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Parametric decays of a left-handed circularly polarized Alfv�en wave propagating along a constant

background magnetic field in a relativistic thermal electron-positron plasma are studied by means of a

one dimensional relativistic particle-in-cell simulation. Relativistic effects are included in the Lorentz

equation for the momentum of the particles and in their thermal motion, by considering a Maxwell-

J€uttner velocity distribution function for the initial condition. In the linear stage of the simulation, we

find many instabilities that match the predictions of relativistic fluid theory. In general, the growth

rates of the instabilities increase as the pump wave amplitude is increased, and decrease with a raise in

the plasma temperatures. We have confirmed that for very high temperatures the Alfv�en branch is

suppressed, consistent with analytical calculations. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4867255]

I. INTRODUCTION

There are several environments in which relativistic

electron-positron plasmas are relevant. Examples of these

environments are high-energy astrophysical plasmas such as

pulsar magnetospheres,1,2 active galactic nuclei,3,4 gamma-ray

bursts,5,6 and models of early universe.7,8 Recently, electron-

positron plasmas have become relevant in laboratory plasmas

by means of ultra-intense lasers9 and tokamaks.10,11

Several effects in these plasmas are related to wave prop-

agation, such as the proposed pulsar radio emission proc-

esses,12 bulk acceleration of relativistic jets,13 and quasar

relativistic jets,14 among others. When these plasmas have

strong magnetic fields, Alfv�en waves should play a fundamen-

tal role, e.g., they are the ubiquitous byproduct of magnetic

reconnection in space, astrophysical and laboratory plasmas

as evidenced by in situ spacecraft observations in the solar

wind.15–17 Recently, there is a growing interest in the study of

these Alfv�en waves in relativistic electron-positron plasmas,

not only related to magnetic reconnection18–22 but also their

nonlinear evolution as a general scientific problem, motivated

by potential applications in astrophysics and laboratory

environments.14,23–26

For example, in the magnetosphere of pulsars, particu-

larly in millisecond pulsars, there must be large electric

fields that can accelerate charged particles along the mag-

netic field. In these environments, the particle number den-

sity is expected to be of order 1017 cm�3, with magnetic

fields of order B � 1012 G,27 values which can increase by

an order of magnitude under dynamical situations.28 In mag-

netars, where B > 4� 1013 G, number density can be even

larger, due to other important effects in the production of

electron-positron pairs, such as photon splitting in a strong

magnetic field2 or electron-positron pair annihilation into a

photon in the presence of a strong magnetic field.29 For

instance, Da Costa et al.30 used a value of ne ¼ 1017 cm�3,

while Matsukiyo and Hada31 used X2=x2
pe ¼ 0:1 with

X ¼ eB=mc and xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2=m

p
.

Given the extreme conditions of these environments, it

becomes important to study the nonlinear evolution of these

Alfv�en waves. In electron-positron plasmas, the parametric

decays of a circularly polarized Alfv�en waves have been

studied in the weakly relativistic limit by means of two fluid

theory32 and particle-in-cell (PIC) simulations.33 It has been

found that the successive parametric instabilities result in

turbulent wave forms. Using particle-in-cell simulations, the

long time evolution of parametric instabilities of large ampli-

tude Alfv�en waves has been studied for an electron-positron

plasma,31 where the successive parametric instabilities de-

velop in an efficient particle acceleration process. In these

papers, the authors consider a nonrelativistic temperature re-

gime. However, in the astrophysical and laboratory environ-

ments mentioned above, the effects of relativistic

temperatures may play a very important role,34 as suggested

by the analytical results of a relativistic two fluid thermal

electron-positron plasma.35 Hence, in the present paper we

study the parametric instabilities of a circularly polarized

Alfv�en wave in a fully relativistic thermal electron-positron

plasma by means of a one dimensional particle-in-cell simu-

lation. The results are compared with the analytical solutions

obtained in Ref. 35 for a two fluid thermal electron-positron

plasma. Here, the relativistic temperature effects are

included by means of a Maxwell-J€uttner velocity distribution

for the initial condition.

The paper is organized as follows. In Sec. II, a review of

the parametric decays of a left-handed circularly polarized

Alfv�en wave in a relativistic electron-positron plasma is

briefly presented. This review is based on the results of

Ref. 35. In Sec. III, the numerical particle-in-cell simulation

used is described. Then, in Sec. IV, the results of thea)rlopez186@gmail.com
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simulation are presented and compared with the fluid model

predictions. Finally, in Sec. VI, results are summarized and

conclusions are outlined.

