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[1] The dynamics of a thin atmospheric layer (1340 bar) below the cloud tops of Jupiter
is simulated with a three-dimensional, nonlinear transformed spectral model. The gas is
compressible and stratified. Commensurate with the observed emitted radiation from
Jupiter’s atmosphere, the transport of the planet’s internal energy in the lower region is
taken to be convective, but solar heating is not accounted for. In qualitative agreement
with observations, the model produces alternating wind bands and a dominant prograde
equatorial jet. The zonal wind speed at the equator is within a factor of 2 of the

observed values.
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1. Introduction

[2] Despite many years of investigation, the cause for the
equatorial jet and alternating wind bands observed on
Jupiter (and Saturn) remains a challenging but unsolved
problem. It has generally been accepted that fast planetary
rotation is an essential ingredient, but the issue about the
other required physical factors has not been settled. Existing
models can be categorized as two broad types. One is based
on the cascade of horizontal, two-dimensional turbulence in
a fast-rotating, thin, convectively stable atmosphere [e.g.,
Rhines, 1975; Williams, 1978; Ingersoll and Pollard, 1982;
Cho and Polvani, 1996; Marcus et al., 2000; Yano et al.,
2003; Galperin et al., 2004; Showman et al., 2006]. The
other type of models is based on the influence of fast
rotation on three-dimensional convective turbulence [e.g.,
Busse, 1976; Mayr et al., 1984; Sun et al., 1993; Zhang and
Schubert, 2000].

[3] Most of the earlier models had the problem of not
being able to generate the strong prograde jet at the equator.
Calculations made by Christensen [2001] and Aurnou and
Olson [2001], however, have changed the situation. Using a
spectral approach to simulate incompressible convection in
deep rotating shells, they have shown that a strong prograde
equatorial jet can be produced if the Rayleigh number is
high and the Ekman number is low. Furthermore, Heimpel
and Aurnou [2007] have shown that alternating wind bands
at high latitudes can be produced, if the Reynolds number is
high. These simulations have considerably strengthened the
position of the convective model.

[4] In this paper, we discuss a model that also treats the
layer below the cloud tops as convective, but it is very
shallow. The physical situation may be considered as similar

"Department of Mathematics, Hong Kong University of Science and
Technology, Hong Kong, China.
2NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

Copyright 2008 by the American Geophysical Union.
0148-0227/08/2008JE003124

E10002

Chan, K. L., and H. G. Mayr (2008), A shallow convective model for Jupiter’s alternating wind bands, J. Geophys. Res.,

to that conceived by Ingersoll et al. [2000]. The shallow-
ness makes the model’s behavior different from those of
earlier convective models. Some characteristics are remi-
niscent of two-dimensional turbulence models.

[5] In section 2, we describe the numerical model. It has
two special features: (1) the atmosphere is compressible and
stratified and (2) a realistic energy flux from the interior is
applied. Jupiter emits about twice as much energy as it
receives from the Sun. Here, solar heating is left out. In
section 3, the model results are presented. Interpretation of
the results and comparison with previous models are dis-
cussed in section 4. A brief summary is given in section 5.

2. Numerical Model

[6] In our model, a spherical shell of gas is considered.
The domain depth, d, is 430 km (~0.6% of the planet’s
radius, r,). The pressure range is 1-340 bars. The shell
rotates at Jupiter’s rate of 1.778 x 10~* rad/s (). The gas is
treated as ideal, i.e., p = pTR/u, where p, p, T, R, and p are
the pressure, density, temperature, gas constant, and mean
molecular weight, respectively. The value of p is 2.3; the
ratio of specific heats, ~, is taken to be 1.47. The layer
below 3.5 bar (fractional radius, »/r, = 0.9995) is taken as
convective, and the layer 1-3.5 bar is convectively stable.
The initial distributions of the two layers are taken to be
polytropic, i.e., p=T", where n is the polytropic index. The
lower layer is initially adiabatic, with n = 1/(y — 1) = 1.13.
The upper layer has a polytropic index 20% higher, and
therefore it is subadiabatic and stable. A constant and
uniform energy flux of 5.4 W/m?” is applied at the bottom
boundary, and the temperature at the top of the domain is
fixed at 170 K. Radiative transport is handled by the
diffusion approximation. In the stable layer, the radiative
diffusion coefficient is set to allow the initial temperature
gradient to conduct the injected energy flux outward.
Convection occurs when radiative transport alone cannot
deliver the energy flux from the interior. In the unstable
layer, the radiative diffusion coefficient is taken to be zero;
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Figure 1. The latitudinally averaged mean energy fluxes versus fractional radius. The enthalpy,

