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[1] The role of entropy conservation and loss in magnetotail dynamics, particularly in
relation to substorm phases, is discussed on the basis of MHD theory and simulations,
using comparisons with particle-in-cell (PIC) simulations for validation. Entropy
conservation appears to be a crucial element leading to the formation of thin embedded
current sheets in the late substorm growth phase and the potential loss of equilibrium.
Entropy conservation also governs the accessibility of final states of evolution and the
amount of energy that may be released. Entropy loss (in the form of plasmoids) is essential
in the earthward transport of flux tubes (bubbles, bursty bulk flows). Entropy loss also
changes the tail stability properties and may render ballooning modes unstable and thus
contribute to cross-tail variability. We illustrate these effects through results from theory
and simulations.
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1. Introduction

[2] In a simplified view, magnetospheric evolution and
dynamics may be separated into phases that apparently are
well described by the constraints of the ideal magnetohy-
drodynamic (MHD) equations, interrupted by phases in
which one or more of the basic assumptions of ideal
MHD breaks down. A major assumption of ideal MHD
that governs topology conservation is the so-called ‘‘frozen-
in’’ field approximation, which is equivalent to the neglect
of the electric field in the plasma rest frame,

Eþ v� B ¼ 0 ð1Þ

Although (1) appears to be a good approximation most of
the time and over most of the magnetosphere, particularly
when the charged particle motion is dominated by E � B
drift, its temporal and local breakdown by magnetic
reconnection is a crucial element in the transport across
the magnetopause and the release of magnetic energy in the
magnetotail related to substorms. This requires a local
violation of the ideal MHD constraint (1) associated with a
dissipative electric field

E0 ¼ Eþ v� B 6¼ 0 ð2Þ

Many of the investigations of magnetic reconnection there-
fore have focused on the mechanisms for the breakdown of
(1) and the properties of the dissipative electric field E0,
resulting basically from electron inertia effects [Vasyliu�nas,

1975; Lyons and Pridmore-Brown, 1990; Pritchett, 1994;
Hesse and Winske, 1998; Shay and Drake, 1998].
[3] Significantly less attention has been paid to additional

assumptions that enter the one-fluid MHD equations and that
might play an equally important role. These consist of the
assumption of isotropic plasma pressure p and the neglect of
heat flux or, more specifically, the divergence of the heat flux
tensor. Here heat flux represents the third-order moment of
the particle distribution function, representing thermal ener-
gy transport or conduction in the plasma rest frame. The
latter assumptions lead to the adiabatic, i.e., entropy con-
serving law, which may be written as

d

dt

p

rg
¼ 0 ð3Þ

where r is the plasma density and d/dt � @/@t + v 	 r is the
time derivative in a comoving frame. Here g = 5/3 is the
adiabatic constant, appropriate for an isotropic plasma
distribution function (taken in the plasma rest frame).
[4] Frequently, rather than investigating (3), an integral

quantity pVg is used [e.g., Wolf et al., 2006], where V is the
volume of a magnetic flux tube of unit flux, defined by

V ¼
Z

ds

B
ð4Þ

and s is the arc length along a magnetic field line. The
quantity pVg is an entropy measure appropriate for slowly
evolving magnetic flux tubes governed by ideal MHD in
quasi-equilibrium, when p is constant along a field line.
[5] In addition to the breakdown of ideal MHD by local

dissipation, the entropy conservation (3) and its breakdown
may also have important implications for the stability and
evolution of the magnetotail. This is the topic of the present
paper. We note here that, for comparisons with MHD
simulations, our entropy investigation is done within the
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single-fluid approximation, without regards for properties of
particle distribution functions. In section 2 we start out with
a more precise definition of integral conservation laws
applied to magnetic flux tubes and the relation to entropy.
This is followed in section 3 by validity tests based on
comparisons between MHD and particle simulations, com-
plemented by equilibrium results that incorporate entropy
conservation. In section 4 we address the particular role of
entropy conservation for the substorm growth phase based
on results from quasi-static theory and MHD simulations.
As discussed in section 5, the subsequent loss of entropy by
the severance of a plasmoid is relevant for transport and
stability. The entropy loss not only enables depleted flux
tubes to penetrate close to the Earth, but may also permit
ballooning instabilities to provide cross-tail structure and
filamentation.