II. PARAMETRIC DECAYS

In Ref. 35, the authors studied the parametric decays of

a left-handed circularly polarized Alfv�en wave in a relativis-

tic thermal electron-positron plasma, propagating along a

constant background magnetic field. The exact dispersion

relation for the pump wave was calculated within the context

of a relativistic fluid theory.36 Since the pump wave has left-

handed polarization, the electromagnetic fields can be writ-

ten as

~E0ðX; tÞ ¼ E½sinðk0X � x0tÞŷ � cosðk0X � x0tÞẑ�; (1)

~B0ðX; tÞ ¼ B½cosðk0X � x0tÞŷ þ sinðk0X � x0tÞẑ� þ B0XX̂;

(2)

where E and B are the amplitude of the monochromatic elec-

tromagnetic wave, x0 and k0 are its frequency and wave

number, respectively, and B0X is the constant background

magnetic field. This circularly polarized electromagnetic

wave is an exact nonlinear solution of the fluid equations,

with the corresponding purely transverse quiver velocities

given by

v?0j ¼ vy0j þ ivz0j ¼ �gj

x0 a
f0jc0jx0 � Xcj

� �
eiðk0X�x0tÞ; (3)

where j is the species index (j¼ e for electrons and j¼ p for

positrons), ge ¼ �1; gp ¼ 1; c0j ¼ ð1� jv?0jj2=c2Þ�1=2
is

the relativistic factor, and Xc � Xcp ¼ �Xce is the positron

gyrofrequency. The normalized pump wave amplitude is

a ¼ eA=ðmc2Þ, where A is the amplitude of the vector poten-

tial of the wave. We can write a in terms of E or B, using

Eqs. (1), (2), and Maxwell’s equations. Finally, fj is a relativ-

istic thermal factor which is related to the temperature by

fj ¼ K3ðljÞ=K2ðljÞ (for a Maxwell-J€uttner relativistic distri-

bution), where lj ¼ mc2=ðkBTjÞ, and K2 and K3 are the modi-

fied Bessel functions of order 2 and 3, respectively.

The exact dispersion relation for the pump wave is given

by

x2
0 � c2k2

0 ¼ x2
pe

x0

f0c0ex0 þ Xc
þ x0

f0c0px0 � Xc

� �
; (4)

where x2
pe ¼ 4pne2=m is the electron plasma frequency,

with n0e ¼ n0p ¼ n as the electron/positron density in the

lab frame. We have assumed thermal equilibrium, so that

T0e ¼ T0p ¼ T0 is constant, hence l0e ¼ l0p ¼ l0 is also

constant, and also f0e ¼ f0p ¼ f0. In Fig. 1, we show the dis-

persion relation for the pump wave equation (4) for various

values of a. There are four branches: two electromagnetic

branches, with a lower cutoff at the effective plasma fre-

quency; and two Alfv�en branches, which have an upper cut-

off in frequency, and for a 6¼ 0, an upper cutoff in wave

number.

Now we introduce small longitudinal perturbations of

the form expðikX � ixtÞ on the zeroth order solution given

by the pump wave described above. The perturbations are

for the fields, densities, velocities, and temperatures of each

species. After some calculation, we get the nonlinear dis-

persion relation for the longitudinal perturbations [Eq. (36)

in Ref. 35]. When there is no pump wave, a ¼ 0, the dis-

persion relation for the longitudinal perturbations yields the

normal linear modes that propagate in the plasma. In this

limit, it is not difficult to show that the dispersion relation

becomes

FSDðk;xÞ ¼ DþD�SL ¼ 0; (5)

where

S ¼ �x2 þ v2
s k2; (6)

L ¼
2x2

pe

f0

� x2 þ v2
s k2; (7)

Dþ ¼ x2
þ � c2k2

þ � x2
pe

xþ
f0xþ � Xc

þ xþ
f0xþ þ Xc

� �
; (8)

D� ¼ x�2� � c2k�2� � x2
pe

x��
f0x�� � Xc

þ x��
f0x�� þ Xc

� �
: (9)

Here, xþ ¼x0þx;x� ¼x0�x�; kþ ¼ k0þ k; k� ¼ k0�k�,
and

v2
s ¼

1

f0l0

f 0j ðl0Þl2
0

1þ f 0j ðl0Þl2
0

 !
;

where f 0 ¼ df=dl. This is the effective sound velocity for

the relativistic case. Equation (5) shows that the normal

modes correspond to an electroacoustic wave (given by

S¼ 0), Langmuir waves (L¼ 0), and sideband electromag-

netic waves (D6 ¼ 0). In the presence of the pump wave

(a 6¼ 0), these normal modes couple and give rise to the para-

metric decays.