radiative, and kinetic energy fluxes are shown by the dashed, dashed-dotted, and dashed-tripple-dotted
curves, respectively. The sum of these fluxes is given by the solid curve, and the flux injected at the
bottom is shown as the flat dotted line. Above the boundary between the stable and unstable layers, the
radiative flux begins to dominate at the expense of the enthalpy flux.

convection is thus generated. An entropy diffusion term
(only in the convection zone) is introduced in the energy
equation to aid numerical stability. Since the entropy
gradient is close to zero in the convection zone, the entropy
diffusion flux (—kpC,TVS where x, C,, and § are the
diffusion coefficient, specific heat under constant pressure,
and specific entropy, respectively) is small. The readers are
referred to Chan and Sofia [1986] (hereinafter referred to as
CS86) for a discussion of this technical point. A uniform
kinematic viscosity v of 5.6 m?%/s is adopted to dissipate the
kinetic energy generated by convection. The stress-free and
impenetrable boundary conditions are applied at both the top
and bottom boundaries. In the convection zone,  is related to
v through the effective Prandtl number Pr = v/k = 1/3.

[7] The numerical code is based on the transformed
spectral method with spherical harmonics. It solves a set
of nonlinear equations close to the fully compressible
Navier-Stokes equations [Chan et al., 1994]. In the modi-
fied equations, the linear terms are left intact. By assuming
that the square of the Mach number is small M < 1),
approximations are introduced only in handling of the
nonlinear terms. Let ¢ be any one of p, p, or T. It can be
written as g = g + q; where gy and ¢; are the horizontal
average (over a sphere) and the variation, respectively (both
are time-dependent). As the assumption implies that all the
q1/qo are small, expansion terms containing second-order or
higher powers of such ratios are neglected. In the resultant
equation, the nonlinear terms that need to be transformed
are of the form velocity x ¢;/go or velocity x velocity. The
nonlinearity is only quadratic so that nonaliasing trans-
formations can be easily accommodated. The conservation
of total mass and total angular momentum (with respect to a
nonrotating frame) are satisfied to round off.

[8] The solution procedure computes the linear terms
implicitly in spectral space, and that improves the stability
of the code substantially. The time steps are not restricted by
the sound waves and gravity waves associated with these
terms. On the other hand, the nonlinear advection terms are
calculated explicitly in physical space. The fluid velocity
imposes a limit on the time step size. In the present
calculation, the Mach number is on the order of 0.1, and
the sound speed CFL number (defined by cA#/Ar, where
c is the sound speed, At is the time step, and Ar is the radial
grid spacing) is typically about 10. With such a restrictive
time step size, our thin fluid layer requires about 20 billion
steps to reach thermal relaxation, the time scale being
~ [edr/F (where e is the internal energy density and F is
the energy flux). The readers are referred to CS86 for a
discussion of the relaxation issue. The computation is
therefore very costly. Presently, we can only afford to
compute a T20 x 68 model (triangular truncation of the
spherical harmonics with a maximum degree of 20, and 68
finite difference grid levels in the radial direction). After
200 million steps (~800 Earth years), rough thermal equi-
librium is achieved, as indicated by the approximate equal-
ization of the total energy flux across the layer (with 4%
deviations from the flux applied at the bottom, see Figure 1).

3. Results

[¢] Aside from the latitudinal structure of the wind bands,
the turbulent flow fields show substantial temporal varia-
tions (see section 4.3). Thus, we express the results in terms
of mean quantities represented by g, where ¢ is a physical
variable. The term “mean” stands for averaging longitudi-
nally over a latitude circle and temporally over a period of
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(a) Latitudinal distributions of the mean zonal velocity at four different depths: (1) near the

top of the domain (solid curve), (2) near the stable/unstable boundary (dashed curve), (3) near the middle
of the unstable layer (dashed-dotted curve), and (4) near the bottom of the domain (dashed-tripple-dotted
curve). (b) Latitudinal variations of the mean temperature at the same four depths represented by the same

styles of curves.

about 50 Earth years. Thus, ¢ can be written as ¢ = g + ¢’
where g depends only on latitude and radius. The long-
averaging period is needed for statistical convergence,
especially for the Reynolds stress [see Chan, 2001].