2. Integral Conservation Laws

2.1. Basic Conserved Quantities

[6] We start out with a discussion of conserved quantities
assuming, at first, the validity of ideal MHD. We use the
frozen-flux theorem to identify moving flux tubes and
assume that there are no losses or gains through the bound-
aries of the system. In that case the mass content of a flux
tube of unit flux, defined by the integral along the field line,

M ¼
Z

rdV ¼
Z

r
ds

B
ð5Þ

is a conserved quantity, i.e., dM/dt = 0. Now let us assume
that the magnetic field can be derived from Euler potentials
a and b via

B ¼ ra�rb ð6Þ

Choosing a gauge in which a and b are constant within a
frame moving with the plasma, M(a, b) is a conserved
function. Using the conservation law (3), one can easily find
that the quantity

S ¼
Z

p1=g
ds

B
¼ S a; bð Þ ð7Þ

is also a conserved function.
[7] The quantity S is related to, but not identical with, the

entropy of a flux tube of an ideal gas. The specific entropy
of an ideal gas, i.e., the entropy per unit mass is given by

s ¼ R ln Cp1=g=r
� �

ð8Þ

where R and C are constants. Then we can find the entropy
S of a flux tube of unit magnetic flux by

S ¼
Z

sr
ds

B
ð9Þ

We note that S, as well as the integral over any arbitrary
function of s, are also conserved quantities in ideal MHD.
[8] If s is initially constant along field lines, then the

frozen-in condition, together with the adiabatic law (3),

ensure that it remains constant along evolving field lines,
and we obtain S = s M. Then we find from (7) and (8)

S ¼ M

C
exp s=Rð Þ ¼ M

C
exp S=MRð Þ ð10Þ

that is, S is a direct function of the entropy S (for given
mass M).
[9] If both, p and r (and hence s) are constant along field

lines we find M = rV, and the quantity S in (7) becomes
identical to

S ¼ p1=gV ð11Þ

equivalent to pVg used by Wolf et al. [2006]. Obviously, the
definition (11) is applicable only in relatively slowly
evolving fields, governed by instantaneous equilibrium, or
at the beginning and the end of a sequence that leads from
one equilibrium to another. However, the quantities S and
S, defined by equations (7) and (9), respectively, remain
well defined and are conserved in ideal MHD, even if the
pressure does not stay constant along field lines.
[10] Now let us assume that initially the specific entropy

is not constant along field lines (for instance, as a result of
reconnection between different plasma populations; see
section 2.4) but that the system eventually relaxes into a
new equilibrium with constant temperature, density, and
entropy density along field lines, while maintaining pressure
balance. Such a relaxation typically involves heat flux along
field lines, not included in standard ideal MHD, and an
increase in entropy S, defined by (9). However, the quantity
S defined by (7) remains conserved if the relaxation does
not involve dissipation and heat loss or gain through the
boundaries of the system or across the magnetic field. In
that case S is a measure of the entropy of the relaxed state
rather than of the instantaneous entropy. This makes it more
useful than the actual entropy for a comparison between
particle simulations, which may include such a relaxation,
and MHD, which usually does not. We note further that the
evaluation of S given by equation (7), rather than any other
function of s, is also advantageous, because it does not
require the knowledge of density and it can be used even in
nonequilibrium. In the following we will denote S as given
by (7) as ‘‘entropy function,’’ but emphasize again that S
may correspond to an upper bound of the entropy (disre-
garding entropy enhancement from dissipation), rather than
the actual entropy.

2.2. Anisotropy

[11] Our investigations of entropy conservation include
comparisons between MHD and particle-in-cell (PIC) sim-
ulations (see section 3). The pressure in the PIC simulations
need not remain isotropic. However, if we postulate a pitch
angle scattering process that isotropizes the pressure (while
conserving energy), which is implied in MHD, then one can
compare the MHD results with a pressure p defined by 1/3
of the trace of the full pressure tensor given by

p ¼ 1

3

X3
j¼1

Pjj ð12Þ
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using the sum of ion and electron pressure. If the pressure is
gyrotropic, this can be written as

p ¼ 1

3
pk þ

2

3
p? ð13Þ

Alternatively one might consider double-adiabatic theory,
which is based on the assumption of gyrotropy and the
neglect of heat flux [Chew et al., 1956]. In that case
equation (3) can be applied when p is replaced by

p ¼ p
1=3
k p

2=3
? ð14Þ

For modest deviations from isotropy the expressions (13)
and (14) give very similar results. In fact in our calculation
of the quantity S for the PIC simulation discussed in section
3 we have found no visible difference between using (13)
and (14).