FIG. 1. Dispersion relation for the pump wave equation (4). Normalized

wave number y ¼ ck=Xc vs. normalized frequency x ¼ x=Xc for xpe=Xc

¼ 1 and 1=l ¼ 0:01. Solid black line: a ¼ 0; dashed blue line: a ¼ 0:1;

dotted red line: a ¼ 0:2.
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The dispersion relation, Eq. (36) in Ref. 35, is solved

numerically for the parametric decays. For a given value of a
and l, we choose a value of the normalized wave number of

the pump wave, y0 ¼ ck0=Xc, and we solve the dispersion

relation of the pump wave, Eq. (4), to get the normalized

pump wave frequency, x0 ¼ x0=Xc.

In Fig. 2, we show the solutions for the dispersion rela-

tion for a pump wave in the Alfv�en branch. We choose

y0 ¼ 0:49; xpe=Xc ¼ 1, and l ¼ 100. We solve the disper-

sion relation for a ¼ 0, which is equivalent to solve Eq. (5).

There are 12 lines, two of which correspond to the electroa-

coustic modes that are real solutions of S¼ 0. They are la-

beled as Sþ and S�, corresponding to the forward and

backward propagating modes, respectively. Two other lines

correspond to the Langmuir modes given by L¼ 0, and la-

beled as Lþ (forward) and L� (backward). The other eight

lines correspond to the eight real solutions of D6. Four of

these lines are parabolic and correspond to the usual electro-

magnetic branches in a relativistic plasma.36 They are la-

beled as D6 in Fig. 2. The two lines p6 also correspond to

solutions of D6, but they resonate at the sideband frequency

x6 ¼ Xc=f0, which in the cold case is the positron gyrofre-

quency [see Eqs. (8) and (9)]. In terms of the normalized lon-

gitudinal frequency x ¼ x=Xc, the resonance occurs at

x ¼ 6ð�x0 þ 1=f0Þ, as shown in Fig. 2. Similarly, e6 are the

two solutions which resonate at the sideband frequency

x6 ¼ �Xc=f0 (which in the cold limit, is the electron gyro-

frequency), that is, at x ¼ 6ð�x0 � 1=f0Þ.

III. SIMULATION SETUP

We have performed a fully relativistic one dimensional

PIC simulation, in which we solve the momentum equations

of both electrons and positrons in the self-consistent electric

and magnetic fields obtained from a solution of Maxwell’s

equations. Relativistic effects have been included in the

Lorentz equation for the particles momentum and in their

thermal motions, by considering a Maxwell-J€uttner velocity

distribution function37 for the initial condition, namely,

f ðuÞ ¼ l
c3K2ðlÞ

exp �l 1þ u2

c2

� �1
2

" #
; (10)

where u ¼ cv is the relativistic momentum per unit mass.

The simulation has only one spatial dimension x and

three velocity dimensions are retained. We set the magnetic

field in the X direction, so that we study the parallel wave

propagation. The spatial boundary conditions for the system

are periodic. The details of the simulation are described in

Refs. 38–40.

To study the parametric decays of the left-handed circu-

larly polarized Alfv�en wave, we choose a pump wave with a

normalized wave number y0 ¼ 0:49, and solve the pump

wave dispersion relation Eq. (4) to get the normalized fre-

quency x0 ¼ 0:27 for the pump wave at the Alfv�en branch.36

We set the initial electromagnetic fields according to Eqs.

(1) and (2), and the initial fluid velocity given by Eq. (3).

The initial temperature of the system is set assuming Eq.

(10). The system size is L ¼ 512 c=xpe, the number of grid

points is ng ¼ 2048, and the time step xpeDt ¼ 0:01. We

have used the same number of electron and positrons, with

ne ¼ np ¼ 1000, initially in each grid. The current J and the

charge density q at a given position and time are computed

using the particle-in-cell method39,40 with a second order

interpolation function.

IV. SIMULATION RESULTS

With the setup described in Sec. III, we run the simula-

tion with an initial pump wave of amplitude a ¼ 0:2 and

y0 ¼ 0:49, until xpet ¼ 1310:72, which allows us to have a

power of two for the number of iterations. In Fig. 3, we show

the spatiotemporal evolution of the By component of the

magnetic field. In the early stage of the simulation,

xpet � 400, we only see the presence of the pump wave with

a propagation speed that is consistent with the dispersion

relation equation (4). At around xpet � 400, the instabilities

start to grow as we observe excited waves that begin to prop-

agate in the opposite direction to the original pump wave. At

the end of the simulation, these excited waves become prop-

agating localized structures.

