green, represent regions where surface fluxes have
the most influence on the tower measurements. Conversely,
fluxes from low-sensitivity regions, shown in white, are not
influencing measurements, and the network captures little or
no information about the surface fluxes in those regions.
[36] To aid in the visualization, four sensitivity cutoffs, in

ppm/(mmolm�2 s�1), were selected to create equal area regions
between the fractional CL scale and the sensitivity cutoffs.
Thus, the areas in green in both Figure 4 and the top row in
Figure 2 are equal, with the green area in Figure 2 bounded
by ¼ CL, and the green area in Figure 3 bounded by a sensitiv-
ity value of 0.434ppm/(mmolm�2 s�1). By creating equal areas
for each color across the figures, the similarity between the
coverage as implied by the two approaches can be compared
and contrasted, while keeping in mind that the transport model,
STILT, used to create the sensitivity map differs from that used
to develop the CLs, PCTM. In addition, the CL-based maps in
Figure 2 also depend on the variability of the fluxes in PCTM-
CASA and thus not only on the atmospheric transport.
[37] Evaluating Figure 4, differences can be seen based on

the nature of the two approaches. Transport model sensitivities
in Figure 4 directly represent the directionality of atmospheric
transport, and thus mainly adhere to the direction of prevailing
winds. The CL-based coverage, on the other hand, is based on
the spatial variability of atmospheric CO2 concentrations, which
are influenced by both flux variability and transport. The
highest sensitivity/coverage areas (green) are in good agreement
between the two approaches, showing that the areas that are
identified as being best covered agree between the two
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assessment approaches. However, differences arise in the
lowest-sensitivity/coverage areas: the northwestern region
of North America, the southwestern U.S and northern Mexico,
and northern Quebec, Newfoundland and Labrador. The frac-
tional CL map is more conservative in its estimated coverage
of northwestern North America, whereas the sensitivity map
shows the influence of incoming air from this region, moving
in the southeastern direction across the continent. The CLmap
is less conservative over the northern Quebec, Newfoundland
and Labrador regions, and the southwestern U.S./Mexico
region, where the lower spatial variability in these regions
implies broader network coverage and reflects the somewhat
less active surface flux regions. By incorporating the influence
of underlying fluxes, the CL-based coverage requires fewer
measurements in areas with low flux variability. The STILT
sensitivity analysis, on the other hand, cannot discern the
representativeness of the measurements in terms of the underly-
ing fluxes, but uses the directionality of wind fields to define
what the network explicitly “sees.”
[38] The comparison between the sensitivity footprints and

CL criterion regions offers insight into the possible benefits
and shortcomings of using the CL criterion as a network design
tool. By including the influence of the variability in underlying
fluxes and atmospheric transport, the CL criterion implies that
less monitoring is needed in areas with more uniform fluxes,
such as in Quebec, Newfoundland and Labrador, as well as
portions of south central US and northern Mexico. However,
because the approach does not consider wind direction, more
towers may be placed in regions upwind of the existing towers
in northwestern Canada. While neither approach is a direct
measure of network coverage, the comparison does provide
an examination of the information provided by CL criterion
approach relative to the sensitivity footprints.
[39] Although, in principle, one could use a sensitivity foot-

print analysis directly as a criterion for network design by
selecting a minimal sensitivity to be achieved for all locations
within the domain, such an approach would only reflect the role
of atmospheric transport, and would not factor in the variability
of the underlying flux fields. Additionally, the computational

expense of running the transport model repeatedly, as is
required to obtain the sensitivity maps even for one tower and
one month of observations, is substantial. Running the model
for all possible tower locations and measurement times would
be nearly unfeasible. The computational problems would be
compounded if multiple flux and/or atmospheric transport
models were to be considered.