2.3. Systems With Invariance Along y

[12] In a 2(+1/2)-dimensional system with @/@y = 0 the
magnetic field can be derived from Euler potentials

a ¼ A x; z; tð Þ b ¼ yþ b x; z; tð Þ ð15Þ

such that

B ¼ rA� ŷþ Byŷ By ¼ rA�rbð Þ 	 ŷ ð16Þ

Here ŷ is the unit vector in the y direction and By represents
the so-called ‘‘guide field’’ in the invariant direction. In that
case one obtains the conserved mass M = M(A) and entropy
function S = S(A) as functions of a single flux variable A
(choosing again a gauge in which A is invariant in a
comoving frame, i.e., dA/dt = 0). For finite By one can
identify a further nontrivial quantity which is conserved if
the footpoints of field lines at the boundaries do not move:
the displacement between two footpoints in the invariant
direction y

Y Að Þ ¼
Z

dy ¼
Z

Byds=B ð17Þ

In quasi-equilibrium, By is constant along field lines and
thus (17) can be written as a conservation law similar to (11)

Y Að Þ ¼ ByV ð18Þ

The functions V(A) and By(A) typically change for an
evolution that leads from one equilibrium to another one (or
through a sequence of quasi-static equilibria). However, the
function Y(A) remains conserved if the field line footpoints
remain fixed. We note that a 2.5-D equilibrium is governed
by the Grad-Shafranov equation

r2A ¼ d

dA
m0pþ B2

y=2
� �

ð19Þ

Plasma pressure p and the magnetic pressure of the ‘‘guide
field’’ By therefore play similar roles in governing
equilibrium, described by similar conservation laws.

[13] The conservation of the integral (17) can be identi-
fied with the conservation of magnetic helicity [e.g., Berger
and Field, 1984], A 	 B, integrated along the field line,
where A represents a vector potential defining B = r � A.
This can be seen from a choice of A given by

A ¼ Aŷþ Ap Ap ¼ brAþrF a;bð Þ ð20Þ

which gives the same magnetic field (16) as the Euler
potentials (15). Here F(a, b) is an arbitrary function arising
from the freedom of choosing a gauge for the vector
potential A and we use again a gauge in which a and b are
conserved in a comoving frame. Then we obtain

A 	 B ¼ aBy ð21Þ

Thus the integrated helicity

H a; bð Þ ¼
Z

A 	 B ds

B
¼ a

Z
By

ds

B
ð22Þ

is proportional to the footpoint displacement Y with a factor
a. That means H is also conserved, regardless of the choice
of F(a, b).

2.4. Conservation Laws Under Topological Changes

[14] So far we have considered the conservation laws in
cases without changes in magnetic topology, as satisfied by
ideal MHD. However, these conservation laws can be
extended to include topological changes, as brought about
by reconnection, provided the deviations from ideal MHD
are strongly localized, that is, there is no extended slippage
or dissipation or heat flux across field lines. This is most
easily demonstrated and investigated in simple symmetric
configurations. When field lines are broken and recon-
nected in a configuration with symmetry in x and z, the
mass and entropy on the reconnected field lines are the
sums of two halves and thus the same as before (see Figure 1
for S1(A) = S2(A)).
[15] In an asymmetric case, such as at the magnetopause,

the reconnecting field lines carry plasmas with different
temperature and densities. If we consider again a finite box
with symmetry only in the x direction along the magnetic
field (see Figure 1), mass and entropy functions on recon-
nected field lines become the arithmetic means of the
functions prior to reconnection, assuming again that slip-
page and dissipation are highly localized at the reconnection
site:

M Að Þ ¼ 1

2
M1 Að Þ þM2 Að Þ½ � ð23Þ

S Að Þ ¼ 1

2
S1 Að Þ þ S2 Að Þ½ � ð24Þ

Note that S in this case is not a direct function of the total
entropy, which is given by the integral (9). In the ideal
MHD limit the different entropy densities on the two parts
of a reconnected field line do not equilibrate, whereas in the
kinetic limit the particle motion along the field would cause
such an equilibration, associated with parallel heat flux and
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an entropy increase. If this occurs without energy loss or
gain from the flux tube, the final entropy, after equilibration
of pressure and temperature then again becomes a function
of S given by (24). This has little effect on the magnetic
field configuration, which is determined by the balance of
pressure and magnetic forces. However, it is important for
particle and energy transport along field lines and hence for
entry and loss on field lines that have become reconnected
at the magnetopause.
[16] In the considerations above we have assumed that