Figure 4(a) shows the power spectrum for the transverse

magnetic field fluctuations, for the period 0 	 xpet 	 1310:72.

In this figure, it can be seen the typical dispersion relation for

this relativistic plasma with Alfv�en and electromagnetic

branches (growing from the thermal noise), plus some regions

FIG. 2. Solution of the dispersion relation equation (36) in Ref. 35.

Normalized wave number y ¼ ck=Xc vs. normalized frequency x ¼ x=Xc

for y0 ¼ 0:49; xpe=Xc ¼ 1; 1=l ¼ 0:01, and a ¼ 0.

FIG. 3. Spatiotemporal evolution of the y component of the normalized

magnetic field. Normalized time xpet vs. normalized space Xxpe=c, for

l ¼ 100; a ¼ 0:2; xpe=Xc ¼ 1; y0 ¼ 0:49.
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where the power is concentrated as we now describe in detail.

We note that we can eliminate a lot of the numerical noise in

this figure by running several simulations with the same param-

eters, but with different seeds for the initial velocity distribution,

and taking average over the results of the simulations. In Fig.

4(b), we plot the average over 16 simulations for the power

spectrum of the transverse magnetic field fluctuations. The

main behavior shown in Fig. 4(a) is retained in this figure,

which means that it is a robust behavior in the simulation. The

numerical noise has been reduced considerably, giving rise to a

much smoother figure. From now on, we will use the average

quantities for the analysis.

Since the pump wave is a left-handed circularly polar-

ized Alfv�en wave, the first quadrant of the dispersion relation

in Fig. 4 shows the left-handed forward propagating waves

(Lf ), while the second quadrant shows the left-handed back-

ward propagating waves (Lb). The third and fourth quadrants

show the right-handed forward and backward propagating

waves, respectively (Rf ; Rb). According to Fig. 4, most of

the power resides at the Alfv�en branch in the first quadrant

ðy; xÞ � ð0:49; 0:27Þ, which corresponds to the pump wave

Lf . We also observe Lb around ðy; xÞ � ð�0:49; 0:27Þ and

Rb ðy; xÞ � ð0:49;�0:27Þ Alfv�en waves in second and fourth

quadrants, respectively, but the Rf (third quadrant) is not

excited.

We decompose the wave data obtained in Fig. 3, into

two spiral modes with positive and negative helicity (corre-

sponding to positive and negative wave numbers, respec-

tively) as done in Ref. 41. Therefore, the spiral mode Br
y with

positive helicity (k > 0) consists of Lf and Rb waves propa-

gating forward and backward, respectively. On the other

hand, the spiral mode Bl
y with negative helicity (k < 0) con-

sists of Rf and Lb waves. In Fig. 5, we show the decomposi-

tion of By into the two spiral modes. Figure 5(a) shows Br
y,

where we can clearly see the presence of the pump wave,

which is a Lf wave with y0 ¼ 0:49 (i.e., 40 modes in the box

with length L ¼ 512 c=xpe). Less clear is the presence of the

Rb wave, as we saw in the fourth quadrant of Fig. 4. Figure

5(b) shows Bl
y. Here, we note the presence of the Lb wave as

expected, while the Rf wave is very weak (as we saw in the

third quadrant of Fig. 4). Note that at the beginning of the

simulation there is no wave present in Fig. 5(b) since the sys-

tem is started with a pump wave Lf .

In order to compare the simulation results with the ana-

lytical ones, obtained using a relativistic fluid model in Ref.

35, we plot in Fig. 6(a) the dispersion relation of the para-

metric decays in the fluid model, for a ¼ 0:2. We can see

from Fig. 2 (a ¼ 0) that there are several possible crossings

between solutions of the dispersion relation. At these cross-

ings, complex solutions can appear when a 6¼ 0. The pres-

ence of complex solutions with positive imaginary frequency

implies the presence of unstable waves, corresponding to the

parametric decays of the pump wave. The real part of the

complex solution with positive imaginary frequency has

been plotted as a dotted (red) line in Fig. 6(a). We observe,

from the analytical solution, that only three crossings have

developed instabilities. The first crossing is a modulational

instability42 close to the origin between ðpþ; e�Þ [see Fig. 2].

The second crossing is between ðSþ; p�Þ and corresponds to

an ordinary decay instability, in which the pump wave

FIG. 4. (a) Power spectrum for the transverse magnetic field fluctuations.