3.5. Synthetic Data Inversion

[40] A synthetic data atmospheric inversion was carried out
using the 2008, 1 CL, and ½ CL networks. The purpose of
the synthetic data study was to evaluate the CL-criterion-
designed networks in an inversion setup and to provide an
assessment of the performance in terms of CO2 flux estimates.
Synthetic CO2 observations were generated using a set of “true”
CO2 fluxes. These synthetic data were then used in an inversion
to recover the CO2 flux field. The synthetic data inversionmeth-
odology used is based on the geostatistical inversion method
(GIM) [Michalak et al., 2004] as applied by Gourdji et al.
[2010]. The GIM methodology was chosen as it minimizes
the use of prior flux information on the inverse estimates and
thus helps to isolate the effects of the additional measurements
[e.g., Mueller et al., 2008]. Specifically, because GIM does
not require a prior flux estimate to define the underlying flux
pattern, the influence of additional measurements on resolving
spatial patterns can bemore clearly identified. GIM does require
an a priori estimate of the spatiotemporal covariance of the
fluxes, but these can be derived from the atmospheric data
themselves. The fluxes used for the underlying “truth” included
the CASA biospheric model from Randerson et al. [1997] with
GFED version 2 fire emissions from van der Werf et al. [2006]
from 3–30 July 2004. To create the synthetic concentration
data, these fluxes were transported using the STILT transport
model [Lin et al., 2003; Skamarock et al., 2005]. Note that the
transport model used to create the modeled CO2 concentrations
differs from the transport model used for designing the monitor-
ing network, thus offering further independence between the
information gathered by the CL analysis and the inversion
setup.
[41] The overall setup of the synthetic data inversion was

designed to focus on the impacts of the added measurement
towers, minimize the variation in set-up choices, and recreate
realistic data choices [Gourdji et al., 2010]. To this aim, the
same transport model used to create the synthetic data, STILT,
was used in the inversion to find the sensitivity of the
atmospheric measurements to surface fluxes. The a priori flux
covariance parameters were held constant for the three
inversions. Two model-data mismatch variance cases were
used: one idealized case where the variance of the model-data
mismatch was set to 0.01 ppm2 for all measurement locations,
and a second case where realistic model-data mismatch para-
meters were used. For this second case, the model-data
mismatch variances for existing towers were estimated using
real data as described in Gourdji et al. [2012] (Table S1). For
the new proposed towers, the median model-data mismatch
variance among existing towers within the same biomes
(Figure 5) was used (Table S2). White noise with these variances
was added to the synthetic observations.
[42] The a priori flux covariance parameters, which describe

the correlations between the estimated fluxes from the inversion
in both time and space, were estimated using Restricted
Maximum Likelihood [Kitanidis, 1995; Michalak et al., 2004]

1.00 0.434 0.259 0.127 0.084 0.056 0.00

Sensitivity (ppm/µmol m-2 s-1)

2004

Figure 4. Sensitivity of the 2004 nine tower measurement
network to surface fluxes. The four sensitivity cutoffs were
created to match the corresponding areas of the fractional
CL map (Figure 2 top panel). The sensitivity regions repre-
sent areas where the sensitivity thresholds were met for at
least 85% of the year.
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implemented as detailed by Gourdji et al. [2010]. The
parameters were optimized using the synthetic atmospheric data
from the ½CL network andwere applied to all three cases. Data
choices for the hypothetical towers follow the established
approach of using only well-mixed midafternoon data for short
towers (<100m), including all the new proposed towers, and
all 24 h of data for the tall towers (>300m) in the existing
network. The fluxes were estimated on a 1� by 1� spatial grid
with a 3 hourly temporal resolution. For more information
regarding the details of the setup choices, see Gourdji et al.
[2010, 2012].

[43] The a posteriori inversion-recovered fluxes were aggre-
gated temporally to the entire month of July and spatially to
the NA domain and to seven biomes modified from
Olson et al. [2001] (Figure 5), to analyze the performance
at the continental and regional scales. At the continental
scale, improvements resulting from the augmented networks
are evident, as seen by the reduction in the actual absolute error
of the recovered flux estimates (Figure 6), as well as the esti-
mated reduction in the a posteriori uncertainties (Table 1).
The reported a posteriori uncertainty reductions were deter-
mined by comparing the posterior uncertainty variances
between the inversions using the existing and expanded net-
works. Results were consistent between the two model-data
mismatch cases, and the discussion that follows primarily
focuses on the inversion with minimal model-data mismatch.
[44] The total “true” CASA sink for NA in July is 671 TgC.

Using the 2008 network, the sink estimate for the NA flux is
727 TgC, an overestimate of the sink by 8%. The 1 CL network,
with an additional eight new towers, improves the estimate of
the sink to 685 TgC, bringing the best estimate to within 2%
of the truth. The ½ CL network, which added a further 35
towers, yields an estimate of the NA sink of 674 TgC, or within
0.5% of the true flux. Additionally, the 1 CL and ½ CL
networks reduces the a posteriori uncertainty on the continental
estimates by 47% and 79%, respectively, relative to the a
posteriori uncertainty associated with the 2008 network, as seen
in Table 1. Overall, at the continental scale, the 1 CL and ½ CL
networks provide relatively strong constraints for a monthly
carbon budget over NA.
[45] At the biome scale, the greatest overall improvements

are found in the poorly constrained biomes, namely the Tropical
and Subtropical region, the Tundra, and the Desert and Xeric
Shrublands. The a posteriori uncertainties relative to the 2008
network show significant reductions, 69% in the Tropics and
44% in the Tundra for the 1 CL network and over 80% in both
biomes for the½CL network (Table 1).With the½CLnetwork
expansion, the poorly constrained regions begin to approach the
same a posteriori uncertainty ranges as the well-constrained

