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[1] A new ‘‘Paraboloidal’’ model of Mercury’s magnetospheric magnetic field based
upon the earlier terrestrial model and using similar techniques is developed. The model
describes the field of Mercury’s dipole, which is considered to be offset from the
planet’s center; the magnetopause currents driven by the solar wind; and the tail current
system including the cross-tail currents and their closure currents at the magnetopause.
The effect of the interplanetary magnetic field (IMF) is modeled as a partial
penetration of the IMF into the magnetosphere. The goals of the present work are (1) to
develop an easily usable, yet robust model of Mercury’s magnetospheric magnetic field
and (2) to produce an improved ‘‘unified’’ determination of Mercury’s magnetic dipole
moment which fits the measurements taken during both Mariner 10’s first and third
flybys. This new model of Mercury’s magnetosphere is described and used to determine
a best Mercury magnetic dipole moment of 192 nT RM

3 , from the two Mariner 10 flybys,
a value which is intermediate between the various estimates produced by previous
models. The best fit to the Mariner 10 measurements gives the dipole offset 0.18 RM

above the equatorial plane. The new Paraboloidal model is used to predict the
configuration of this miniature magnetosphere under average and extreme solar wind
conditions.
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1. Introduction

[2] Mercury is the nearest planet to the Sun having
perihelion and aphelion distances of 0.309 and 0.469 AU,
respectively. The magnetic dipole moment of Mercury
determined from the first Mariner 10 fly-by was 5.1 ±
0.3�107 G�km3 (351.5 ± 20.7 nT RM

3 ) oriented at a solar
ecliptic latitude of �80� ± 5� and a longitude of +285� ±
10� [Ness et al., 1975], and had the same polarity as that
of the Earth’s with a tilt relative to the planetary rotation
axis of �10� [Connerney and Ness, 1988]. Recently the
MESSENGER mission’s first flyby has yielded new cen-
tered dipole determination of 230 to 290 nT RM

3 with tilts of 5
to 12� to the rotation axis [Anderson et al., 2008]. It has been
hypothesized that the internal source of magnetic field is a
fluid iron core with a radius of �0.75 RM [e.g., Giampieri
and Balogh, 2001]. Mercury’s rotational and orbital periods
are 59 and 88 (Earth) days, respectively. The Mercury radius
is RM �2439 km. The Hermean magnetosphere is very
dynamic; a convection time scale has been estimated to be
only �1 min [Siscoe and Christopher, 1975; Ogilvie et al.,
1977]. Its size is about 5% of that of the Earth. The weak
magnetic field results in ion gyro radii exceeding the
distance to the subsolar point of the magnetopause even

for relatively modest energies [Wurz and Blomberg, 2001;
Boardsen and Slavin, 2007]. Within Mercury’s magneto-
sphere, the plasma density is higher than at the Earth’s
plasma trough region by a factor comparable to the ratio of
the external solar wind density at the orbits of these two
planets [Ogilvie et al., 1977]. Initial results from the first
MESSENGER flyby indicate that Mercury’s small magne-
tosphere is immersed in a tenuous, comet-like cloud of
planetary ions with a very complex composition whose
dominant ion is Na+ [Zurbuchen et al., 2008; Slavin et al.,
2008].
[3] Because of its close proximity to the Sun, the solar

wind pressure and interplanetary magnetic field (IMF) inten-
sity at Mercury’s orbit are typically one order of magnitude
higher than is the case at the Earth and more than two orders
of magnitude greater than at Jupiter [see e.g., Slavin and
Holzer, 1981]. The interaction of the solar wind and inter-
planetary magnetic field with predominantly dipolar plane-
tary magnetic field has been studied and modeled extensively
in the case of the Earth. Furthermore, it has also been shown
that at Jupiter [Belenkaya, 2004; Alexeev and Belenkaya,
2005], and even at Saturn [Belenkaya et al., 2006, 2007], the
IMF exerts considerable control over the magnetospheric
structure despite the strong energy input from planetary
rotation and large satellite plasma sources and their distant
locations from the Sun, where the values of solar wind
pressure and IMF are greatly reduced.
[4] At Mercury perihelion typical solar wind conditions

are: velocity �400 km�s�1 and IMF �27 nT, which produce
an electric potential of �40 kV applied to the day-side X-
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line with length of �1.5 RM in a case of southward IMF
(i.e., parallel to the Hermean magnetic dipole). For more
extreme conditions, � 500 km�s�1 and 90 nT, the potential
drop applied to the magnetosphere could reach 165 kV
[Slavin, 2004]. Furthermore, the efficiency of the dayside
reconnection between the IMF and Mercury magnetic fields
has been estimated to be 40%, or � 3 to 4 times greater than
at the Earth because of the high Alfven speed in the solar
wind at 0.3 AU [Slavin and Holzer, 1979a]. Accordingly,
solar wind-planet coupling is expected to be very important
at Mercury.
[5] Although measurements are about to be released from

the first of MESSENGER three flybys [Solomon et al.,
2001], the presently available observations of Mercury’s
magnetosphere are limited to three NASA’s Mariner 10
encounters with the planet on 29 March 1974, 21 Septem-
ber 1974, and 16 March 1975 at a heliocentric distance of
0.46 AU. The relative orientation of Mercury with respect
to the Sun was similar for all three encounters and Mercury
was near aphelion. During the first encounter (MI) the
closest approach to the surface was 723 km and the peak
measured magnetic field was 98 nT [Ness et al., 1974]. The
second encounter (MII) with its closest approach of 50,000
km did not contact the magnetosphere. The third encounter
(MIII) confirmed the global dipolar nature of the magnetic
field and measured a maximum magnetic field of 400 nT at
the closest approach altitude of 327 km over the north pole
of the planet [Ness et al., 1976].
[6] The Mariner 10 and MESSENGER observations

strongly suggest that Mercury’s magnetosphere has a struc-
ture similar to that of the Earth. For example, magneto-
spheric ‘‘polar caps’’ are defined to be regions of the
‘‘open’’ field lines that connect a planet to the high-latitude
magnetosphere and the tail lobes before closing in the solar
wind. The size of the polar caps at Mercury were estimated
by Ness [1979] to be qpc = 17�–26�, where this angle is the
co-latitude of their equatorial boundary, a value similar to
that at Earth. Ogilvie et al. [1977] found a linear spatial
scaling relative to the Earth’s magnetosphere of the order of
8. According to this scaling, the nightside reconnection x-
line is expected to be at ��3 RM at Mercury [Slavin, 2004].
The mean distances from the center of Mercury to the
subsolar point of magnetopause and bow shock are � 1.5
RM and 1.9 RM [Ness et al., 1976; Russell, 1977; Jackson
and Beard, 1977; Slavin and Holzer, 1979b], respectively.
Slavin and Holzer [1979b] found that the subsolar distances
extrapolated from the magnetopause and bow shock cross-
ings, after scaling for upstream ram pressure effects, varied
from 1.3 to 2.1 RM with the largest values corresponding to
IMF Bz > 0 and smaller to Bz < 0. However, it must be
noted that induction currents generated in the planetary
interior are expected to restrict motion of the magnetopause
because of changing solar wind pressure [Glassmeier et al.,
2007]. The observed near-tail Hermean magnetosphere
diameter is �5 RM as compared with the typical near-tail
diameter at Earth of � 40 RE [Shue et al., 1998], where 1
RE = 6380 km.
[7] Mercury has no significant atmosphere or ionosphere,

just a tenuous exosphere [Hunten et al., 1988; Potter et al.,
1999, and references therein]. The magnetospheric plasma
is believed to come from two primary sources, the solar
wind and the ionization of the neutral exosphere [Cheng et

al., 1987; Ip, 1986; Killen et al., 2001]. Recent analysis of
the Mariner 10 magnetic field data by Boardsen and Slavin
[2007] has failed to find evidence of the ion cyclotron
waves expected to be present if heavy ions from the
exosphere are being incorporated into this small magneto-
sphere’s thermal ion population. However, while their
detailed properties are not yet known, the MESSENGER
first flyby measurements do show that the magnetosphere is
rich in planetary ions covering a wide range of species and
charge states [Zurbuchen et al., 2008]. Russell [1989] has
interpreted ULF magnetic fluctuations measured by Mariner
10 close to the planet as being due to standing Alfven waves
associated with closed field line resonances. Slavin et al.
[1997] reported the presence of field-aligned currents in the
magnetic field measurements taken during the first Mariner
10 flyby. However, the conducting path for their closure is
not clear. Blomberg [1997] noted that if the necessary
electrical conductivity is associated with the ionization of
the neutral exosphere, it should exhibit large variations
between the dayside and the nightside due to the large
day-night asymmetries in atmospheric neutral populations
observed to exist at Mercury [Potter et al., 1999; Killen
et al., 2001]. In addition, Grard [1997] pointed out that
the sunlit hemisphere of Mercury is covered by a photo-
electron layer, which may play a role in the horizontal
transport of charges and the coupling between the planet
and its magnetosphere. However, the tenuous nature of
Mercury’s exosphere, as it is understood today, would
support height integrated electrical conductance that is, at
best, many orders of magnitude below those found in the
ionosphere of the Earth, Jupiter, and Saturn [Lammer and
Bauer, 1997].
[8] During MIII the interplanetary magnetic field was