Normalized frequency x ¼ x=Xc vs. normalized wave number y ¼ ck=Xc,

for l ¼ 100; a ¼ 0:2, xpe=Xc ¼ 1; y0 ¼ 0:49. (b) Same plot as before, but

taking average over 16 simulations.

FIG. 5. Spatiotemporal evolution of the y component of the normalized

magnetic field. Normalized time xpet vs. normalized space Xxpe=c, for

l ¼ 100; a ¼ 0:2; xpe=Xc ¼ 1; y0 ¼ 0:49. (a) Positive helicity Br
y, showing

Lf andRb waves. (b) Negative helicity Bl
y, showing Lb andRf waves.
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decays into a forward propagating electroacoustic mode of

frequency and wave number ðx; kÞ and a sideband wave

with ðx��; k��Þ ¼ ðx0 � x; k0 � kÞ. Finally, the third crossing

is between ðpþ; p�Þ, in which the pump wave decays into

sideband waves pþ with ðx; kÞ ¼ ðx0 þ x; k0 þ kÞ and p�.

In Fig. 6(a), we see that the instabilities occur at ðx; yÞ
� ð0; 0:1Þ; ðx; yÞ � ð0:1; 0:8Þ, and ðx; yÞ � ð0:25; 0:53Þ,
respectively.

In Fig. 6(b), we have plotted the power spectrum for the

normalized density fluctuations q2=ðen0Þ2 (taking average

over 16 simulations). Comparing this figure with Fig. 6(a),

we can identify many of the modes predicted by the fluid

model; some of them are more damped than others. There is

a clear peak in the power spectrum in the region

0:8 < y < 1, for x � 0:1, which is consistent with the predic-

tion of the fluid model for the ordinary decay instability of

ðSþ; p�Þ. As we said before, the electromagnetic sideband

wave p� has normalized frequency and wave number

ðx0 � x; y0 � yÞ. Remembering that the pump wave is

ðx0; y0Þ ¼ ð0:27; 0:49Þ and that the instability occurs at

ðx; yÞ � ð0 � 0:1; 0:8 � 1Þ, then in the electromagnetic

power spectrum there should be a peak in the range

ð0 � 0:17;�0:31 � �0:51Þ, which is consistent with Fig. 4.

Therefore, the sideband wave p� is the left-handed backward

propagating wave (Lb) shown in Fig. 5(b). The

electroacoustic mode Sþ has frequency and wave number

ðx; yÞ � ð0 � 0:1; 0:8 � 1Þ.
The modulational instability ðpþ; e�Þ predicted in Fig.

6(a) has a lower growth rate compared with the instability at

ðSþ; p�Þ [see Ref. 35 or Fig. 9(a) below], hence its effect is

not relevant in Fig. 6. The same occurs for the instability at

ðpþ; p�Þ. Notice that a strong signal at ðx; yÞ ¼ ð�1:5; 1Þ is

also observed in Fig. 6(b), a feature which is not present in

the fluid model and which may be due to kinetic effects or

nonlinear couplings not considered in our model (notice that

our initial condition for the simulation is exact for the fluid

theory, but not for the kinetic one).

The temporal evolution of the wave number modes can

be seen in Fig. 7. We can observe that for the transverse mag-

netic fluctuations, Fig. 7(a), the pump wave at y ¼ 0:49 is the

strongest mode. In the linear stage of the simulation, up to

xpet � 300, the modes at y � �0:3 � �0:5 start to grow,

which correspond to the mode p�, as we saw before. At about

the same time, the evolution of the density fluctuation modes,

Fig. 7(b), shows growing modes at y � 0:8 � 1, correspond-

ing to the Sþ mode. Modes close to y � 0:49 in Fig. 7(a) may

correspond to the modulational instability ðpþ; e�Þ at ðx; yÞ
� ð0; 0:1Þ in Fig. 6(a), because pþ and p� satisfy the match-

ing condition at y0 þ y � 0:5 and y0 � y � 0:48, respectively.

At the end of the simulation, xpet � 900 the mode at y � 1 is

slightly excited in Fig. 7(a); this may correspond to the mode

pþ of the decay ðpþ; p�Þ at ðx; yÞ � ð0:25; 0:53Þ in Fig. 6,

with wave number y0 þ y � 1:02. We observe in Fig. 7(a)

that at this time there are other active modes in the simulation,

which are not expected according to the fluid model. In fact,

also in Fig. 6(b), which shows the dispersion relation for the
FIG. 6. Dispersion relation x vs. y, for l ¼ 100; a ¼ 0:2; xpe=Xc ¼ 1;
y0 ¼ 0:49. (a) Fluid theory, Eq. (32) in Ref. 35. Dotted lines represent the real

part of the solution when it is complex. (b) Power spectrum for the normalized

density fluctuations, taking average over 16 simulations.