3.1. Energy Fluxes

[10] Figure 1 shows the latitudinally averaged mean
energy fluxes (normalized by the input flux, presented by
the dotted line for comparison) plotted versus fractional
radius. The solid curve shows the total flux, which is
composed of several parts: (1) enthalpy flux (dashed curve),
(2) radiative/diffusive flux (dashed-dotted curve), (3) flux of
kinetic energy (dashed-tripple-dotted curve), and (4) vis-
cous flux. The readers are referred to Chan and Sofia [1989]
for a detailed discussion of these fluxes. Since the applied
kinematic viscosity is very small, the viscous flux is
negligible. The enthalpy flux describes the thermal energy
carried by convection. It is the dominant form of energy
transport in the convection zone, and it turns negative in the
stable layer because of overshooting. On the other hand,
radiation is the primary form of energy transport in the
stable layer. In the region just above the convection zone, in
order to counterbalance the negative convective flux, the
radiative energy flux has to turn greater than the mean total
flux. Inside the convection zone, the diffusive flux is due to
the entropy diffusion associated with a very small negative
radial gradient of potential temperature.

[11] An interesting result shown in Figure 1 is the
substantial magnitude of the kinetic energy flux. This is
related to the up-down asymmetry of the stratified com-
pressible gas. Kinetic energy production by buoyancy max-

imizes near the top of the convection zone [Chan and Sofia,
1989]. Before dissipation, it is transported to the lower
region. For nonrotating compressible convection, the sig-
nificance of this flux has been known for a long time [e.g.,
Hurlburt et al., 1994]. But it is surprising that the maximum
of this flux still reaches 44% of the total flux in the present
fast rotating case.

[12] Inside the convection zone, the mean temperature
structure is very close to adiabatic. The gradient of the mean
potential temperature shows some fluctuations, but they are
within £0.15 K/km. This almost adiabatic region extends
beyond the convection zone to the height of 1.5 bar. The
total variation of potential temperature within this region is
less than 1.1 K.

3.2. Zonal Wind and Temperature Bands

[13] Figure 2a shows the latitudinal profiles of the mean
zonal wind, u, at four levels: (1) at the layer near the top of
the computed domain at 1.2 bar (solid curve), (2) at the top
of the convection zone (dashed curve), (3) in the middle of
the convection zone (dashed-dotted curve), and (4) near the
bottom of the computed domain (336 bar; dashed-tripple-
dotted curve). The latitudinal profiles are close to each other
and show an alternating zonal wind pattern with a promi-
nent prograde jet at the equator. The equatorial jet speed is
largest at the top of the convection zone (the stable/unstable
interface), and it slightly decreases toward the interior (as
well as outward). The width of this jet (defined by the zero
velocity latitudes), about 27°, is comparable to the observed
value on Jupiter. The jet speed, around 70 m/s, is about a
factor of 2 lower than the observed values [Porco et al.,
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Figure 3. (a) Latitudinal momentum balance satisfies
the geostrophic relation. The solid curve shows the mean
zonal wind at a layer near the stable/unstable boundary.
The asterisks show the pressure gradient term as discussed
in the main text with equation (1). (b) Radially integrated
zonal momentum balance is mainly between the conver-
gence of the zonal latitudinal Reynolds stress and the
Coriolis force associated with the mean vertical velocity.
The left and right sides of equation (2), both multiplied by
the factor 107/ i prdr, are shown with pluses and triangles,
respectively.

2003]. At other latitudes, the mean zonal winds essentially
do not change with depth. The wind pattern is further
characterized by the presence of two strong retrograde jets
adjacent to the equatorial jet, which is in qualitative agreement
with observations. Their velocities reach about —40 m/s.
Compared to the observations, the alternating jets at the
higher latitudes are too wide in width and too few in number.
This may be due to the low number of Gaussian points (order
of spherical harmonics) in the numerical spectral model.