M1, M2, S1, and S2 are nonsingular functions of A, given by
the initial configuration. However, considering a standard
x-type magnetic field configuration with regular magnetic
fields (implying finite field and finite derivatives), it is well
known that the flux tube volume (4) diverges logarithmi-
cally on field lines approaching an x point. If we assume
that the density r and the pressure p remain finite in the
vicinity of the x point, this would imply that the integrals of
mass and pressure per unit magnetic flux also diverge on
field lines approaching the x point, contrary to our assump-
tion. How can this apparent contradiction be resolved? Of
course, there is a certain vicinity of the x point where the
assumption of ideal MHD breaks down. However, if we
assume that this vicinity is very small, governed by particle
scales, the discrepancy still exists for the region just outside
this nonideal region. There are two possibilities to maintain
finite mass and entropy integrals. One is that the assumption
of regularity of the magnetic field is violated in the limit in
which the nonideal region approaches zero. This implies
that a derivative of the magnetic field (i.e., the current
density) becomes infinite (although remaining integrable).
This limit indeed seems approached during an evolution

applicable to the substorm growth phase, to be discussed in
section 4. The magnetic field structure in that case assumes
a cusp structure, which, under different conditions, may also
degenerate into two y-type neutral points connected by a
singular current sheet [e.g., Biskamp, 2003; Schindler, 2007,
p. 172]. The other alternative is that density and pressure
approach zero on field lines connecting to the x point, that
is, on the separatrix layers. This alternative, which may be
more difficult to realize for large background pressure,
seems to be approached during the later phase of the
evolution, which in a confined case leads to a new equilib-
rium (as indicated, for instance, by Figure 3).

3. Comparisons Between MHD and Kinetic
Simulations

3.1. Entropy Conservation in the Newton Challenge

[17] The conservation laws discussed in section 2 are
based on ideal MHD, generalized, however, to allow for
changes in topology. In a fully kinetic model, not only the
frozen-in approximation but also entropy conservation may
break down through the development of anisotropy and
effects of dissipation and heat conduction. Birn et al.
[2006a] therefore investigated the conservation of the en-
tropy function (7) in a comparison of a particle simulation
of magnetic reconnection with an MHD simulation. This
study was motivated by a comparative study of forced
magnetic reconnection with various particle and fluid codes,
named the ‘‘Newton challenge’’ [Birn et al., 2005]. In these
simulations, the formation of a thin current sheet and
magnetic reconnection were initiated in a plane Harris-type
current sheet by temporally limited, spatially varying, inflow
of magnetic flux (from top and bottom in Figure 2). All
simulations resulted in surprisingly similar final configura-
tions with a concentration of the current in rings around the
center of the magnetic islands, as illustrated in Figure 2. This
suggested that conservation laws operated similarly in fluid
and particle codes despite the fact that kinetic approaches
include anisotropy, a different dissipation mechanism, and
different waves not included in MHD. This was confirmed
by integrating mass M and entropy function S along field
lines, as functions of the flux variable A obtained from
integrating the magnetic field along the boundary of the
simulation box.
[18] Figures 3a and 3b show mass M and entropy S

obtained in this way from (5) and (7), respectively, as
functions of A, for both MHD (red solid lines) and PIC
simulations (green dashed lines) at late stages of the
simulations, together with the initial distribution (dotted
lines). Figure 3c shows the corresponding pressure varia-
tions, also averaged over the field lines. For the PIC
simulation the pressure p was defined by the trace of the
full pressure tensor, given by (13); however, using (14)
instead made no visible difference.
[19] The mass and entropy functions in Figure 3 show

remarkable agreement with each other and with the initial
distribution, despite the fact that most field lines at the late
times have undergone reconnection. This demonstrates the
absence of slippage and that dissipation leads only to a
minimal increase in the total entropy on a field line. In
contrast, the pressure functions P(A) have changed drasti-
cally from the initial distribution but agree closely between

Figure 1. Magnetic field lines (a) just before and (b) just
after reconnection. In a fully symmetric case the entropy
functions S1 and S2 are identical and S(A) = S1(A) = S2(A),
provided that dissipation is strongly localized. In an
asymmetric case, when S1(A) 6¼ S2(A), S is given by
S(A) = [S (A) + S2(A)]/2 (assuming left-right symmetry).
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MHD and PIC simulations. The small difference is largely
due to the fact that the PIC simulation has evolved slightly
more than the MHD simulation. This can be inferred from
the small local peaks visible in M(A) and S(A). These peaks
are associated with a divergence of the flux tube volume
V(A) on field lines that connect to the x point (assuming that
the magnetic field is regular) and thus indicate the flux
value at the x point. In the PIC simulation this location has
proceeded to slightly larger values of jA|.
[20] Figure 4 demonstrates that the (approximate) conser-

vation of the entropy function S(A) applies not only to the
quasi-equilibrium states approached in the late phase of the
simulation but even during the rapid changes near the time
of fastest reconnection. Close inspection of Figure 4 reveals
a slight increase of S(A) after reconnection, that is, for
A values to the right of the little peaks of S(A). This is the
effect of the dissipation, which is necessary to enable
reconnection, but nevertheless has only minor effect on
the heating.