northward both before and after the encounter, and very
smooth magnetic field variations were observed. Siscoe et
al. [1975] explained the quiescent nature of the MIII
magnetic field as being due to the unfavorable IMF Bz > 0
conditions for dayside reconnection and consequently by
the low energy input to the magnetosphere at the time of this
encounter. Indeed, the first MESSENGER encounter with
Mercury on 14 January 2008 also took place under north-
ward IMF conditions and observed relatively quite magnetic
fields and no energetic particles very similar to what was
observed during the third Mariner 10 fly-by [Slavin et al.,
2008]. Conversely, Siscoe et al. attributed the highly dis-
turbed magnetic fields and hot plasmas observed during the
outbound half of MI to terrestrial-type substorms to the IMF
Bz < 0 observed upon exiting into the magnetosheath. The
duration of a substorm at Mercury was found by Mariner 10
to be only a few minutes as compared to about 1 hr on Earth
[Siscoe et al., 1975]. However, it remains to be determined
whether these disturbances are directly driven by dayside
reconnection as suggested by Luhmann et al. [1998] or
associated with the storage of energy in this planet’s tail and
sporadic, explosive release as seen in the Earth’s magneto-
sphere [Slavin et al., 2007].
[9] At present significant uncertainties exist regarding

the contributions by magnetospheric current systems to the
total magnetic field measured by Mariner 10. Progress on
this important issue requires the development of more
accurate magnetospheric current system models for Mer-
cury [Giampieri and Balogh, 2001]. The present paper is
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devoted to this problem. As has been shown by Korth et
al. [2004] and Anderson et al. [2008], knowledge of the
external magnetic field is also expected to be the primary
limiting factor in reliable determination Mercury’s mag-
netic moment from the new MESSENGER magnetic field
measurements. It is for this reason that more flexible and
accurate models of the Hermean magnetosphere are need-
ed. Usually the magnetic field inside Mercury’s magneto-
sphere is assumed to consist of an intrinsic dipole
component and an external contribution due to a Earth-
like magnetospheric current systems (e.g., Tsyganenko 96
model) with the ring current and field-aligned current
contributions suppressed. Using such a magnetic field
model of the different large-scale magnetospheric current
systems generally allows a reasonable interpretation of the
measured data [Anderson et al., 2008]. However, the
Paraboloidal model developed herein offers several advan-
tages over scaled terrestrial models. In particular, the
Paraboloidal model allows for magnetopause and tail
current systems to be specified separately to better reflect
conditions in this miniature magnetosphere as opposed to
those found at the Earth. Furthermore, the Paraboloidal
model also parameterizes separately the effects of the high
reconnection efficiency and the IMF intensity and orien-
tation and allows for the use of values similar to those
found at Mercury appropriate to its location in the inner
heliosphere. In contrast, the scaled Earth models cannot
easily be modified to include any of these important
factors. This point is very important for a number of
reasons, including, for example, the dominance of the Bx

component of the IMF at Mercury’s orbit that may be
critical to understanding the structure and some dynamical
aspects of this magnetosphere as was emphasized by
Luhmann et al. [1998] and Sarantos et al. [2007].

2. Existing Models of Mercury’s Magnetosphere

2.1. Magnetospheric Models With Fixed Magnetopause
and MHD Models

[10] Sarantos et al. [2001] emphasized that as a conse-
quence of the location of Mercury, the Bx component of the
IMF is dominant. The Parker spiral angle that the IMF
makes with the radial direction at Mercury is �20� for
typical solar wind conditions. They used a modified model
of Toffoletto and Hill [1993] (hereinafter TH93) to study
how changes in the IMF affect the access of solar wind ions
to the surface and, indirectly, the supply of neutrals to the
exosphere sputtered from Mercury’s surface. TH93 is an
analytical model, in which the shape of the magnetopause
consists of a semi-infinity cylinder on the nightside attached
to hemisphere on the dayside. For a closed model, the
normal component of the magnetic field at the magnetopause
is zero everywhere. For an open magnetosphere, a so-called
‘‘inter-connection’’ magnetic field was added as a perturba-
tion to the closed magnetic field model. The normal mag-
netic field component to the magnetopause is a free
parameter. Following the suggestion of Slavin and Holzer
[1979b] regarding the high efficiency for reconnection
expected at Mercury, Sarantos et al. [2001] normalized and
adjusted their interconnection field so that the penetration
fraction of the IMF at Mercury is 40% for southward
IMF. The tilt of Mercury’s dipole was assumed to be zero.

Using a variety of possible magnetospheric configurations,
Sarantos et al. [2001] showed that the location and extent
of the polar cap area is regulated primarily by changes in
the IMF direction and magnitude.
[11] In the model developed here we assume the shape of

magnetopause to be a paraboloid of revolution in contrast to
the hemisphere plus semi-infinite cylinder of TH93. We
plan to limit applications of our model mainly to dayside
and near tail magnetosphere. For the forward magneto-
sphere (X > �2–�3 RM) the paraboloid of revolution
approximates the Hermean magnetopause very well. In
the region under consideration for intrinsic magnetic field
modeling and charged particle motion this approximation is
better than that one presented by Sarantos et al. [2001].
Two additional factors also support this modeling approach:
(1) The parabolic coordinate system is one of three orthog-
onal coordinate systems (along with spherical and cylindri-
cal systems) for which a Schrödinger’s type of equation
(i.e., magnetic field diffusion equation) has a solution which
can be presented as a product of the single variable
functions. This fact gives us a possibility to have a solution
of the problem as an expansion of the well-known special
functions and to easily find any asymptotic behavior of the
solution. (2) In the cusp region we have a focus of the
magnetopause currents system with the current density
becoming zero at the cusp and small around the cusp. The
displacement of these currents will have insignificant influ-
ence on the magnetopause current field at any point inside
the magnetosphere excluding the region near the cusp.
[12] Global MHD [Kabin et al., 2000; Ip and Kopp,

2002] and hybrid [Kallio and Janhunen, 2003a, 2003b;
Travnicek et al., 2007] simulations of the solar wind
interaction with Mercury have produced qualitatively sim-
ilar results, especially with respect to the strong effects of
IMF Bz and Bx on the magnetic topology of the dayside
magnetosphere. For example, each of these studies calcu-
lated the size of the Hermean polar cap. Kabin et al. [2000]
estimate the latitudes of the open/closed field line boundary
as �50�; Kallio and Janhunen [2003a, 2003b] placed the
polar cap boundary between 30� (midnight) and 60� (noon);
Ip and Kopp [2002] found that the IMF orientation is very
effective in controlling the size of the polar cap with a mean
location of about 60�. Both the MHD and hybrid numerical
simulations of the solar wind interaction with Mercury
support the terrestrial-type magnetosphere interpretation of
the Mariner 10 of Ogilvie et al. [1977] and MESSENGER
[Slavin et al., 2008] observations and the short convective
time scale for substorms and other effects of reconnection
suggested by Siscoe et al. [1975].

2.2. Estimates of Mercury’s Magnetospheric Currents
and Dipole Moment From Modeling Mariner
10 Magnetic Field Measurements

[13] Different estimations of the magnetic moment of
Mercury have been obtained from observations during the
MI and MIII flybys [Connerney and Ness, 1988; Anderson
et al., 2007]. Ness et al. [1974] found a dipole moment of
227 nT RM

3 , conducting a least-squared fit of the MI data to
an offset titled dipole with a tilt angle of 10� relative to the
planetary rotation axis. Ness et al. [1975] obtained from the
same data set a moment of 349 nT RM

3 utilized a centered
dipole and an external contribution to the measured mag-
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netic field. Ness et al. [1976] determined a dipole moment
of 342 nT RM

3 from the MIII observations. Jackson and
Beard [1977] and Whang [1977] included quadrupole and
quadrupole - octupole terms for the internal magnetic field
obtained with a resultant reduction in the dipole moment to
� 170 nT RM

3 . Ultimately, the cause for the large range of
dipole moment estimates, i.e., � 150 to 350 nT RM

3 , derived
from the Mariner 10 measurements is the small volume
sampled by this mission and the highly variable contribu-
tions of the magnetospheric current systems to the total
measured field [Slavin and Holzer, 1979a; Connerney and
Ness, 1988]. Furthermore, these variable contributions from
the magnetospheric currents are strongly controlled by the
solar wind and the IMF, and the Mariner 10 encounters took
place under very different upstream conditions. For these
reasons it is not surprising that the ‘‘static’’ scaled Earth
models that have been used up to this point have produced
very different planetary magnetic dipole determinations for
each Mariner 10 encounter and, in the case of MI, even
different portions of the same encounter. Below we consider
these previously elaborated scaled Earth-like magnetospheric
models in more detail.
[14] Lukyanov et al. [2001] developed a model of Mer-

cury’s magnetosphere by scaling the Tsyganenko terrestrial
model [Tsyganenko, 1989] to Mercury. To scale the Earth
magnetospheric magnetic field at some point R0 to the
Hermean magnetospheric magnetic field at some point R,
Lukyanov et al. have used the formula:

BMerc Rð Þ ¼ kmBEarth R0ð Þ; whereR0 ¼ ks
RE

RM

R; and km ¼ k3s
mMR

3
E

mER
3
M

ð1Þ

Here RM = 2439 km and RE = 6380 km are the Mercury’s
and Earth’s radii, mM and mE are the respective magnetic
moments, km is a magnetic field scaling factor, and ks is a
spatial-scale factor for the Mercury’s magnetosphere.
Lukyanov et al. [2001] mentioned that the ratio of the
Mercury and Earth dipole magnetic moments is 10�3,
however, it should be noted that using for Mercury mM =
300 nT � RM

3 from this paper, one will obtain a value about

two times smaller:
mM

mE
¼ 300nT �R3

M

30000nT �R3
E

= 5.54 � 10�4. Since the

Tsyganenko [1989] model of has no well-defined magne-
topause, Lukyanov et al. [2001] chose to represent its shape
in a form r = l/(1 + e cos q), where r is the radial distance to
the magnetopause, l is the radial distance to the magneto-
pause in the terminator plane, e is the eccentricity of the
conic surface, and q is the Sun-planet-satellite angle [see
Russell, 1977; Slavin and Holzer, 1981]. For Mercury,
Russell [1977] found l = 2.24 ± 0.4 RM and e = 0.6 ± 0.1
and the corresponding subsolar magnetopause distance, RsM,
is 1.4 RM. However, the magnetopause surface chosen by
Lukyanov et al. [2001] served only as a boundary of the
simulation box for particle orbit tracing, so it was not a factor
in the representation of the magnetospheric magnetic field.
[15] Engle [1997] modeled the Hermean magnetosphere-

magnetotail system using the MI and MIII flyby data of the
Mariner 10 mission. When the magnetic field data from the
first half of the MI flyby and all of the MIII flyby were
incorporated into the scaled version of the model of Beard
[1979], a rms deviation of 9.3 nT for each component of the
magnetic field vector was obtained [Bergan and Engle,

1981]. The tail-field representation of Beard is appended
to the near-planet region. Engle presents results of a study
that includes an adaptation of that model of Beard, but also
adopts the assumption that the incident solar wind pressure
and/or direction of the solar wind was different for the two
Mariner 10 flybys. The subsolar magnetopause distances
assumed in these models were 1.08 RM and 1.31 RM,
respectively, for MI and MIII. A non-linear least-squares
fit was produced by varying each parameter in turn to
minimize the deviation of the model magnetic field from
the observed data. In this Mercury magnetosphere adapta-
tion, Engle separately scaled the ‘‘near-planet’’ region and
the magnetotail region representation functions. This
allowed a reduction in the rms deviation between the model
and the Mariner 10 observations of 7.1 nT. Furthermore, the
Mercury dipole was linearly displaced from the planet
center. The dipole moment estimates produced by Engle
varied between 154 nT RM

3 (MI) and 182 nT RM
3 (MIII).

[16] Luhmann et al. [1998] used a scaled Tsyganenko
[1995] terrestrial magnetospheric model that included the
effects of IMF By and Bz and an assumed IMF variation
during the disturbed MI outbound pass segment. They noted
that changes in IMF occurring on the time scale �1 min or
longer may affect the near-Mercury magnetosphere in a
‘‘quasi-steady’’ manner from the IMF control point of view.
It was proposed that the IMF strength was constant during
the MI flyby and only its orientation changed. Luhmann et
al. [1998] calculated magnetospheric magnetic field for zero
IMF, and the difference between the modeled and measured
fields was attributed to the IMF By and Bz influence using
simple superposition.
[17] Recently, Kabin et al. [2008] used an MHD model of

the solar wind-Hermean magnetosphere interaction to fore-
cast the magnetospheric field along MESSENGER orbits.
They estimated the dipole field as 350 nT RM

3 and a
symmetric quadrupole aligned with the Z axis with quad-
rupole moment 45 nT RM

4 .

3. Paraboloidal Model of Mercury’s Magnetic
Field

3.1. Background

[18] We now construct a new magnetic field model for
Mercury using the well known ‘‘Paraboloidal’’ model of the
Earth’s magnetosphere. A summary of this model can be
found in the work of Alexeev [1986]. The name of this
model is derived from its key simplifying assumption that
the magnetopause be represented as a paraboloid of revo-
lution about the planet-Sun line. The field due to magneto-
pause currents and tail current system is obtained using a
method pioneered by Alexeev [1978] wherein the magnetic
fields of the various magnetospheric sources are confined
inside the magnetopause by adding appropriate shielding
fields. Paraboloidal models have also been developed and
successfully tested against magnetic field measurements
taken at Jupiter and Saturn [Belenkaya, 2004; Belenkaya
et al., 2005, 2006, 2007; Alexeev and Belenkaya, 2005;
Alexeev et al., 2006]. As mentioned earlier, this model is
very robust in that the amount of open magnetic flux in the
polar cap and the effects of interplanetary magnetic field
intensity and direction can be specified in a manner appro-
priate to each planetary magnetosphere.
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[19] In the analysis to follow Mercury-centered solar
orbital (MSO) coordinates are employed. In this system
XMSO is directed toward the Sun, YMSO is perpendicular to
XMSO in Mercury’s orbital plane and positive toward dusk,
and ZMSO completes this right-handed orthogonal system.
Mercury’s magnetic moment MM lies in the X-Z plane. The
main contributors to the magnetic field in the miniature
Hermean magnetosphere according to this model are: (1)
the intrinsic magnetic (dipole) field of the planet and the
shielding magnetopause current which confines the dipole
field inside the magnetopause, (2) the dawn-dusk cross-tail
currents and their closure currents on the magnetopause, and
(3) the IMF which partially penetrates into the magneto-
sphere as a result of ‘‘reconnection’’ with the planetary
magnetic field.
[20] The following parameters define Mercury’s magne-

tospheric magnetic field in the Paraboloidal model: (1) RsM

is the distance from Mercury’s center to the subsolar point
on the magnetopause; (2) R2 is the distance from the
planet’s center to the inner edge of the magnetospheric tail
current sheet; (3) BM0 is the magnetic field at the Mer-
cury’s equator due to the dipole field only; (4) the
magnitude of the magnetic field at the inner edge of the
tail current sheet due only to that current sheet is Bt/a0,
where a0 = (1+2R2/RsM)

1/2; (5) Y is the tilt angle between
the magnetic dipole direction and the ZMSO direction,
although it is assumed here, for simplicity in this first
application of our model, that the magnetic dipole of
Mercury has no tilt; (6) z0 is the displacement of the tail
current sheet relative the magnetic equatorial plane; and
(7) the portion, b, of the IMF, B, penetrating into magne-
tosphere, given as b = kIMF B where kIMF is the coefficient
of IMF penetration into the Hermean magnetosphere.
Tsyganenko [2002] found the best correspondence between
his model of the near-Earth magnetosphere and observa-
tional data for the coefficient of IMF penetration into the
Earth’s magnetosphere of between 0.15 and 0.8. For
comparison, Slavin and Holzer [1979a] estimated the
efficiency of the dayside reconnection at Mercury to be
40% because of the low solar wind Alfven Mach numbers
typical of the inner heliosphere.
[21] The magnetopause is approximated as a paraboloid

of revolution

X=RsM ¼ 1� ðY 2 þ Z2Þ=2R2
sM : ð2Þ

The appropriateness of such a shape for the forward
magnetopause is supported by the boundary fitting of
Russell [1977]. He found a near paraboloidal shape, i.e.,
eccentricity 0.8 versus 1.0 for a true parabola, for Mercury’s
magnetopause using the Mariner 10 observations. With
these assumptions it will be demonstrated that the
Paraboloidal model formulation of Alexeev [1986] can be
used to calculate the magnetic configuration of Mercury’s
magnetosphere.

3.2. Screened Dipole Magnetic Field

[22] A first solution of the problem of the screened
planetary dipole field within model magnetopause approx-
imated by a paraboloid of revolution was obtained by
Alexeev and Shabansky [1972]. They presented a solution
of the Neumann problem by direct integration of the normal

to magnetopause dipole magnetic field. Later Stern [1985]
repeated this solution, but added a representation of the
magnetopause current fields, as a sum of Bessel harmonics.
The next step was taken by Greene and Miller [1994]. They
conceived a simpler way to construct a solution and
provided integral representations of the screened planetary
dipole field within a paraboloid magnetopause with arbi-
trary magnetopause flaring angle. This solution created the
possibility of describing the magnetopause with arbitrary
ratio of dawn-dusk magnetopause size to the subsolar
magnetopause distance. Below we follow the solution of
Greene and Miller [1994].
[23] A detailed description of the screened planetary

dipole field within the model magnetopause has been
presented, for example, by Belenkaya et al. [2005] for the
Jovian magnetosphere. The same method can be used to
construct the topology of the Hermean magnetosphere. The
parabolic coordinates (a, b, 8) with respect to the solar-
magnetospheric Cartesian coordinates (X, Y, Z) can be
defined by the following relations:

X ¼ RsM

2
b2 � a2 þ 1
� �

ð3aÞ

Y ¼ RsMab sin8 ð3bÞ

Z ¼ RsMab cos8; ð3cÞ

where X points toward the Sun and the X-Z plane contains
the planetary dipole, 8 is an azimuthal angle around the X
axis, and RsM is a scale length determining magnetopause
size. The surfaces a = const and b = const form paraboloids
of revolution about the X axis with opposite curvature to
each other (see for details Belenkaya et al. [2005]). To
transform a vector B from parabolic to solar-magneto-
spheric Cartesian coordinates (X, Y, Z) we can use a matrix:

Bx ¼ � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p Ba þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p Bb

By ¼
b sin8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p Ba þ a sin8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p Bb þ cos8B8

Bz ¼
b cos8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p Ba þ a cos8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p Bb � sin8B8

Since the combined field (dipole plus magnetopause current
field) is curl-free within the magnetosphere, it can be
described by a scalar potential U (B = �rU):

Udþsd ¼ U?
d þ U?

sd; ð4Þ

where Ud
? = mM

z
r3

is the scalar potential of the Mercury
dipole and Usd

? is the corresponding scalar potential of the
screening field produced by the magnetopause currents.
Here the planetocentric distance, r, is r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
=

RsM

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2 þ 1Þ2 � 4a2

q
, and 4pmM/mo is the Hermean

dipole moment (mM is equal to 192 nT � RM
3 , as it will be

shown below in the present paper by fitting Mariner 10
data). For simplicity, we propose that dipole is directed
perpendicular to the planet-Sun line.
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[24] To calculate the field of the screened planetary dipole
we employ the following integral transform [e.g.,Gradshteyn
and Ryzhik, 1971]

Z 1

0

l2J1 lað ÞK1 lbð ÞJ1 lð Þdl ¼ 4ab

a2 þ b2 þ 1
� �2�4a2

h i3=2
¼ zR2

sM

2 cos8r3
¼ U?

d

MM cos8
; ð5Þ

where J1 are Bessel functions of the first kind, K1 are
modified Bessel functions that have a singularity at the
origin, and the constant MM is determined by dipole
moment and subsolar magnetopause distance as MM = 2mM/
RsM
2 . We have used here and below the Bessel functions

definitions from Abramowitz and Stegun [1972]. For
arbitrary function f(l) the integral

R
0
1 lJ1(la)K1(lb)f(l)

dl multiplied by cos 8 is a solution of the Laplace equation
in the parabolic coordinates.
[25] Using the transform (5) we can write two terms of

the potential Ud+sd (equation (4)) as

U?
d þ U?

sd ¼ MM cos8

Z 1

0

l2J1 lð ÞJ1 lað Þ

� K1 lbð Þ � I1ðlbÞ
K 0
1 lð Þ
I 01 lð Þ


 �
dl; ð6Þ

where the primes indicate derivatives with respect to the
argument, while the In are the modified Bessel functions that
have no singularity inside the magnetosphere. After calcula-
tion of the derivative of b with respect to function inside the
brackets, and taking b = 1 (magnetopause), we can see that
first and second terms inside the brackets cancel each other:

K1
0(l) = I1

0(l)K
0
1
lð Þ

I 0
1
lð Þ . The potential for the combined field, which

is determined by equations (4) and (6), confines the magnetic
field inside the magnetosphere (Bb = 0 at the magnetopause).
This can be verified from the following expressions for the
magnetic field components in parabolic coordinates

Ba ¼ � 1

RsM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p @U

@a
ð7aÞ

Bb ¼ � 1

RsM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p @U

@b
ð7bÞ

and

B8 ¼ � 1

RsMab
@U

@8
: ð7cÞ

3.3. Field of the Tail Current System

[26] The model for the tail field adopted here is a
modification of that previously proposed for the terrestrial

[Alexeev et al., 2003] and Jovian [Belenkaya et al., 2005]
magnetospheres. The tail field can be presented as a sum of
two terms B = B1 + B2. The most significant of them is the
second term B2, which is associated with the current
flowing in the centre plane of the tail, j = curl B2/mo, which
is closed over the tail magnetopause. The first term, B1, is
then a curl-free field that describes the closure of the tail
field lines inside the magnetopause in the inner part of the
system.
[27] In parabolic coordinates we define B2 = (B2a, 0, 0),

where (see Belenkaya et al. [2005] for details)

B2a ¼ Bt

0 for a < ao;

f b;8ð Þ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p for a > ao:

8>><
>>: ð8Þ

This field is divergence-free everywhere except on the
surface a = ao, inside of which (i.e., for a < ao) the field
and current both drop to zero. On the X-axis, the inner edge
of the tail current sheet thus lies at a down-tail distance from
the planet given by R2 = RsM (ao

2 � 1)/2. The divergence of
B2 on a = ao is then accommodated by the curl-free field
B1, as will be described below.
[28] The function f(b, 8) in equation (8) determines the

current profile within the current sheet, for which we choose

f b;8ð Þ ¼ Bt

b
bo

cos8 for bj cos8j < bo;

sign
p
2
� j8j

� �
for bj cos8j > bo0:

8>>><
>>>:

ð9Þ

where bo = D/RsM a0). The half-width of the current sheet
in Z is value D at the inner edge a = ao. Function f(b, 8) can
be written also as

f b;8ð Þ ¼
X1
n¼1

X1
k¼1

fnkJn lnkbð Þ cos n8; ð10Þ

where lnk is a solution of the equation Jn
0(lnk) = 0, as

required for zero normal field at the magnetopause, and we
only require the terms with n odd in our application because
of the anti-symmetry of the field about the equatorial plane.
The first six zeros lnk for n = 1,3,..11 are given in Table 1.
Using the first five terms of the expansion (10) yields an
accuracy of about 10�5 [see Belenkaya et al., 2005]
[29] The coefficients fnk can be calculated by taking into

account the properties of the orthogonal functions as

fnk ¼ N�1
nk

Z 1

0

Z p

�p
Jn lnkbð Þf b;8ð Þ cos n8d8bdb; ð11Þ

Table 1. Zeros of the Derivative of the Bessel Functions lnk (Jn
0(lnk) = 0)

n/k 1 2 3 4 5

1 1.841183900 5.3314427000 8.5363163000 11.706005000 14.863588700
3 4.2011889412 8.0152365984 11.345924311 14.585848286 17.788747866
5 6.4156163752 10.519860874 13.987188630 17.312842488 20.575514521
7 8.5778364889 12.932386237 16.529365884 19.941853366 23.268052926
9 10.711433969 15.286737667 19.004593538 22.501398726 25.891277276
11 12.826491226 17.600266557 21.430854238 25.008518704 28.460857279
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where the normalizing coefficient Nnk is given by

Nnk ¼
p
2

1� n2

l2
nk

 !
J 2n lnkð Þ:

The current is equal to zero outside the current sheet (for a
< a0). Inside the current sheet (i.e., for a > ao) the current
can be calculated from Maxwell’s equation j = curl B2/mo:

ja ¼ 0 ð12aÞ

jb ¼ � Bt sin8

moRsMabo

ð12bÞ

j8 ¼ � Bt cos8

moRsMboa a2 þ b2
� � : ð12cÞ

The current is identically zero outside the current sheet, i.e.,
for jzj > (a/ao)D or, equivalently, b jcos 8j > bo, and for all
a < ao.
[30] The total magnetic flux in each tail lobe of the distant

tail is a constant for a ! 1 since there is no normal
component at the magnetopause and Bz ! 0 on the tail
centre plane. This value is

F1 ¼ BtR
2
sM 8o þ

1

3
2� 2þ boð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

o

q� �� �
; ð13Þ

where 8o = cos�1 bo. This equation can be used to
determine Bt in equation (8) if the tail magnetic flux and the
current sheet width are specified.
[31] Combining B1 and B2 to find the total tail field

(see Belenkaya et al. [2005] for details), we finally have
for a < ao

Ba ¼ � Btffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p X1
n¼1

X1
k¼1

fnklnkKn lnka0ð ÞJn lnkbð ÞI 0n lnkað Þ

� cos n8
ð14aÞ

Bb ¼ � Btffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p X1
n¼1

X1
k¼1

fnklnkKn lnka0ð ÞJ 0n lnkbð ÞIn lnkað Þ

� cos n8
ð14bÞ

and

B8 ¼ Bt

ab

X1
n¼1

X1
k¼1

fnknKn lnka0ð ÞJn lnkbð ÞIn lnkað Þ sin n8; ð14cÞ

while for a > ao we have

Ba ¼ � Btffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� f b;8ð Þþ

X1
n¼1

X1
k¼1

fnklnk In lnka0ð ÞJn lnkbð ÞK 0
n lnkað Þ cos n8

 !

ð15aÞ

Bb ¼ � Btffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p X1
n¼1

X1
k¼1

fnklnk In lnka0ð ÞJ 0n lnkbð ÞKn lnkað Þ

� cos n8
ð15bÞ

and

B8 ¼ � Bt

ab

X1
n¼1

X1
k¼1

fnknIn lnka0ð ÞJn lnkbð ÞKn lnkað Þ sin n8:

ð15cÞ

Formulas (14) and (15) determine the tail current
magnetic field everywhere inside the Hermean magneto-
sphere. These formulas have been derived from continuity
of all three components of the magnetic field vector on
the surface a = ao. We used the expansion of sign(p

2
�

j8j) on Fourier harmonic components and the equality
x(In(x)Kn+1(x) + In+1(x)Kn(x)) = 1. Numerical coefficients
fnk have been calculated by numerical integration of
equation (11). We have taken the terms in the sums in
equations (14) and (15) from n = 1 to 11 (n odd only),
and from k = 1 to 6. To check the received accuracy the
ratio Bb/jBj at the magnetopause has been calculated and
it is smaller than 10�3 everywhere [see also Belenkaya et
al., 2005].