FIG. 7. Temporal evolution of the wave number modes, y vs. xpet, for

l ¼ 100; a ¼ 0:2; xpe=Xc ¼ 1; y0 ¼ 0:49. Graphs are obtained by taking

an average over 16 simulations. (a) Modes for the transverse magnetic fluc-

tuations. (b) Modes for the density fluctuations.
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parametric decays in the simulation, there are modes which

are not described by the fluid model. This may obey to succes-

sive decay processes,33 or to other nonlinear interactions that

are becoming apparent in Fig. 5. To illustrate this, in Fig. 8,

we plot the power spectrum for the normalized density

fluctuation for the same set of parameters as in Fig. 6(b), but

considering only half of the simulation time,

0 	 xpet 	 655:36. The modes observed in Fig. 8 are exactly

the predicted modes in Fig. 6(a), suggesting that the extra

modes in Fig. 6(b) develop at a later stage during the

simulation.

In Fig. 7(a), we can also identify a weak mode at

y ¼ �0:49, growing at the beginning of the simulation. The

appearance of this mode is not predicted by the fluid model,

and it may be due to the fact that the initial condition is a

normal mode for the fluid model, but not necessarily for a ki-

netic model. However, its amplitude is very weak in compar-

ison with the pump wave, and its presence does not affect

the analysis of the parametric decays of the pump wave.

In Fig. 9, we plot the growth rates for the instabilities in

this system. Figure 9(a) shows the growth rate for the fluid

model, where C ¼ ImðxÞ has a maximum value at y � 0:8.

The instabilities at the origin y � 0:1, and at y � 0:5, are

very weak. We observe that as we increase the pump wave

amplitude, a, the growth rates of the instabilities increase.

Fig. 9(b) shows the growth rates calculated in the simulation

from the density fluctuation modes in Fig. 7(b), which are

calculated by seeking the time period in which the modes

FIG. 8. Power spectrum for the normalized density fluctuations, for

l ¼ 100; a ¼ 0:2; xpe=Xc ¼ 1; y0 ¼ 0:49; 0 	 xpet 	 655:36, taking aver-

age over 16 simulations.

FIG. 9. Growth rates for decays, C ¼ ImðxÞ vs. y, for l ¼ 100; xpe=Xc ¼
1; y0 ¼ 0:49 and x0 lying in the Alfv�en branch. Solid line: a ¼ 0:2; dashed

line: a ¼ 0:3; dotted dashed line: a ¼ 0:4. (a) Fluid theory in Ref. 35. (b)

Growth rates of the density fluctuation modes in the simulation, taking aver-

age over 16 simulations.

FIG. 10. (a) Dispersion relation x vs. y for the fluid theory, Eq. (32) in Ref.

35, for a ¼ 0:2; l ¼ 50; xpe=Xc ¼ 1; y0 ¼ 0:49. Dotted lines represent the

real part of the solution when it is complex. (b) Growth rates for the decays

in fluid model, C ¼ ImðxÞ vs. y. Solid line: a ¼ 0:2; dashed line: a ¼ 0:3;

dotted dashed line: a ¼ 0:4.
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have a linear growth, and performing a linear fit whose slope

will correspond to the growth rate. This figure [Fig. 9(b)]

shows a behavior that is similar to the one predicted by the

fluid model [Fig. 9(a)]. The maximum of the growth rate lies

in y � 0:8 � 1 and this growth rate increases as we increase

a. We note that the instability in the simulation, Fig. 9(b),

has a lower growth rate than predicted by the fluid model,

which can be understood due to the presence of effects such

as Landau damping, which is not present in a fluid model.

V. DEPENDENCE ON TEMPERATURE

In Ref. 35, the parametric decays were studied for vari-

ous wave amplitude and plasma temperatures. In the fluid

model, it was found that an increment in the plasma tempera-

ture l results in a decrease of the maximum growth rate.35 To

study this behavior, in Fig. 10(a) we have plotted the disper-

sion relation of the decays in Ref. 35 for a ¼ 0:2 and l ¼ 50,

which is a larger temperature than used in the previous case.

In this case, the same instabilities appear in a narrower range

of wave number, and the growth rate, Fig. 10(b), is small in

comparison to the previous case of Fig. 9(a).

In Fig. 11, we plot the dispersion relation and the growth

rates of the density fluctuations in the simulation, for l ¼ 50.