3.2. Newton Challenge With Guide Field

[21] As mentioned in section 2, in 2.5-D cases with
invariance in the y direction there is another conserved
quantity, the displacement of boundary footpoints Y(A) of
field lines in the y direction, illustrated by Figure 5.
However, it is not obvious that this quantity should be
conserved through reconnection, as suggested by Figure 5.
Figure 6a shows results from simulations of the Newton
challenge problem including an (initially) constant guide

Figure 2. Late magnetic field configurations and current
density (color) for simulations of the Newton challenge
problem [Birn et al., 2005, 2006a]: (a) PIC simulation,
(b) MHD simulation, and (c) a minimum energy equilibrium
for the same entropy function S(A) as for the initial Harris
sheet and a boundary deformation roughly consistent with
the simulations [Zaharia and Birn, 2007].

Figure 3. (a) Mass M, (b) entropy S, and (c) pressure p as
functions of the magnetic flux variable A for MHD (red
lines) and PIC simulations (green dashed lines) of the
Newton challenge problem [Birn et al., 2005] in comparison
to the initial functions (black dotted lines). Also shown is
the pressure function of a minimum energy equilibrium state
based on the initial entropy function (blue dash-dotted line).
Modified after Birn et al. [2006a] and Zaharia and Birn
[2007].
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field with a magnitude of 0.8 (in units of the antiparallel
field component), demonstrating that this is indeed the case
for both MHD and PIC simulations. We note that Y(A)
should diverge at the separatrix when the B field remains
regular. This is evidenced by the local peaks in Y in Figure
6a, which proceed to smaller values of A as reconnection
advances. The guide field functions B(A) (Figure 6b) change
considerably from the initially constant value 0.8. The basic
changes are similar for MHD and PIC; however, the final
functions differ somewhat, probably due to the fact that the
PIC simulation has proceeded farther, i.e., reconnected more
flux, as indicated by the A values at the separatrices.

3.3. Adiabatic Equilibrium States

[22] Figures 2 and 3 also contain results from an equilib-
rium calculation using the entropy function S(A) of the
initial Harris sheet and a boundary deformation consistent
with those in the simulations [Zaharia and Birn, 2007]. An
iteration scheme was used to arrive at a final minimum
energy state with the topology as resulting from reconnec-
tion. Figure 2c shows the same characteristics as the

simulations, although the current density in the rings
appears slightly lower, consistent with a smoothed result
of the simulations. The pressure function p(A) in Figure 3c
also shows a very good agreement with the late simulation
results.
[23] The approximate conservation of the entropy func-

tion S(A), given by (7), and of the displacement Y(A) has
important consequences for the amount of energy that can
be released by reconnection, which is often estimated by
comparing an initial stressed state with a current-free, i.e.,
potential field configuration satisfying the same boundary
conditions as the initial state. This is demonstrated by
Figure 7, which shows the magnetic energy release from
reconnection of an initial Harris sheet for various values of
the polytropic index g. Square symbols show the magnetic
energy of minimum energy states, obtained from the
adiabatic equilibrium approach for entropy conservation
[Zaharia and Birn, 2007], while cross symbols represent
late MHD simulation results. The results were obtained for
a box that was twice as wide in z as the box of the Newton
challenge simulations but without boundary perturbations.
The amount of energy released clearly depends on the value
of g, that is, on the thermodynamic model. Incompressible
models (g ! 1) release the smallest amount of energy,
while isothermal models (g = 1) release significantly more,
due to the (implied) assumption of infinite thermal conduc-
tivity. For comparison, the magnetic energy of a potential
field with the same boundary conditions is Wpot � 12. Thus

Figure 4. Entropy function S for a PIC simulation of the
Newton challenge problem [Birn et al., 2005] for three
different times; t = 64 corresponds to the time of fastest
reconnection.

Figure 5. Schematic of magnetic field lines (a) just before
and (b) just after reconnection in the presence of a guide
field By.