3.4. Model Calculations for MI

[32] In sections 3.2 and 3.3 we derived, in the framework
of the Paraboloidal model, the algebra for calculation of the
magnetic field at an arbitrary point of the Hermean magne-
tosphere. At the beginning of section 3.1 we described the
eight input model parameters which should be fixed before
such calculations are performed (Y is taken to be zero).
Following Bergan and Engle [1981], we also allow for a
dipole offset from origin as a possible feature of the intrinsic
planet’s magnetic field. The dipole offset, Dzd and Dyd, in
the terminator plane (x = 0) represent two additional
parameters. In the following paragraph we outline the
method by which these parameters are determined using
the Mariner 10 data.
[33] Because of the scarcity of available data, the first

step is to initialize all model parameters from simple
physical estimations. After that we calculate the rms
deviation between the model results and Mariner 10 data
(see equation (17)). The best fit values are determined not
by changing each parameter separately, but by simulta-
neously changing the sets of the three similar parameters
(BM0, Dzd, Dyd), (Bt, RsM, R2), (Bt, z0, bx), and pene-
trated IMF vector (bx, by, bz). The first three model
parameters which fix the Hermean dipole must be the
same for all of the MI and MIII flybys. The other 7
model parameters may differ to reflect the different states
of the magnetosphere during the two flybys. Repetition of
this procedure several times for each number of three
model parameters yielded three sets of the model param-
eters, i.e., describing separately the inbound and outbound
MI, and for the entire MIII flyby. The goal of this study
was to find the Mercury dipole magnetic moment that
produced the best fit to all Mariner 10 measurements.
Accordingly, the dipole moment and dipole offset param-
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eters were required to be the same for all three measured
data sets (inbound and outbound MI and MIII).
[34] Approximating the magnetopause by a paraboloid of

revolution (equation (2)), we determine the RsM value.
Figure 1 shows the average Mercury’s paraboloid with
positions of magnetospheric boundary crossings by Mariner
10 during its MI and MIII passes. From this figure it is seen
that while for MI outbound and MIII the value of RsM =
1.24 RM can serve as a good approximation, for MI inbound
it is impossible to draw a simple paraboloid connected with
both (i.e., MI inbound and MI outbound) magnetopause
crossings. Slavin and Holzer [1979b] emphasized that the
southward IMF intervals observed during this first encoun-
ter may have had significant effects on the location of the
magnetospheric boundary. For modeling the MI we can use
the RsM = 1.4 RM for the solar wind pressure Psw = 6 � 10�8

dynes/cm2 inferred from the outbound magnetopause cross-
ing by Slavin and Holzer [1979b]. Best fitting for MI data
also gives the RsM equal to 1.4 RM in agreement with the
estimation of Slavin and Holzer [1979b], which is slightly
bigger than the preliminary value of RsM = 1.24 RM taken
from Mariner 10 magnetopause crossings (Figure 1). The
corresponding average value for R2 is taken to be R2 = 0.8
RsM by analogy with the case of the Earth, which gives R2 =
1.24 RM for the MI encounter.
[35] For calculations of Bt we use the formula: Bt =

2F1/(pR2
sM a0) [Alexeev et al., 2003], where F1 is a

magnetic flux in the magnetospheric tail lobe whereas a0 =
(1 + 2R2/RsM)

1/2. Assuming F1 = pBtailR
2
tail, we can estimate

Bt as:

Bt ¼ 2F1= pR2
sMa0

� �
¼ 2pBtailR

2
tail= pR2

sMa0

� �
¼ 2BtailR

2
tail= R2

sMa0

� �
: ð16Þ

[36] Following Christon [1987], the total jump in the Bx

component inside the nightside Mercury’s magnetosphere
for MI is 20 nT - (�90) nT = 110 nT, so the average value of
Bx in the tail lobe is Btail � 110 nT/2 = 55 nT. McKenna-
Lawlor [1997] estimated the average tail radius of Mer-
cury’s magnetopause as 2.3 RM ± 0.3 RM. Assuming that
during the MI encounter the average values of RsM and R2

are 1.4 RM and 1.24 RM, respectively, and Btail = 55 nT,
Rtail = 2.3 RM, from equation (17) we obtain Bt = 185 nT.
The best fitting procedure gives smaller values of Bt equal
to 165 nT and 173 nT for the inbound and outbound
passes, correspondingly.
[37] Thus the flux in the tail lobe is F1 = BtailpR

2
tail =

55 nT �p�5.76R2
M = 994.8 nT�R2

M. If this flux determines
the average co-latitude of the polar cap boundary, qpc,
which is connected with the polar cap flux, Fpc =
2BM0pR

2
Msin

2qpc, where BM0 is the dipole field at the
Mercury’s equator, then from equation F1 = Fpc we obtain
BM0�sin2qpc = 994.8 nT�R2

M/2pR
2
M = 158.4 nT. As it will

be demonstrated below by our fitting procedure, calcula-
tions in the Paraboloidal model with BM0 appropriate for
both the MI and MIII flybys give BM0 = �192 nT. Thus,
for MI passage, qpc = 65.3� according to the tail lobe flux
estimation.
[38] Mercury’s magnetic dipole moment is mM =

BM0R
3
M = 3.5 � 1018 T cm3 = 3.5 � 1022 G cm3. Slavin

and Holzer [1979b] noted that if the uneroded value of
RsM = 2.1 RM for Psw = 6.0 � 10�8 dynes/cm2 is used,
then a value of mM = 6 ± 2 � 1022 G cm3 will be received.
At a first step mM can be estimated as 240 nTR3

M. As a
result of our fitting procedure (see details below), if we
require a constant dipolar field for both flybys, this initial
value is �20% higher than the final best fit Hermean
dipole moment 192 nTR3

M (see below).

Figure 1. Paraboloid Mercury’s magnetopause. Intersections of the magnetosphere boundary by
Mariner 10 during MI (dashed curve) and MIII (dotted curve) flybys are marked by crosses. Coordinates
of points of magnetopause crossing are taken from the study of Slavin and Holzer [1979a]. The aberration
angle (8�) was taken into account. Along the vertical axis, the distance from the Planet-Sun line is
measured in RM.
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[39] To fit the model parameters we calculate the rms
which was determined by formula:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

DB2
i

N

vuuut
; ð17Þ

whereDBi
2 = (Bx_obs�Bx_mod)

2 + (By_obs�By_mod)
2 + (Bz_obs

(Bz_obs � Bz_mod)
2. Here N is a number of points in which

observed (aobs) and calculated (amod) values of some
quantity, a, are taken. It should be noted that the formula
for rms given above differs from that one which was used
by Bergan and Engle [1981] and Engle [1997] for
determination of s. Unlike Engle, who used an average
deviation for each component of the magnetic field vector,
we use here the module of the vector which is a difference
between the measured magnetic field and model magnetic
field vectors. Moreover, Engle used only the first 90 data
points of the MI flyby, where large disturbances were
absent.
[40] At each fitting step we calculated three values

determined by formula (17): si, where i = 1, 2, 3. s1 is
the rms for both inbound and outbound MI passes. For MI
flyby a number of points in which we calculated the square
of the difference vector between model field and measured
field, was N1 = 180. We have used data with time step 6 sec
and the total duration of MI was �18 minutes. s2 is the rms
for MIII pass, N2 = 157, the total duration of MIII was
�16 minutes. s3 is the rms for both MI and MIII flybys,
N3 = N1+ N2 = 337. Our goal is to find the set of model
parameters which minimize the total rms (s3) for both MI
and MIII flybys, the other two rms s1,2 are used to check
the fitting procedure. These rms also serve as indicators of
the best fit value of the model parameters which have been
chosen separately for the inbound and outbound MI and
MIII flybys.
[41] Finally, we will determine three sets of the model

parameters, which are described at the beginning of
section 3.1. These sets correspond to the inbound MI,
outbound MI and MIII flyby, respectively. These sets of
data have been chosen, because we propose that contrary to
the dipole parameters, the IMF and solar wind conditions
can change near the MI closest approach to Mercury and
they can be different for the MI and MIII flybys. The dipole
magnetic moment and dipole offset were taken constant for
MI and MIII flybys. In Table 2 we present three sets of
parameters which minimize s1 and s2. We show in Table 2

the dipole offset in the dawn –dusk direction, the best fit
value of this offset is very small (about 20 km). The
minimal rms are 13.6 nT for MI and 12.26 nT for MIII.
These values correspond to 15% and 3% from maximum
measured magnetic field for MI and MIII passes. The total
rms for all existing data points is 13.08 nT. To determine the
role of the dipole offset we repeat the fitting procedure, but
for the centered dipole. As expected, it gives the bigger
BM0 = 285 nT value, because offset of the centered dipole
along Z axis makes a smaller minimal distance between
dipole and the Mariner 10 orbit periapsis. The minimum rms
values also increase in two times up to 15.3 nT, 30.3 nT and
23.5 nT for MIin, MIout, and for MI+MIII, correspondingly.
Other four best fit parameters which are connected with
magnetic field strength also increase about 1.5 times similar
to dipole moments increasing. Three dimension model
parameters change slightly (up to 20%). It means that they
can be determined independently from each other. Thus we
found that the dipole moment determined from the Mariner
10 data is 192 nT RM