[14] The latitudinal profiles of the temperature fluctua-
tions, T, at the same four levels are shown in Figure 2b
with the same line styles. Again, the profiles are close to
each other; the temperature fluctuations are almost the same
at different depths. Some smoothing shows up only at the
1.2 bar level (solid line). Even though there is some
similarity in the patterns, in particular the equatorial valley,
the amplitudes of the latitudinal variations (~+5 K) are
considerably larger than those observed in Jupiter’s tropo-
sphere at about 250 mbar [Simmon-Miller et al., 2006].
However, the difference in pressure levels makes the
comparison uncertain.

3.3. Momentum Balance

[15] At almost all latitudes (except the equator), the
latitudinal momentum balance closely follows the geo-
strophic relation

1 %
2Q cos(0)pr 00’

u=

(1)

where 6 is the colatitude. Figure 3a shows a comparison of
the left side (solid line) and right side (asterisks) of this

CHAN AND MAYR: JUPITER’S WIND BANDS

E10002

equation at the top level of the convection zone. The
agreement is very good.

[16] In the zonal momentum balance, discussed with
Figure 3b, the terms are small and the fluctuations are large;
the balance is more subtle. Since the mean zonal wind and
temperature fluctuations are almost independent of depth,
one can focus on the horizontal transports. After taking the
radial integral of the momentum equation, we find that the
balance is primarily between the latitudinal convergence of
the zonal latitudinal Reynolds stress and the Coriolis force
associated with the vertical (radial) velocity,

—rsi%% {sin(&) / Wﬂdr} ~ 2Qsin(6) / wirtdr.  (2)
Here u, v, and w are the zonal, latitudinal, and vertical
velocities, respectively. (Note that in this paper the term
‘Reynolds stress’ is used in a generalized sense, it includes
contributions from both the mean velocities and the velocity
fluctuations. Generally the later dominates.) The mean
vertical velocity is very small (the maximum has a value
about 0.001 m/s), but the Coriolis force it generates is the
only significant term to balance the convergence of the
Reynolds stress. The Coriolis term 2{Qcos() [ pvrtdr is
close to zero (as it should be because of mass conservation).
Since v is small, the viscous stress due to latitudinal
shearing of the zonal velocity is negligible. Figure 3b
compares the left side (pluses) and the right side (triangles;
negative of the Coriolis force) of the equation above. All the
numbers have been multiplied by the factor 107/ I ridr so
that the results are in m/s’. The dashed curve connects
adjacent points to guide the eyes. Approximate balance is
illustrated.

4. Discussion

[17] Compared with the earlier models of Christensen
[2001], Aurnou and Olson [2001], and Heimpel and Aurnou
[2007], referred to as CAOH later, our model is not as deep,
and it does not have the high horizontal resolution to
simulate the circulation in detail. Our model however
implements a realistic physical configuration. It is useful
to put it in proper perspective.

4.1. Resolution

[18] The current model is not a direct numerical simula-
tion (DNS) such as those computed by CAOH. Since the
rotation is fast, a T20 truncation in the spherical harmonics
can barely resolve the very large scales of motions. Figure 4
provides an illustration of the horizontal flow field at the top
of the convection at one instance. One may only consider
the present model as a large eddy simulation (LES) with the
lowest possible resolution. This is a price paid for pursuing
the implementation of realistic energy flux and stratification
(section 2).

[19] To obtain some idea about the behavior of the model
under a change of resolution, we have computed a higher-
resolution model (T84, same vertical levels) for a short
period of time. Continuing from the low-resolution run,
both the higher- and low-resolution models ran for an
additional 32 Earth days. Figure 5 shows a comparison of
the resultant mean zonal wind profiles at three different
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Figure 4. An example of pseudostreamlines illustrating
the horizontal flow field at the top of the convection zone.
The y axis is —90° to 90° latitude, and the x axis is —180° to
180° longitude. The low resolution limits the motions to
large scales. As a consequence, the significance of the large-
scale eddies is overrepresented. The eddy kinetic energy is
about 1.4 times that of the mean zonal wind. The factor is
larger than estimates on the basis of observation of Jovian
clouds.