Figure 6. (a) Footpoint displacement Y and (b) guide field
By as functions of the magnetic flux variable A for MHD
(red lines) and PIC simulations (blue lines) of a Newton
challenge problem with initially uniform guide field, in
comparison to the initial functions (dotted lines).
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the energy release under more realistic adiabatic constraints
is significantly lower than an estimate based on the excess
energy over a potential field or the field governed by the
same pressure function p(A) as the Harris sheet. Releasing
this additional amount of energy requires conduction across
field lines, losses through the boundaries, collisions, and/or
radiative losses. All of these are small in magnetospheric
reconnection but may play a more significant role for solar
flare energy releases, albeit on a time scale that is much
larger than that of the initial, impulsive phase.

4. Substorm Growth Phase: Thin Current Sheet
Formation, Loss of Equilibrium

[24] Entropy conservation apparently plays a crucial role
in governing the substorm growth phase and the evolution
of the magnetotail toward instability or loss of equilibrium.
Erickson and Wolf [1980] and Schindler and Birn [1982]
investigated the possibility of steady, adiabatic, i.e., entropy
conserving, convection in the magnetotail and concluded
that earthward transport of magnetic flux tubes would lead
to an unrealistically large pressure buildup in the near tail.
They suggested that sunward convection in the tail therefore
should be time-dependent, leading into a sudden, nonadia-
batic release associated with substorms.
[25] More recently, Birn and Schindler [2002] investigated

the quasi-static response of the magnetotail to a deformation
of the magnetopause boundary. Using two-dimensional mag-
netohydrostatic equilibrium theory, together with flux, en-
tropy, and topology conservation (equivalent to ideal MHD
for slow, quasi-static, evolution), they demonstrated that a
finite boundary deformation of magnetotail equilibria can
lead to a critical state at which neighboring equilibria that
satisfy the constraints cease to exist. The critical state is
characterized by a strong local current density enhancement,
that is, the formation of a thin current sheet. These results
were confirmed by (ideal) MHD simulations, including also
three-dimensional configurations [Birn et al., 2004a] and

tailward propagating boundary deformations [Birn et al.,
2003].
[26] Figure 8 illustrates the major result. Figure 8a shows

a configuration near the critical state, characterized by a thin
sheet with strongly enhanced current density (color) em-
bedded in the plasma sheet. This sheet bifurcates into two
sheets toward the Earth (to the left in Figure 8). Figure 8b
shows the maximum current density in the tail as a function
of the amplitude a of the boundary indentation, which
diverges at a finite value of a. The two curves correspond
to two different scales of the deformation along the x
direction, given by the parameter Dp, where larger Dp
corresponds to a larger scale in x. This demonstrates that the
critical limit depends not only on the amplitude of the
boundary perturbation but also on the scale length.
[27] The strong current density enhancement associated

with the critical state obviously renders the tail unstable to
current-driven instabilities and magnetic reconnection.
These results thus provide a very strong argument that slow
adiabatic deformations of the magnetotail resulting from the
solar wind interaction can drive the magnetotail into a
‘‘catastrophe’’ or the onset of instability, regardless of
how dissipation sets in near the critical state. These results
also demonstrate the close relationship between external
perturbations imposed by the solar wind and the formation
of a thin current sheet, although the direct association with
an external trigger, such as the northward turning of the
interplanetary magnetic field [e.g., McPherron et al., 1986;
Lyons, 1996], could not be verified yet.
[28] The results discussed so far are based on ideal MHD

theory and simulations, with entropy conservation (3), or in

Figure 8. Response of the magnetotail to adiabatic
deformation [Birn and Schindler, 2002]: (a) magnetotail
configuration near the critical limit, consisting of a thin
embedded current sheet (color scale) that bifurcates toward
the Earth (to the left) and (b) maximum current density as
function of the amplitude a of the boundary indentation for
two scaling parameters Dp.

Figure 7. Magnetic energy release from reconnection of
an initial Harris sheet for various values of the polytropic
index g, showing the magnetic energy of the final
reconnected state, obtained for entropy conservation (square
symbols), in comparison to late MHD simulation results
(cross symbols). After Zaharia and Birn [2007].
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integral form (7), imposed. However, when the current sheet
thickness approaches typical ion scales, the MHD approx-
imations break down and a more rigorous kinetic approach
becomes necessary. Such an approach, using the Vlasov
formalism, has been outlined by Schindler [2007, section
8.5], for two-dimensional equilibria, replacing the invari-
ance of the entropy function with the invariance of phase
space volume. For the limit of small gyroradii Schindler
[2007] demonstrated the equivalence of this approach with
the fluid approach. Models based on gyro-averaged motion,
including pitch angle scattering to maintain pressure isotro-
py, gave similar results to ideal MHD [Wolf, 1983; Garner
et al., 2003]. Although a full generalization to collisionless
plasmas is not available, the comparisons between MHD
and PIC simulations, discussed in section 3, further support
the view that the ideal MHD adiabatic constraint (7)
remains a good approximation even when the current sheet
thickness approaches ion scales.
[29] Another question is whether, during the adiabatic