2008  
1 CL 
½ CL 

Tropical & Subtropical

Temperate Broadleaf & Mixed Forests

Temperate Coniferous Forests

Boreal Forests & Taiga

Tundra

Temperate Grasslands, Savannas & Shrublands

Desert & Xeric Shrublands

MCI

Figure 5. Seven biomes used to evaluate the synthetic data
inversion results at regional scales. The black stars represent
the existing 2008 network (39), circled �’s the 1 CL addi-
tions (8), and the solid cyan circles the ½ CL additions
(35). The dotted outline represents the MCI region.
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as the true flux. The closed symbols represent the minimal model-data mismatch case while open symbols
indicate the realistic model-data mismatch case. The error bars represent the 95% uncertainty range.
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biomes. The Tundra region shows the largest reduction in
absolute error. Using the 2008 network, the sink in the Tundra
region is estimated to be 92 TgC, an overestimate of 67% from
the true CASA sink of 55 TgC. This error is reduced to within
34% (1 CL) and 18% (1/2 CL) of the truth, with the two pro-
posed networks. Only modest improvements are found in the
biomes that were considered well constrained in the 2008 net-
work, e.g., Temperate Broadleaf Mixed Forest, Boreal Forests
and Taiga, Temperate Grassland and Shrubs. This is expected
as the new towers mostly inform the under-constrained biome
regions. We also addressed the concern over the close place-
ment of towers (section 3.3) and examined the effect of remov-
ing the tower in Chiapas, Mexico, one of the closely placed
towers in the Tropical and Subtropics, on the flux estimates.
The removal of the tower increases both the a posteriori
uncertainty (17%) and absolute error (8%) of the regional
Tropical and Subtropics estimate, but has only minor effects
on continental uncertainty. Thus, towers in under-constrained
regions do provide useful information at the biome scale even
when placed in close proximity.
[46] While many of the biomes converge to the true monthly

flux, in the ½ CL network, the estimate for the Temperate and
Coniferous Forest biome does not. Using the ½ CL network,
the estimate for the Temperate and Coniferous Forest sink is
73 TgC, an underestimate of approximately 11% from the true
CASA sink. This error is likely a consequence of defining and
aggregating noncontiguous subregions within the domain.
Whereas the addition of towers in previously unconstrained
regions improves the recovery of large-scale spatial patterns,
small-scale features may still be difficult to recover without a
much denser tower network (~ ¼ CL as seen in the MCI) or
the addition of auxiliary environmental variables into the inver-
sion [e.g., Gourdji et al., 2012]. Because the GIM inversion
used here does not include auxiliary variables, it tends to
smooth sharp features, and may lead to smearing of fluxes
across discrete boundaries. For example, the overestimation of
the sink in the Tundra is balanced by an underestimation of
the sink in the neighboring Temperate Coniferous Forest
region. This is therefore primarily a limitation of the specific
implementation of GIM used here, rather than of the proposed
network. Nevertheless, over large domains, the overestimates
and underestimates balance out to bring the best estimate of
the entire domain closer to the truth.
[47] The 1 CL and ½ CL network scenarios offer examples

as to what improvements could be gained from both a modest
and more comprehensive network expansion based on a

CL-derived coverage criterion. The synthetic data inver-
sions also point to a possible overestimation of the NA
summer sink when using the 2008 network. If the goal of
the current CO2 monitoring network is to constrain conti-
nental-sized regions, a coverage regime of approximately
1 CL may be sufficient, if atmospheric transport model
errors can be reduced. If, however, the goal is to accurately
resolve flux estimates at regional biome-sized scales, the
measurement network would likely need to provide a cover-
age condition approaching or possibly exceeding ½ CL.