3 with the offset dipole along the Z axis
Dzd = 0.179 RM, and along the Y axis Dyd = 0.0083 RM. As
shown in Figure 2, the fit to the MI flyby is excellent despite
within the substorm current wedge near midnight and field-
aligned currents [see Slavin et al., 1997]
[42] The best fit to the MI observations is found when a

large ‘‘penetration’’ of the IMF into the magnetosphere is
assumed. Upstream of the bow shock, before the Mariner 10
passage through the magnetosphere, Bx IMF was about
20 nT. However, the measured values of Bx = +20 nT in
the upper tail lobe and –90 nT in the lower tail lobe [e.g.,
Christon, 1987] can be reconciled if a DBx � �30 nT is
added to the tail magnetic field. Indeed, an IMF Bx compo-
nent of this magnitude was measured following the outbound
crossing of the magnetopause. If we assume that this field had
completely penetrated into the Mercury’s magnetosphere,
i.e., kIMF � 1, then the observed asymmetry in Bx in the
northern and southern tail lobes can be explained. From these
sets of parameters it follows, in particular, that the best fitting
is achieved, if a large IMF Bx value had penetrated into the
Mercury’s magnetosphere with kIMF� 1 [see also Sarantos et
al., 2001].
[43] To obtain the best fitting of the MI and MIII

observations using the unified magnetic dipole moment
we calculate s3, the total rms between data and model for
both flybys and for all three sets of the model parameters
which are listed in Table 2. The order of the fitting model
parameters corresponds to the number of their Table 2
column. At first, we determine BM0 which gives a minimum

Table 2. Best Fitting Model Parameters for Both Mariner 10 Flybys With Shifted Dipolea

BM0 (nT) Dzd (RM) Dyd (RM) Bt (nT) RsM (RM) R2 (RM) z0 (RM) bx (nT) by (nT) bz (nT) s1,2 (nT) s3 (nT)

MI in 192 0.18 0.01 165 1.21 1.25 0.095 27 �2 20 13.76 13.08
MI out 192 0.18 0.01 173 1.33 1.35 0.32 �33 �12 21
MIII 192 0.18 0.01 95 1.56 1.25 �0.65 24 �3 22.0 12.26

aWe show three sets of the best fit model parameters for the inbound and outbound passes of MI and the total MIII flyby. The order of the fitting model
parameters corresponds to the number of the table’s column. The equatorial dipole field (BM0) is shown in the 2nd column. This dipole field gives a
minimum of rms s3 which is placed in the last column. The total rms, s3, is the deviation between data and model for both flybys and for all three sets of
the model parameters listed in the table. Dipole offsets (Dyd and Dzd) are shown in the 3rd and 4th columns. The tail field strength at the inner edge of the
tail current (Bt) is shown in the 5th column. Subsolar distance (RsM) is placed in the 6th column followed, in the 7th column, by the distance to the inner
edge of the tail current (R2). The tail current sheet displacement in the north-south direction relative the equatorial plane (z0) is shown in the 8th column.
Columns 9, 10, and 11 show the penetrated IMF components. Column 12 presents the best fit rms values s1 and s2 for the MI and MIII flybys,
correspondingly.
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Figure 2. Unified dipole moment. Best fitting for dipole shifted up to Dzd = 0.18 RM above the
equatorial plane. (a) Module of the observed (black curve) and calculated (red curve) magnetic field during
the MI encounter. Selected parameters are BM0 =�192 nTandDzd = 0.18 RM; Bt = 165 nT, RsM = 1.21 RM,
R2 = 1.245 RM, z0 = 0.095 RM, bx = 27 nT, by =�2 nT, and bz = 20 nT; BM0 =�192 nT andDzd = 0.18 RM;
and Bt = 173 nT, RsM = 1.33 RM, R2 = 1.35 RM, z0 = 0.31 RM, bx =�33 nT, by =�12 nT, and bz = 21 nT for
the inbound and outbound portions of the MI trajectory, respectively. rms s1 = 13.76 nT. (b) X component
of the observed (black curve) and calculated (red curve) magnetic field. (c) Y component of the observed
(black curve) and calculated (red curve) magnetic field. (d) Z component of the observed (black curve) and
calculated (red curve) magnetic field. Tics on the horizontal axis mark the minutes from Mariner 10’s first
magnetopause crossing during MI flyby (20 h 36 min 50 s on 29 March 1974).
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of s3 and after finding of this value, we go to the dipole
offset Drd and find the next minimum of s3. We return to
BM0 after finding Drd, because the dipole moment and
dipole offset correlate with each other. When the best-fit
BM0 and Drd are fixed, we go to the next parameter Bt and
change it to reach a new minimum of s3, and etc. To check
that we find the model parameters set which give the
minimum of s3, we return to start of the best fit procedure
and repeat it with initial parameter set equal results of the
previous run. We repeat these runs till rms does not change
after two successive runs. We obtain the best fit parameters
conserved after checking run and these values are listed in
Table 2. For the unified dipole moment BM0 = �192 nT, and
dipole offset with the components:Dzd = 0.18 RM andDyd =
0.01 RM the following parameter sets are selected (first and
second lines of Table 2):

Bt ¼ 165nT;RsM ¼ 1:21RM;R2 ¼ 1:25RM ;

z0 ¼ 0:095RM ; bx ¼ 27nT; by ¼ �2nT; bz ¼ 20nT; ð18Þ

Bt ¼ 173nT;RsM ¼ 1:33RM;R2 ¼ 1:35RM;

z0 ¼ 0:31RM; bx ¼ �33nT; by ¼ �12nT; bz ¼ 21nT ð19Þ

for the inbound and outbound portions of the MI trajectory,
respectively, with corresponding values of qpc = 48� and
56.4�. These best-fit values are about 25% smaller than our
initial estimation of the polar cap radii. For this flyby and
chosen parameters, the rms s1 = 13.76 nT. Figure 2 presents
the model simulation of the MI magnetic field measured
data (module of the total magnetic field, and its X, Y, and
Z-components, respectively) for the unified value of the
Mercury’s dipole moment with the chosen offset.

3.5. Model Calculations for MIII

[44] During the third flyby the Mercury magnetosphere
appeared relatively stable. The closest approach was at
22:39:23 UT. At this time the spacecraft entered a region
of very low electron intensities, presumably the extensions
of the lobes of the magnetotail with open field lines
connected to the solar wind [see Wurz and Blomberg,
2001]. The IMF was northward during the entire MIII flyby
[Ness et al., 1976]. The mean inferred stand-off distance
was 1.9 RM [Slavin and Holzer, 1979b]. As it was previ-
ously noted, a paraboloid with RsM = 1.24 RM gives a good
preliminary approximation for the magnetopause during
MIII (see Figure 1), but the best fit procedure gives RsM =
1.56 RM. To minimize the rms value for MIII, the best
fitting procedure was obtained for the value of Mercury’s
dipole magnetic field and dipole offset determined from
fitting simultaneously both MI and MIII flybys. The
obtained parameters are BM0 = �192 nT and the dipole
offset with Dyd = 0.0083RM, Dzd = 0.179RM. The other
model parameters, which give the minimum of s3, are:

Bt ¼ 95nT;RsM ¼ 1:56RM;R2 ¼ 1:25RM;

z0 ¼ �0:65RM; bx ¼ 24nT; by ¼ �3nT; bz ¼ 22nT ð20Þ

[45] The calculated polar cap angle radius is qpc = 44.2�
for this flyby. The average rms s2 is 12.3 nT or about 3%
from the maximum measured field. Figures 2 and 3 present
comparison of observations with calculations using these
model parameters. The time step on the horizontal axis is
1 min. Figure 4 shows the comparison of the discrepancy of
the observed magnetic field and contributions to the mag-
netospheric field of the magnetopause and tail currents. The
main contribution to the model field gives the dipole field
(not drawn in Figure 4) which strongly increased as the
spacecraft approached Mercury. However, in the outer
magnetosphere the tail and magnetopause current field can
be essential. If the magnetospheric field is ignored, then the
deviation between the model and observation magnetic
fields increases significantly.