depths. The temporal average is over the last 10 days of the
integration period. The higher- and low-resolution cases are
separately represented by the curves and the discrete sym-
bols. These short runs cannot be used to test the conver-
gence of resolution. They only show that the motions in
smaller scales do not disrupt the jets in a dynamical time
scale, L/V ~ 10 Earth days (if the characteristic length, L,
and velocity, V, are taken to be the planetary radius and
maximum wind speed at the equator, respectively). At the
top layer, the equatorial jet of the higher-resolution case
develops a dip at the center. Similar behavior has also been
found in some instances of a finite difference regional LES
experiment [Chan, 2006].

4.2. Viscosity

[20] The viscosity used in the current model is higher than
the value for the real gas, but it is still sufficiently small to
produce a large Taylor number, 2.7 x 10", and a large
Reynolds number, LV/v ~ 10° (with L and V defined in
section 4.1). However, these values do not carry the same
numerical meanings as those of previous models. Generally,
viscosity is enhanced to provide numerical stability. The
stability problem is usually caused by the particular treat-
ment or implementation of advection in physical space,
and the stability criterion is that the grid Reynolds number
VL/(Nv) should be <O(1) (N is a representative number of
grids in a single dimension). Therefore, viscosity can only
be decreased by increasing N (higher resolution), and high
values of Reynolds, Taylor, and Rayleigh numbers (all
having viscosity in the denominator) can only be achieved
by high-resolution calculations. In the present model the
resolution is low, but the numerical method allows for a
small viscosity without invoking a hyperviscosity. Because
of the nonaliasing transforms that make equivalent the
computations of quadratic advection terms in spectral and
physical spaces, the transformed spectral model behaves
like a truncated spectral model (a set of coupled ordinary
differential equations for a finite number of spectral coef-
ficients). For the barotropic case, the conservation of total
energy and total enstrophy constrain the spectral coeffi-
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cients of a truncated spectral model [Machenhauer, 1979].
Stable computations can be made without viscosity. A test
of this property for the code has been discussed by Chan et
al. [1994, section 4a]. In the current application, the
situation is baroclinic. The stability of the present model
was verified empirically.

[21] In the present model, the high values of Taylor,
Reynolds, and Rayleigh numbers are due to the presence
of a low viscosity that works numerically. The Rossby
number Ro (= V/QL), on the other hand, does not depend
on the viscosity and is a more meaningful parameter that
describes the intrinsic properties of the flows. Using the
computed equatorial jet speed for V and the planetary radius
for L, Ro is on the order of 0.01.

4.3. Domain Depth

[22] Even though the setting of the present model is
convective, its thickness differs from those of the earlier
convective models in a significant manner. A consequence
is that the horizontal components of velocity are much
larger than the vertical one. In the current model the root-
mean-square vertical velocity is about 300 times smaller
than those of the horizontal velocities (same order of
magnitude as the domain aspect ratio, width/depth). The
mean vertical velocity is another 3 orders of magnitude
smaller. The mean zonal wind and the mean latitudinal
temperature variations are almost independent of depth. In
this sense, the model is almost two-dimensional.

[23] In the earlier deep convection models, the tangent
cylinders to the inner boundaries play an important role in
determining the width of the equatorial jet (as the approx-
imate location of maximum retrograde zonal wind). In the
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Figure 5. Comparison of latitudinal distributions of the
mean zonal velocity between the higher-resolution (curves)
and low-resolution cases (discrete symbols). The distribu-
tions are plotted for three different depths: (1) at the top of
the convection zone (solid curve and pluses), (2) in the
middle of the convection zone (dashed curve and asterisks),
and (3) near the bottom of the convection zone (dotted
curve and diamonds). Starting from the same initial model,
the two cases ran separately for a period of 32 Earth days.
An average over the last 10 model days is used to obtain the
mean velocities.
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Table 1. Computed Cases

Standard

Mean  Deviation

Case Depth (km) poouom (bar) v (m*/s) Levels u (m/s)  u.,"(m/s)
A (1/3) x 430 25 5.6 23 44 9.4
B (2/3) x 430 119 2% 56 44 50 7.4
C  (2/3) x 430 119 5.6 44 51 7.3
D 430 340 5.6 68 69 7.0