4. Conclusions

[48] A primary purpose of an atmospheric CO2 monitoring
network is to produce accurate flux estimates at relevant spatial
and temporal scales. With this ultimate goal in mind, we
propose a network design approach based on the fact that the
ability to produce accurate flux estimates is related to the
network’s ability to capture the heterogeneity of the atmo-
spheric CO2 field. The CL approach does not directly incorpo-
rate an inverse-modeling framework in the design process, but
instead integrates information previously underutilized for the
CO2 network design problem, namely the spatial scales of
variability of atmospheric CO2 concentrations. This method
represents a computationally efficient approach that offers
flexibility beyond that afforded by existing network design
tools. The CL approach also benefits from an independence
from many of the assumptions (e.g., flux estimation resolution,
a priori error statistics, statistical and numerical solution
approach, etc.) inherent to inverse-modeling studies. While
the CLs are dependent on the underlying flux and atmospheric
transport models used to generate the surrogate concentration
field, the approach has the capacity to assess the sensitivity to
different models with minimal computational cost relative to
existing approaches.
[49] The CL approach is proposed as a tool for informing the

evaluation and design of atmospheric CO2 monitoring net-
works. To this aim, a fractional CL coverage criterion was
developed using the minimum CLs observed at each location
throughout the year and used to evaluate the 2004–2008 NA
network expansion as an example application. The method
appears robust to inter-annual model differences, yet as with
other techniques is sensitive to differences in estimates between
models. The coverage as implied by the CL criterion was also
compared with the 2004 network sensitivity footprints to eluci-
date the similarities and differences of the two metrics. While
the coverage based on sensitivity footprints is derived solely
from atmospheric transport and the coverage based on CLs
reflect the variability of both the underlying fluxes and atmo-
spheric transport, the majority of the coverage regions between
the two metrics coincide.
[50] The 2008 network was used as a baseline for proposing

expanded networks that provide improved coverage, especially
in poorly sampled regions such as Canada, Mexico, and
portions of the US (Alaska, Florida). A simple algorithm was
proposed to augment the network to provide full coverage over
NA under a chosen fractional CL criterion. The network
augmentations called for an addition of eight towers for a min-
imal 1 CL network and 35 further towers for a stricter ½CL net-
work. The placement of towers was consistent with areas shown
to lack data for CO2 flux estimation [e.g., Gourdji et al., 2012].

Table 1. Percent Reduction in Biome-Scale A Posteriori Uncertainty,
Expressed as a Variance, Relative to the A Posteriori Uncertainty
Associated with the 2008 Networka

Biome 1 CL (%) ½ CL (%)

Tropical and Subtropical 69 (57) 80 (79)
Temperate Broadleaf and Mixed Forests 1 (1) 28 (28)
Temperate Coniferous Forests 18 (15) 71 (72)
Boreal Forest & Taiga 28 (24) 65 (62)
Tundra 44 (40) 82 (81)
Temperate Grasslands, Savannas, and Shrublands 4 (3) 47 (49)
Desert and Xeric Shrublands 19 (11) 61 (64)
North America 47 (39) 79 (77)

aValues outside parentheses represent the minimal model-data mismatch
case; values inside parentheses represent the realistic model-data mismatch
case.
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The number of towers was also similar to that of proposed goals
for NA coverage [Tans et al., 1996].
[51] The augmented networks were further evaluated through

a synthetic data inverse study and were shown to substantially
improve flux estimates and reduce a posteriori uncertainties
relative to the 2008 network. The results from the 1 month
inversions showed reductions in absolute error of the continen-
tal flux estimate from 8% to 2% and 0.5% for the 1 CL and ½
CL networks, respectively, and reduction of monthly grid-scale
a posteriori uncertainty of 47% and 79% relative to that of the
2008 network. At regional scales, flux estimates of under-
constrained biomes also showed large improvements in most
regions. The ½ CL expansion reduced monthly grid-scale a
posteriori uncertainties in the poorly constrained regions by
upwards of 82% relative to the 2008 network. Results from
the synthetic data inversions support the potential of the CL
criterion in providing information on network design studies.
[52] Overall, the CL approach shows promise as a tool to

inform network evaluation and design independently of a
specific inverse-modeling or data-assimilation framework, and
can be used in concert with other expert information in the
survey of candidate monitoring locations and design iterations.
Additionally, the design of a monitoring network is ultimately
dependent on the specific goal or question; thus, the actual
fractional CL criteria could change for differing applications,
as shown by the observed ¼ CL coverage of the MCI region
in 2008. Overall, the CL-defined network analysis and design
method presented here offers an exploratory tool that explicitly
incorporates a quantification of spatial variability into the
solution of the CO2 monitoring network evaluation and design
problem.
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