3.6. Summary of Unified Model Results for MI
and MIII

[46] In Table 2 we show three sets of the model param-
eters for the inbound and outbound passes of MI and the
total MIII flyby. The dipole tilt is assumed to be zero in all
calculations (Y = 0). The second column contains the
Hermean dipole equatorial field unified for all data. The
dipole offset 0.0083 RM in the dawn-dusk direction was
received, and displacement of the dipole up to 0.18 RM

along Z axis decreased the rms If we change these values (to
increase or decrease BM0 and/or Dzd), the rms deviation, s3,
between the model magnetic field vector and magnetometer
data, will increase. In this sense, we find the best-fit dipole
moment and dipole offset values. In the third column of
Table 2, the tail field strength, Bt, is shown. For MI flyby
both Bt values have been chosen in such a way that the
average s for the total MI flyby be minimal. For MIII flyby
this parameter is about two times smaller than for MI. This
could be a result of the magnetosphere expansion and/or of
the lesser level of the magnetospheric activity during the
MIII flyby comparable to the MI one. The distance to the
inner edge of the tail current sheet, R2, and the tail current
sheet displacement relative to the equatorial plane, z0,
demonstrate similar behavior. Values of the model param-
eters presented in Table 2, give the minimum s, shown in
the last tenth column. Three variables in the 7th, 8th, and
9th columns show the IMF components, which were chosen
from two criteria: (1) the IMF components must be close to
the Mariner 10 data outside the magnetosphere, and (2) the
s value calculated with them should be smallest. The s
values shown in the last right column present an essential
part of the average measured field. These values indicate
that the model could be improved by including additional
modifications such as the dipole tilt.
[47] Note that we cannot determine the best fit of the kIMF

value, because we have no simultaneous measurements of
BIMF and of the magnetospheric magnetic field. However,
we can estimate the most probable value of the kIMF by
comparison of the best-fit values of the penetrated IMF,
listed in Table 2, with the average magnetic field measured
outside the magnetosphere.. This estimation demonstrates
that sometimes kIMF can be close to 1.
[48] Our fitting procedure demonstrates that the accuracy

of the Mercury dipole moment from Mariner 10 data is
about 20%. Improved accuracy of the dipole offset is
expected after the MESSENGER orbital phase measure-
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Figure 3. Best fitting for the unified dipole shifted up to Dzd = 0.18 RM along the Z axis. (a) Module of
the observed (black curve) and calculated (red curve) magnetic field during the MIII encounter. Found
best fit model parameters are BM0 = �192 nT and Dzd = 0.18 RM and Bt = 95 nT, RsM = 1.56 RM, R2 =
1.25 RM, z0 = �0.65 RM, bx = 24 nT, by = �3 nT, and bz = 22 nT for the MIII flyby. rms s2 = 12.26 nT.
(b) X component of the observed (black curve) and calculated (red curve) magnetic field. (c) Y component
of the observed (black curve) and calculated (red curve) magnetic field. (d) Z component of the observed
(black curve) and calculated (red curve) magnetic field. Tics on horizontal axis mark the minutes from the
first Mariner 10 magnetopause crossing during MIII flyby (22 h 29 min 30 min on 16 March 1975).

A12210 ALEXEEV ET AL.: MODELING MERCURY’S MAGNETIC FIELD

12 of 18

A12210



ments become available [Anderson et al., 2007]. MESSEN-
GER orbits will cover all longitudinal sectors over a wide
interval of the Mercury’s northern latitudes.

4. Comparison With Other Mercury
Magnetospheric Magnetic Field Models

[49] Table 3 presents a summary of our results and those
by models previously applied to the M10 data. We mark by
asterisk the number which was not mentioned in the original
paper (by Luhmann et al. [1998]), but is calculated by us. In
the first column in Table 3 there are five published magne-
tospheric models. LRT 98 indicates the model by Luhmann
et al. [1998], and S&B 06 corresponds to Scuffham and
Balogh [2006]. The next five columns give (from left to
right) for each model: (2) MM (the Mercury magnetic

moment); (3) RsM (the magnetopause subsolar distance);
(4) Rt (the distance to the inner edge of the tail current); (5)
qpc is the polar cap radius determined by us from the figure
with noon-midnight field lines; and (6) kIMF is the ratio of
the penetrated into the magnetosphere interplanetary mag-
netic field portion to the origin IMF. All distances in Table 3
have been determined from the noon-midnight field line
drawings in the corresponding papers.
[50] Our Mercury magnetosphere model offers several

distinct advantages over previous models. For example, the
models of Engle [1997] and Scuffham and Balogh [2006]
used their own representations for the magnetopause and
tail currents similar to our approach. However, our param-
eterization of the tail current system has only two param-
eters: (1) the distance to the inner edge of the current sheet,
and (2) the tail lobe magnetic flux. Furthermore, as already

Figure 4. Relative contributions of the magnetospheric global current systems to the total magnetic
field. The top row shows for the MI flyby the three components of the magnetopause currents (red curve),
the tail currents (blue curves), and the difference between the Mariner 10-measured magnetic field
components and the model forecast dB_x, y, z = (Bobs � Bmod) _x, y, z (dashed curves). The bottom row
demonstrates the same magnetopause and tail current contributions to the model field along MIII orbit.
The dashed curves illustrate the difference between the observed magnetic field and the magnetic field
vectors calculated by the model.
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demonstrated, both of these parameters can be directly and
independently determined from the magnetometer measure-
ments taken during the two Mariner 10 magnetospheric
encounters. By comparison, the models of Engle and
Scuffham and Balogh employ more than ten parameters
which have been determined to describe the Earth’s tail
current sheet density space distribution. This strongly
increases the number of arbitrary parameters which may
influence the final results. In our case we use paraboloid
harmonic expansions, a universal treatment for the Neu-
mann problem, and we only parameterize the total current
amplitude.
[51] The most widely used approach to estimate the

magnetic field due to magnetospheric current systems
during the Mariner 10 encounters is to scale the Tsyganenko
terrestrial magnetosphere models [Tsyganenko, 2002, and
references therein] to Mercury using simple spatial scaling
[see Luhmann et al., 1998; Korth et al., 2004]. However,
there are several disadvantages and limitations to this
approach at Mercury:
[52] 1. The Tsyganenko models are based upon an exten-

sive database of measurements taken at Earth that may not
be representative of Mercury’s magnetosphere, especially
with respect to the relative contributions of the different
magnetospheric current systems. For example, as demon-
strated by Engle [1997], and by our results, the magneto-
pause and tail currents have different scaling factors.
Furthermore, Fairfield and Jones [1996] showed that the
tail lobe field strength depends on the solar wind dynamic
pressure, psw, as psw

1/4 whereas the dayside magnetic field
inside of the magnetopause goes as psw

1/2. Accordingly, the
ratio of the magnetopause to tail current density will
increase by a factor of (1/r)1/2 � 1.4 in going from Earth
at 1 AU to Mercury’s perihelion at 0.3 AU.
[53] 2. The two Mariner 10 encounters show that the

intensity of Mercury’s magnetospheric current systems and
their relative contributions to the total magnetic field can be
highly variable depending upon the upstream solar wind
and IMF conditions. The response of Mercury’s magneto-
sphere to IMF orientation and reconnection appears to be
more rapid and intense than what is observed at the Earth.
For this reason the paraboloidal model’s inclusion of

‘‘penetration’’ by all 3 components of the IMF into Mer-
cury’s magnetosphere with a specified coefficient may be an
especially important advantage of our model over the scaled
Tsyganenko models, which do not incorporate the dominant
radial component. Different approaches used different val-
ues for two scaling factors (for space and for magnetic
field). It is clearly demonstrated in Table 3 that the magnetic
field factor, km, changes from 2 (LRT 98) to 5.1 [Lukyanov
et al., 2001], while the space scaling factor, ks, changes
from 4.6 [Korth et al., 2004] to 8 [Lukyanov et al., 2001].
[54] Of course, once large magnetic field databases are

collected at Mercury by the MESSENGER and BepiCo-
lombo missions it will be possible to determine the many
semi-empirical parameters required by Tsyganenko-type
models and to produce Mercury-specific magnetospheric
current system models. Presently only a limited number of
measurements of Mercury’s magnetospheric magnetic field
is available from the two Mariner 10 flybys. For all of the
reasons listed earlier our procedure is concentrated not on a
dimension scaling of the Earth-specific magnetosphere
models, but rather on a simple, robust model containing
the minimum number of free parameters to provide an
accurate representation of the magnetic field with the
additional requirement that these parameters all be deter-
mined from the available Mercury measurements. The
Paraboloidal model meets both of these requirements and
it has been successfully tested for the magnetospheres of
Earth, Jupiter and Saturn.

5. Mercury’s Magnetosphere Under Extreme
Conditions

[55] As a further application of the Paraboloidal model,
we examine the response of Mercury’s magnetosphere to
extreme solar outbursts. The solar wind conditions that exert
the maximum stress upon magnetospheres are: (1) high-
dynamic pressure which applies stress normal to the mag-
netopause, compressing the planetary magnetic field and
reducing the magnetospheric volume; and (2) strong inter-
planetary magnetic fields with significant components anti-
parallel to the subsolar magnetic field at the magnetopause,
resulting in dayside reconnection that splices together the
IMF and magnetospheric flux tubes. This latter interaction
reduces the volume of the dayside magnetosphere while
increasing the volume of the nightside magnetosphere and
the diameter of the magnetic tail. Further, dayside recon-
nection exerts a tangential stress on the magnetosphere that
results in a high rate of transfer of solar wind energy into the
magnetosphere and increases the effective ‘‘penetration’’ of
the IMF into the magnetosphere.
[56] The most extreme instances of high solar dynamic

pressure and intense north-south interplanetary magnetic
fields are generally found in association with interplanetary
coronal mass ejections (ICMEs). It is for this reason that
ICMEs are among the most ‘‘geoeffective’’ conditions
found in the solar wind and they produce the largest
magnetospheric storms at the Earth. Figure 5 displays an
example of an interplanetary (IP) shock driven by a ICME
identified by Liu et al. [2005] in the Helios 1 observations
taken near Mercury’s orbit, i.e., at 0.34 AU from the Sun, on
20 June 1981. Solar wind dynamic pressure and the
interplanetary electric field potential drop across a trans-