#Averaged over a period of 2500 Earth days only.

present model, the width of the equatorial jet is much larger
than the angular span between the intersections of the
tangent cylinder with the outer sphere. The tangent cylinder
does not dictate the width of the equatorial jet. Rather, the
widths of the jets are compatible with the Rhines scaling, as
what happens in two-dimensional turbulence models. The
shallowness of the current model have made it qualitatively
different from the deep convection models. The change in
regime may be understood by considering a Rossby number
Ro' that uses the depth of the domain as length scale. In
order to set up Taylor column rolls outside the tangent
cylinder, Ro" should also be much less than 1. In the current
model, Ro’ is about 1. Within the region outside the tangent
cylinder, the Coriolis force is not strong enough to dominate
over the inertial force.

[24] Even though the current model is thin, the finite
thickness and convection still makes it much different from
conventional two-dimensional models. Recent simulations
of compressible convection in boxes with tilted rotation
vectors [Chan, 2001; Képyld et al., 2004] have shown that
for small Rossby numbers (Ro < 1) there is a convergence
of radially and longitudinally integrated Reynolds stress
(zonal latitudinal component) toward the equator. This can
drive an overall superrotation at the equator. The balance of
the radially integrated mean zonal momentum is made
possible by the presence of Coriolis force associated with
the vertical velocity (section 3.3).

[25] Before the current model was computed, several
shallower models had been explored. The specifications of
the models are given in Table 1. Only the domain depth,
viscosity, and number of vertical levels vary. All other
parameters are the same. The current model is listed as
case D. Column 3 shows the pressure at the bottom of the
domain. Its magnitude grows much faster than the domain
depth; so does internal energy. The required time for thermal
relaxation (discussed in section 2) grows accordingly.

[26] All the models show superrotating equatorial jets and
alternating winds. The temporally and longitudinally aver-
aged means and standard deviations (sd) of the equatorial
zonal wind at the top of the convection zone, over a period of
2500 Earth days, are also listed in the table. The jet strength
increases and its variability decreases as the domain depth
increases (see Figure 6). In this paper, we have chosen the
deepest case, D, to discuss in detail. Comparing cases B and
C shows that the change in viscosity did not produce
significant differences.

5. Summary

[27] With realistic values of some key physical parame-
ters applied to a thin shell of convecting gas, stratified and
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compressible, this model produces the following features:
(1) alternating wind bands, (2) dominant positive equatorial
jet, (3) two strong negative jets adjacent to the equatorial jet,
(4) small latitudinal temperature variations, and (5) geo-
strophic balance. (6) The balance of the vertically integrated
zonal momentum is primarily between the latitudinal con-
vergence of the zonal latitudinal component of Reynolds
stress and the Coriolis force associated with vertical
motions. The first five are similar to the results obtained
earlier through the study of incompressible convection. The
compressibility and stratification in the present model do
not seem to introduce significant effects. On the other hand,
the shallowness of the current model makes it different from
the earlier convective models. The small domain depth
prevents the formation of Taylor column cells outside the
tangent cylinder. The equatorial acceleration in the model
occurs through the convergence of the stress component
puv. It is counteracted by the Coriolis force associated with
the mean vertical velocity. It would be valuable to investi-
gate how the transition may occur from the shallow to the
deep behavior. But that will require deeper models and
much more computer time. It is beyond the scope of the
present paper.

[28] The comparison of our results with observations
shows only qualitative agreement. The equatorial jet is still
too weak, and the alternating jets are too few in number.
The latitudinal temperature variation seems a little high, but
there are no direct observations to compare with. Consid-
ering the simplifications introduced (e.g., ignoring solar
heating and chemical processes), and the low resolution
required to make the computation feasible, the order of
magnitude agreements are still encouraging. The improve-
ment of spatial resolution, increase of model depth, and
inclusion of solar heating are areas that need to be attended
to in the future.

zonal velocity at equator
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Figure 6. Temporal variations of the equatorial jet speed
(zonal wind averaged over the equator) at the top of the
convection zone. The pluses, asterisks, diamonds, and the
dotted curve show the results for cases A, B, C, and D,
respectively. The variations exhibit the existence of some
long time scales.
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