deformation, the tail remains stable to ideal MHD instabil-
ities until the critical threshold is reached. The most relevant
ideal MHD instability is the ballooning mode, driven by
‘‘unfavorable’’ pressure gradients in the direction of the
curvature vector of field lines, which is satisfied for typical
magnetotail equilibria. However, compressibility provides a
stabilizing term so that the stability properties are not

obvious. Both stable [e.g., Lee and Wolf, 1992; Lee, 1999]
and unstable cases [e.g., Bhattacharjee et al., 1998; Miura,
2001; Cheng and Zaharia, 2004] have been found. The
analysis by Schindler and Birn [2004] indicated that, at least
in the ideal MHD limit for 2D equilibria, differences in
stability can be attributed to differences in the underlying
equilibrium. The criterion for ballooning instability can be
linked to a general interchange stability criterion that
involves the variation of flux tube entropy S [e.g., Bernstein
et al., 1958; Schindler and Birn, 2004]. The conclusion is
that typical tail equilibria, for which the pressure decreases
monotonically down the tail, are stable when the entropy
measure S = p1/gV increases monotonically. The conserva-
tion of the entropy function S(A) then insures that a
configuration that is initially stable, corresponding to a
monotonic increase in S, remains stable as long as the
topology does not change, that is, until the critical state is
reached or nonideal instability sets in, driven by the current
intensification.

5. Entropy Loss From Plasmoid Ejection,
Propagation of Bubbles

[30] The results discussed in section 4 demonstrate the
important role of entropy conservation in governing the
substorm growth phase and leading to onset of instability or
loss of equilibrium. The strong current density enhancement
associated with this process can be expected to initiate
reconnection, regardless of the details of the dissipation
mechanism, causing the pinching off of field lines and the
ejection of a plasmoid. The severance of parts of closed
field lines reduces the entropy content of the shortened
parts. This has two important consequences: (1) the entropy
depletion is an important factor in permitting the penetration
of depleted magnetic flux tubes (‘‘bubbles’’) closer to the
Earth [Pontius and Wolf, 1990; Chen and Wolf, 1993, 1999;
Birn et al., 2004b] and (2) the entropy loss changes the
entropy function S(A) and generates a localized decrease
which enables the unstable growth of ballooning modes and
provides smaller-scale cross-tail structure to the earthward
collapsing field lines [Birn et al., 2006b].
[31] Using three-dimensional MHD simulations, Birn et

al. [2004b] investigated the propagation of low-entropy
bubbles in the magnetotail, generated by a localized reduc-
tion of pressure. This mechanism apparently differs from
the severance process, which is expected to reduce the
volume of a flux tube without (initially) changing the
pressure. However, using the simulations of Birn et al.
[2004b], we found that after a rapid adjustment to the initial
force imbalance, the reduced-entropy flux tubes assume a
reduced volume while the pressure increases to reestablish
approximate force balance. This is demonstrated by Figure 9,
which shows the initial variation of the flux tube volume V
and pressure p along the x axis (dotted lines) together with the
variations after one Alfvén time (solid lines), equivalent to a
few seconds.
[32] Birn et al. [2004b] also confirmed that the depletion

is crucial in permitting the earthward propagation of a
bubble. Figure 10a illustrates this result by a comparison
of three simulations, one starting with a depleted flux tube
(solid line), one with additional added initial earthward
momentum (dashed line), and one with initial momentum

Figure 9. Variation of (a) flux tube volume V and (b)
pressure along the x axis after relaxation of an initial
pressure depletion of a localized flux tube. The dotted lines
show the initial variation; the solid lines show the variation
after one Alfvén time. Based on the simulations of Birn et
al. [2004b].
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but without depletion (dotted line). Obviously, simple
acceleration without depletion does not lead to significant
earthward propagation, whereas the two depleted flux tubes,
after some initial phase, show similar evolution and prop-
agation toward Earth. This result can be considered as the
consequence of interchange instability, originally postulated
by Pontius and Wolf [1990]. Figure 10b demonstrates that
the penetration to Earth depends on the entropy reduction,
here imposed by a pressure reduction. More strongly
depleted flux tubes obviously penetrate closer.
[33] The dependence of the depth of penetration on the