Table 3. Comparison of Different Mercury’s Magnetospheric

Modelsa

Model MM (nT Rm
3) RsM (RM) Rt (RM) qpc (deg) kIMF

Engle 97 154–182 1.2 1.5 30 0
LRT 98 �180* 1.4 1.2 47 1.0
Lukyanov et al. 01 300 1.4 1.5 50 0
Korth et al. 04 300 2.2 1.5 36 0
S&B 06 228 1.2 �2.8 35 0.5
This study (MI) 192 1.27 1.3 52 1.0
This study (MIII) 192 1.56 1.25 44 0.4
This study (extreme) 192 1.0 1.0 60 1.0

aThe first column lists five published magnetospheric models. LRT 98
indicates the model by Luhmann et al. [1998], and S&B 06 corresponds to
that of Scuffham and Balogh [2006]. The next five columns give (from left
to right) for each model: (2) Mm (the Mercury magnetic moment); (3) RsM

(the magnetopause subsolar distance); (4) Rt (the distance to the inner edge
of the tail current); (5) qpc is the polar cap radius determined by us from the
figure with noon-midnight field lines; (6) kIMF is the ratio of the penetrated
into the magnetosphere interplanetary magnetic field portion to the origin
IMF.
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verse length scale comparable to Mercury’s magnetosphere,
i.e., �1.5 RM, spike at nearly 500 nPa and 200 kV,
respectively, during and just after the arrival of the ICME-
driven interplanetary shock around � 3:30 UT. The ICME
itself is composed of relatively cool coronal plasma. The
intense north-south magnetic fields are due to the embedded
large magnetic flux rope. The ICME is observed over a �
12 hr interval beginning about an hour after the IP shock
passes Helios. The strongest north–south magnetic fields, at
times exceeding ±100 nT are associated with the IP shock,
the IMF draped and compressed about the ICME, and the
flux rope core of the ICME itself.

[57] After the ICME passage (i.e., past 15:00 on 20 June
1981) the solar wind pressure was about 1.3 nPa. The average
solar wind pressure at 0.31–0.35 AU according to the Helios
data is 20 nPa. The subsolar point pressure balance gives the
magnetopause subsolar distance RsM = 1.27 RM for the
average conditions and the dipole moment 192 nT RM

3 , in
agreement with our best fit data for the MI orbit. Below we
study the two cases with extreme magnetosphere conditions.
One of them is for a low solar wind pressure 1.3 nPa and
RsM � psw

�1/6 = 2 RM, and the other is for a high solar wind
pressure when the magnetopause is placed near the planet
RsM = 1.1 RM (pressure more than 84 nPa).

Figure 5. Solar wind and IMF measurements from the Helios 1 spacecraft during an ICME observed at
0.34 AU are presented. The event was identified from the list presented by Liu et al. [2005]. From top to
bottom, the panels display solar wind dynamic, or ram pressure; applied potential drop (�Vsw � Byz) . L
across a magnetospheric scale length L = 1 RM; Alfvenic (red) and sonic (black) Mach numbers; the three
components of the IMF and the total field intensity; and, finally, in the lower two panels, the solar wind
density and speed. Note that, during ICME events, the Mercury’s magnetosphere can experience extreme
conditions, with the solar wind dynamic pressure reaching 500 nPa applied electric potential dropping
across the magnetosphere of 200 kV and Alfvenic Mach number values below 2.
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[58] The top of Figure 6 shows the magnetic configu-
ration of Mercury’s magnetosphere in the noon – mid-
night plane according to the Paraboloidal model for
extremely weak solar wind conditions possible around
the Hermean aphelion. The model parameters for this
weakly driven or low external stress level were selected
as follows: RsM = 2 RM (the magnetopause subsolar
distance); qpc = 35� is the polar cap radius determined
by the tail lobe magnetic flux; and kIMF = 0 is the ratio
of the penetrated into the magnetosphere interplanetary
magnetic field portion to the origin IMF (i.e., northward
IMF). As shown, the Paraboloidal model with these input
parameters produces a relatively large Hermean magneto-
sphere with zero magnetic field normal to the magneto-
pause and Bz northward in the equatorial regions of the
nightside magnetosphere.
[59] The bottom of Figure 6, on the other hand, depicts

the possible configuration of Mercury’s magnetosphere in
response to extreme solar wind conditions such as those
associated with ICMEs. In the absence of induction effects
(which are likely for IP shock events; see Glassmeier

[1997]), our unified model of Mercury’s magnetosphere
predicts that the solar wind pressure will depress the
magnetopause to the surface of the planet for pressures
greater than 84 nPa. For this reason, Figure 6 presents the
magnetic configuration of Mercury’s magnetosphere for a
near-maximal compression with RsM = 1.1 RM. The magnetic
field at the subsolar point is 470 nT. For such ‘‘extreme’’
conditions at Mercury, the magnetospheric magnetic field
scaling factor km = Bm/BE is equal to 8.9, the space scaling
factor ks is equal to 10, the distance to the inner edge of the
tail current sheet, Rt = 1.0 RM, and the polar cup radius will
be qpc = 60�. As shown in the bottom of Figure 6, under
these conditions the Paraboloidal model produces a dayside
magnetosphere that doesn’t extend significantly beyond the
surface of Mercury and a relatively large magnetic field
component normal to the magnetopause. The strong ‘‘pen-
etration’’ of the IMF into the magnetosphere for these strong
southward IMF conditions alters the topology of the equa-
torial nightside magnetosphere with the Bz magnetic field
becoming southward beyond X � �2.5 RM. This is the
same relative distance down the tail where the near-Earth

Figure 6. The two extreme states of the Mercury magnetosphere are shown. In the bottom, the
maximum compression of the magnetosphere by the CME-like solar wind is shown, whereas in the top,
the Hermean magnetosphere is seen to substantially expand (�x2) under low-solar-wind-pressure
conditions (�1 nPa). The magnetospheric model parameters in the top are RsM = 2 RM (the magnetopause
subsolar distance); qpc = 37.5� is the polar cap radius determined by the tail lobe magnetic flux; and
kIMF = 0 is the ratio of the penetrated into the magnetosphere interplanetary magnetic field portion to
the origin IMF. For the bottom, the respective parameters are: RsM = 1.1 RM, qpc = 47�, and kIMF =
0.375. The Bz IMF for the bottom is equal to �40 nT.
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neutral line forms in the Earth’s magnetosphere [Slavin,
2004].
[60] In this manner, the Paraboloidal model can be used to

explore how Mercury’s magnetosphere is expected to vary
in its spatial extent and magnetic field intensity because of
the extreme variations in solar wind and IMF found in the
inner heliosphere, especially when the Sun is most active
around Solar Maximum and ICMEs are common. However,
large external stresses and inputs of solar wind energy to
this small magnetosphere are also expected during the high-
speed streams that are common during the declining phase
of the Solar Cycle.

6. Conclusions

[61] A new model of Mercury’s global magnetospheric
current systems has been developed based upon the Parab-
oloidal Model which has been successfully applied previ-
ously to the Earth [Alexeev, 1978, 1986; Alexeev et al.,
2003], Jupiter [Alexeev and Belenkaya, 2005; Belenkaya,
2004], and Saturn [Belenkaya et al., 2006, 2007; Alexeev et
al., 2006]. The magnetospheric current model includes the
magnetopause current that confines the planet’s magnetic
field to the magnetosphere and the tail current system
consisting of the cross-tail current sheet and the closure
currents at the magnetopause.
[62] Using this model we have re-examined the Mariner

10 observations taking into account the IMF penetration
into the magnetosphere and the global magnetospheric
currents at the time of each encounter. Under the assump-
tion that the solar wind interaction with Mercury is terres-
trial in character, it was shown that the contribution of the
external current systems to the total magnetic field in the
vicinity of Mercury is significant even at the planet’s
surface. Determination of a rotation axis-aligned magnetic
dipole moment value, 192 nT RM

3 , that is consistent with
both of the Mariner 10’s close encounters is one of
achievements of the present work. We also found strong
evidence for a dipole offset by up to 0.18 RM in the
northward direction, but more accurate calculations of
the dipole position will require new measurements from
the MESSENGER mission.
[63] Comparison of the model calculations with data

obtained during the Mariner 10 MI and MIII flybys shows
the important role which the IMF plays in the Mercury’s
magnetosphere. Analysis of the magnetic field measure-
ments indicates that the coefficient of the IMF penetration
into the Hermean magnetosphere is much larger than at the
Earth and may approach unity when the upstream IMF is
southward. This result supports earlier suggestions that
magnetic reconnection between the planetary magnetic field
and the IMF may be much more efficient at Mercury as
compared to the Earth because of the lower Alfven Mach
numbers found in the inner heliosphere [Slavin and Holzer,
1979a].
[64] NASA’s MESSENGER mission will be inserted into

an orbit around Mercury in 2011 [Solomon et al., 2001].
The ESA - JAXA BepiColombo mission, now in develop-
ment [Schulz and Benkhoffa, 2006], will arrive Mercury in
2019 and will consist of both a low-altitude planetary
orbiter and a higher apoapsis magnetospheric orbiter. How-
ever, while we await these new measurements from Mer-

cury orbit, significant improvements in our understanding of
Mercury’s intrinsic magnetic field and magnetospheric
currents are expected to result from the measurements to
be collected during three MESSENGER flybys (January
and October 2008; September 2009).
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