In Fig. 11(a), the dispersion relation shows most of the

modes predicted by the fluid theory [Fig. 10]. The power is

concentrated in the range of y � 0:7� 0:9, which corre-

sponds to the coupling ðSþ; p�Þ, as in the previous case [Fig.

6(b)]. Fig. 11(b) shows that in this zone we have the largest

instability, as in the previous case [Fig. 9]. Fig. 11(b) also

shows that as we increase the pump wave amplitude, the

instabilities become greater, in accordance with the fluid

model, Fig. 10(b). Furthermore, the growth rate decreases

with the temperature as expected from the fluid theory.

In Fig. 12, we observe the temporal evolution of the

wave number modes. Fig. 12(a) shows the evolution of

the electromagnetic modes. Here, the main active mode, for

the whole period of the simulation, is the pump wave at

y ¼ 0:49, in comparison with the previous case of a lower

temperature. The secondary mode is at y � �0:3 � �0:5
and corresponds to the p� mode in the coupling ðSþ; p�Þ.
The mode Sþ can be seen in Fig. 12(b) at y � 0:8. The fact

that growth rates are smaller in this case leads to the instabil-

ity developing at later times as compared with Fig. 7(b). In

effect, the Sþ mode in Fig. 12(b) begins to grow at

xpet � 800, later than in Fig. 7(b), where the mode appears

at about xpet � 500.

Now, we run the simulation for an even larger tempera-

ture l ¼ 10. In the fluid model, Fig. 13, we can appreciate

the same instabilities as in the previous cases, but with very

small growth rates. From Fig. 13(a), we observe that the cou-

plings ðSþ; p�Þ and ðpþ; p�Þ occur in a very narrow range of

frequency and wave number, ðx; kÞ � ð0:2; 0:6Þ. Since these

instabilities have very small growth rates, they will need

FIG. 11. Parametric decays in the simulation, for l ¼ 50; xpe=Xc ¼ 1, and

taking average over 16 simulations. (a) Dispersion relation x vs. y for density

fluctuations. (b) Growth rates for the density fluctuations modes in the simu-

lation, C ¼ ImðxÞ vs. y. Straight line: a ¼ 0:2. Dashed line: a ¼ 0:3. Dotted

dashed line: a ¼ 0:4.

FIG. 12. Temporal evolution of the wave number modes, y vs. xpet. Both

graphs for l ¼ 50; a ¼ 0:2; xpe=Xc ¼ 1; y0 ¼ 0:49, and taking average

over 16 simulations. (a) Modes for the transverse magnetic fluctuations. (b)

Modes for the density fluctuations.
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more time to evolve, so we expect that they should appear at

very large times in the simulation.

As in the first case considered here, we can plot the spa-

tiotemporal evolution of the y component of the magnetic

field in the simulation for this temperature l ¼ 10, shown in

Fig. 14. Here, the pump wave is the only wave propagating

in the system during the entire simulation. If there are other

decays, they are very damped and we cannot distinguish

them in this figure. This result is consistent with the fluid

theory as discussed above.

In Fig. 15, we have plotted the temporal evolution of the

wave number for the plasma temperature l ¼ 10. In the elec-

tromagnetic spectrum, Fig. 15(a), the power is concentrated

in the pump wave number y ¼ 0:49. The instabilities

expected by the fluid theory have a very weak presence in

this spectrum; it would be necessary more simulation time to

let these instabilities evolve, because the expected growth

rates of them are too small. However, we also notice that the

modulational instability has a larger growth rate than the

decay one, opposite to the fluid case [Fig. 13(b)]. This can be

seen as an indication that, as the temperature is increased,

the fluid model is increasingly inappropriate to describe the

simulation results. However, location of the instabilities is

still correctly given by the fluid results for this temperature.

Finally, we consider a very high plasma temperature

l ¼ 1 (kBT ¼ mc2). From the fluid model, we expect no

instabilities at all, as shown in Fig. 16. As discussed in Ref.

35, this is expected as a very large amplitude wave a > 1 is

needed to overcome the thermal motion of the particles.

In Fig. 17, the spatiotemporal evolution of the magnetic

fluctuations is shown. The pump wave survives until about

xpet � 10, and after that time it disappears due to the thermal

motion of the particles. This behavior is not what we would

expect from the fluid theory, and we see a clear kinetic effect

as the thermal motion of the particles becomes relevant.

This means that the pump wave given by Eq. (4) cannot

be regarded as a normal mode of the plasma for very large

temperatures, and a model based on kinetic theory should be

more appropriate.