amount of depletion may also affect the average mass and
entropy variation. Since field lines with lower mass and
entropy content may penetrate closer to Earth than those
with higher content, the observed average decrease of mass
and entropy content toward the Earth [Borovsky et al., 1998;
Kaufmann et al., 2004] even earthward of the typical near-
Earth reconnection site at �20RE distance downtail may be
the consequence of such spatial variation of deposition,
rather than result from a nonadiabatic energy loss mecha-
nism or from precipitation into the ionosphere. Such a
spatial variation in deposition may even result from a single

event. Let us consider the progress of reconnection in the
near tail from the central plasma sheet to lobe field lines.
When the location of reconnection stays roughly the same
in the near tail, the major temporal change of the entropy
function S for newly reconnected field lines stems from the
decrease of pressure while the flux tube volume changes
very little. Therefore field lines that are reconnected later
have lower mass and entropy content and can therefore
penetrate closer to Earth than those reconnected earlier.
[34] In the discussion above we have focused on the

behavior of single flux tubes. However, the change of the
stability properties of the tail to ballooning or interchange
modes, resulting from the plasmoid loss, may also contrib-
ute to the structuring of the depleted region in the cross-tail
direction [e.g., Sergeev et al., 1996]. This effect was
demonstrated by Birn et al. [2006b]. It is illustrated by
Figure 11, which shows the earthward flow speed (color
scale) and the depleted region associated with a propagating
bubble at three different times in the x,y plane. These plots
demonstrate that the bubble, which originally consists of a
single connected flux tube, breaks apart into several pieces
of flux tubes. This is presumably the result of ballooning
modes with a wave structure in the cross-tail direction.

6. Summary and Discussion

[35] We have discussed how entropy conservation and the
loss of entropy might affect the evolution of the magneto-
tail, particularly in relation to substorms, including the
growth phase, onset, and substorm expansion. Results from
quasi-static theory and MHD simulations demonstrated how
entropy conservation, together with flux and topology
conservation, may govern the growth phase evolution
toward a loss of equilibrium in response to perturbations
imposed by the solar wind. The critical state at which this
takes place is characterized by the formation of a very thin
intense current sheet embedded within the thicker plasma/
current sheet. This strong current density intensification
suggests the onset of instability or a catastrophe, that is,
loss of equilibrium, regardless of the dissipation mecha-
nism, which then leads to the onset of reconnection and
plasmoid formation and ejection.
[36] The subsequent loss of entropy by the severance of a

plasmoid may affect the dynamic evolution in two ways. As
suggested by Pontius and Wolf [1990] and confirmed by 3D
MHD simulations [Birn et al., 2004b], the loss of entropy is
essential in enabling depleted closed flux tubes (bubbles) to
penetrate to the inner magnetosphere closer to Earth. Here
we further demonstrated that the penetration depth, and thus
the location where depleted flux tubes are deposited,
depends on the amount of depletion. This might explain a
statistical decrease of the mass and entropy content of
magnetic flux tubes from the tail reconnection site toward
the Earth [Borovsky et al., 1998], even without the need for
losses to the ionosphere. In addition, the entropy reduction
may change the stability properties of the tail, enabling
interchange or ballooning instabilities. Such instabilities
may then be responsible for providing cross-tail structure
and filamentation of bubbles or localized fast flow bursts in
the tail [e.g., Goertz and Baumjohann, 1991; Sergeev et al.,
1996].

Figure 10. Earthward penetration of entropy-depleted flux
tubes (bubbles), showing the equatorial intersection x0 as
function of time (a) for pressure reduction but no initial
velocity (solid line), pressure reduction and initial velocity
(dashed line), no pressure reduction but finite initial velocity
(dotted line), and (b) for various amplitudes of initial
pressure (and entropy) reduction. Based on the simulations
of Birn et al. [2004b].
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[37] These results are based on conservation of an entropy
integral (7) applied to magnetic flux tubes, which is im-
posed in the MHD model. However, as demonstrated by the
comparison between MHD and full particle simulations, the
integral entropy measure is well conserved on moving flux
tubes in particle simulations as well, even during rapid
evolution, providing credence to the results of the MHD
simulations. The (approximate) conservation of this entropy
function, even through the reconnection process, is a
consequence of the strong localization of Joule dissipation
(given by j 	 E0, where E0 = E + v � B) and of the lack of
significant slippage and heat flux across the magnetic field.
We note here that the agreement between the entropy
conservation in fluid and particle simulations was obtained
for two-dimensional configurations and does not necessarily
remain valid in three dimensions. Also the agreement was
shown for an evolution on relatively short, Alfvénic, time

scales. For variations on longer time scales, the single-fluid
entropy conservation might become violated, for instance,
as a result of energy-dependent particle drifts across the
magnetic field.
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