FIG. 13. Same as Fig. 10, but for a larger temperature. Parameters are

l ¼ 10; xpe=Xc ¼ 1; y0 ¼ 0:49, (a) Dispersion relation x vs. y for fluid

theory, Eq. (32) in Ref. 35, for a ¼ 0:2. Dotted lines represent the real part

of the solution when it is complex. (b) Growth rates for the decays in fluid

model, C ¼ ImðxÞ vs. y. Solid line: a ¼ 0:2; dashed line: a ¼ 0:3; dotted

dashed line: a ¼ 0:4.

FIG. 14. Spatiotemporal evolution of the y component of the normalized

magnetic field. Normalized time xpet vs. normalized space Xxpe=c, for l ¼
10; a ¼ 0:2; xpe=Xc ¼ 1; y0 ¼ 0:49 and x0 lying in the Alfv�en branch.

FIG. 15. Temporal evolution of the wave number modes, y vs. xpet. Both

graphs for l ¼ 10; a ¼ 0:2; xpe=Xc ¼ 1; y0 ¼ 0:49, and taking average

over 16 simulations. (a) Modes for the transverse magnetic fluctuations. (b)

Modes for the density fluctuations.

032102-8 L�opez et al. Phys. Plasmas 21, 032102 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.154.130.33 On: Mon, 23 Jun 2014 20:02:52



Dom�ınguez et al.43 studied the propagation of a circu-

larly polarized electromagnetic wave by means of a kinetic

treatment in one dimension, based on the relativistic Vlasov

equation. It was shown that the Alfv�en branch is suppressed

for large temperatures, and in particular for xpe=Xc ¼ 1, the

maximum value of the temperature for which the Alfv�en

branch still exists corresponds to l ¼ 2. Thus, our results for

l ¼ 1 are consistent with the analysis in Ref. 43.

Hence, the situation in Fig. 17 is that an Alfv�en wave is

being forced to propagate in the system, but not being a nor-

mal mode for this, the wave is rapidly destabilized.

VI. CONCLUSIONS

We have studied the parametric decays of a left-handed

circularly polarized Alfv�en wave propagating along a

constant background magnetic field in a relativistic electron-

positron plasma with temperature, by means of a one dimen-

sional relativistic PIC simulation. The results of the particle

simulation have been compared with the predictions of the

fluid model presented in Ref. 35.

For low temperatures, l ¼ 100, the fluid model predicts

various instabilities. The main instability in this case is a

decay instability in which the pump wave decays into a for-

ward propagating electroacoustic mode and a backward

propagating electromagnetic wave, ðSþ; p�Þ. There is also a

modulation instability and a beat instability, but with a lower

growth rate.

We have run a simulation with the same parameters as in

the fluid model in Sec. II. The results of the simulation show

that the pump wave propagates in this plasma with the

expected phase velocity, in the initial stage of the simulation.

For larger times, we observe the appearance of instabilities.

We can associate the major instabilities in the simulation with

the ones predicted by the fluid theory, giving us a qualitatively

close match between them in this range of temperatures. The

growth rates for the instabilities in the simulation agree, in

general, with the fluid theory, although in the simulation the

growth rates are lower than in the fluid theory because in the

latter there are no kinetic effects such as Landau damping.

The effect of the pump wave amplitude was also studied

and the same behavior as in the fluid theory was found, so

that an increase in the pump wave amplitude produces an

increase in the growth rate of the instabilities.

As we consider larger temperatures, the same instabil-

ities predicted by the fluid theory appear, but with smaller

growth rates. In particular, for l ¼ 10, the modulational

instability has a larger growth rate than the decay one, oppo-

site to the fluid case. This indicates that the fluid theory

becomes inappropriate to describe the simulation results for

larger temperatures, although location of the instabilities is

still correctly given by the fluid model.

For very high temperatures, l ¼ 1, the fluid model pre-

dicts that all the instabilities are suppressed. Instead, in the

simulation, the pump wave vanishes in a very short time.

This inconsistency between the simulation and the fluid

model can be resolved by considering the relativistic kinetic

treatment presented in Ref. 43, where Alfv�en waves are sup-

pressed for very high temperatures. In particular, Ref. 43 pre-

dicts that l ¼ 2 is the minimum value of l (maximum

temperature) for which the Alfv�en wave is a normal mode of

the system for xpe=Xc ¼ 1. For larger temperatures, there

are no Alfv�en waves. We have corroborated this prediction

using a particle-in-cell simulation.

For a more appropriate comparison between theoretical

models and particle simulations, we should consider the

parametric decays based on a kinetic model treatment, such

as Refs. 44–46.
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