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[1] We introduce a modification of the nonlinear least squares fitting technique of Viñas
and Scudder and Szabo (VSSz) with simultaneous determination of the shock normal
direction (q and f) and propagation speed (VS). Similar to the 2D case of the VSSz
technique, the uniqueness of the solution can still be graphically demonstrated in the 3D
space of the unknown variables. The modified technique is validated through the analysis
of synthetic shocks and is also applied to an interplanetary shock observed by Wind.
Our technique provides self-consistent 3D confidence regions for the parameters while the
VSSz technique assumes the independence of the VS confidence interval from q and f.
The 3D confidence region is highly dependent on VS resulting in q and f joint confidence
regions that are generally significantly larger and oriented differently than those
obtained by the VSSz technique. This also leads to significantly larger confidence
intervals for the individual parameters determined by our modified technique. While the
best fit values provided by the two techniques are usually close to each other, we also
demonstrate the advantage of the VS best fit value determination with our technique in the
case when a small density jump is combined with significant density fluctuations. The
agreement between the best fit solutions of the techniques can also be used as a test for
the correctness of the chosen upstream and downstream intervals.
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1. Introduction

[2] Interplanetary (IP) shock parameters, such as shock
front orientation, propagation speed, asymptotic magneto-
fluid states on both sides of the shock, and the derived
parameters (Mach numbers, qBn the angle between the
shock normal and the upstream magnetic field directions,
etc.), characterize the propagation of the shock and its
interaction with the Earth’s magnetosphere. Thus the accu-
rate determination of these parameters is an essential task
before the investigation of a shock-related event can be
done. Moreover, these parameters may have spatial and
temporal variations underlining the importance of their local
determination. Several techniques that calculate these
parameters from single-spacecraft magnetic field and plasma
measurements by applying magnetohydrodynamic (MHD)
Rankine-Hugoniot (RH) conservation equations across a
shock have been developed. Simple techniques, such as
magnetic coplanarity [Colburn and Sonett, 1966], velocity
coplanarity [Abraham-Shrauner, 1972], and the mixed data
methods of Abraham-Shrauner [Abraham-Shrauner and
Yun, 1976], use small subsets of RH conservation equations
and have significant limitations: magnetic coplanarity fails

for perpendicular shocks and gives poor results for near-
perpendicular shocks; velocity coplanarity is valid for
perpendicular shocks only and can be used as a good
approximation only for high Mach number shocks. More-
over, these simple techniques predefine the upstream and
downstream asymptotic magnetofluid states by forming
simple averages that may differ significantly from the
self-consistent asymptotic states in a fluctuating magneto-
fluid environment.
[3] In order to optimally use the available magnetic field

and plasma data, Lepping and Argentiero [1971] developed
an iterative least squares technique that is based on a
reduced set of RH conservation equations devoid of tem-
perature terms, namely the mass flux conservation equation,
the normal magnetic field continuity equation, the momen-
tum flux conservation equations for the tangential compo-
nents, and the tangential electric field continuity equations.
The technique treats each measured point separately and
solves directly for the best fit self-consistent magnetofluid
states, which are then used, via the magnetic coplanarity
technique and mass flux conservation equation, to deter-
mine the shock normal direction and propagation speed.
However, the uniqueness of this solution cannot be estab-
lished in the eight-dimensional space of independent vari-
ables and the technique is valid for oblique shocks only.
These problems were overcome byViñas and Scudder [1986]
in their least squares technique that uses the same reduced
set of RH conservation equations. The technique reduces the
problem of finding a solution in the multidimensional space
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to a self-consistent sequence of one- and two-dimensional
least squares problems where the uniqueness of the solution
can be demonstrated either analytically or graphically for
each step. The sequence of problems consists of determining
the shock best fit normal direction, followed by the prop-
agation speed, conservation constants across the shock, and
self-consistent asymptotic magnetofluid states on both sides
of the shock. The resulting shock parameters are reliable at
all qBn angles regardless of the shock strength, geometry and
direction of propagation relative to the ambient flow. The
technique also estimates confidence regions for the best fit
shock parameters.
[4] Szabo [1994] extended the Viñas and Scudder [1986]

technique to the whole set of RH conservation equations by
including the momentum flux conservation equation for the
normal component and the energy flux conservation equa-
tion, which allowed the exclusion of spurious solutions
given by the Viñas and Scudder technique without manual
intervention. Also, this extension makes it possible to find
the asymptotic values of the total plasma temperature and to
fit for the best values of the ratio of specific heats on both
sides of the shock. Further improvements include the proper
treatment of individual measurement errors and a complete
description of possible representations of confidence
regions of the solutions.
[5] More recently, Lin et al. [2006] have developed a new

procedure for shock fitting of the one-fluid anisotropic RH
equations and of the time difference between two spacecraft
observations in the case of small He2+ slippage. The
procedure starts with Monte-Carlo simulations of the arrays
of input variables (magnetic field, plasma density, and
plasma anisotropy on each side of the shock) based on their
observed means and standard deviations. These arrays are
used together with RH equations to calculate the arrays of
plasma beta on each side of the shock, the difference of
plasma bulk velocity across the shock, and the time differ-
ence between two spacecraft observations of the shock
passage. The arrays of the input and calculated variables
are then used to find simultaneously the best fit values of
the variables by means of least squares minimization that
measures the agreement between the variables and their
observed means. The procedure was also demonstrated to
be applicable in the case of single-spacecraft shock obser-
vation, allowing calculation of local shock parameters.
However, the uniqueness of the solution cannot be demon-
strated in the multidimensional space of variables. More-
over, the procedure uses the magnetic coplanarity technique
to calculate shock normal direction, and thus may suffer
from the limitations of this technique.
[6] Currently, the technique of Viñas and Scudder [1986]

and Szabo [1994] (VSSz) is the most comprehensive
technique for shock parameter determination from single
spacecraft magnetic field and plasma measurements in an
isotropic medium, which not only calculate the shock best
fit parameters and their confidence regions but also dem-
onstrates the uniqueness of the solution. However, the
technique separates the determination of the shock normal
direction and propagation speed by giving significantly
more weight to the mass flux conservation equation rather
than treating all RH equations equally. In order to obtain
self-consistent joint confidence regions for the shock normal
direction and propagation speed, we have modified the

VSSz technique by determining these parameters simulta-
neously. The uniqueness of the solution can still be graph-
ically investigated in this three-dimensional (3D) case as we
demonstrate.
[7] The modified technique is described in section 2 and

validated through the analysis of synthetic shocks in
section 3. In section 4 we apply the technique to a real IP
shock and finally summarize the characteristics of this new
method in section 5.

2. Technique

[8] The ideal MHD RH conservation equations [e.g.,
Landau and Lifshitz, 1960] written in a spacecraft frame
of reference are

D Gn½ � � D r Vn � VSð Þ½ � ¼ 0 ð1Þ

D Bn½ � � D B � n̂½ � ¼ 0 ð2Þ

D St½ � � D r Vn � VSð ÞVt �
Bn

m0

Bt

� �
¼ 0 ð3Þ

D Et½ � � D n̂	 Vtð ÞBn � Vn � VSð Þ n̂	 Btð Þ½ � ¼ 0 ð4Þ

D Sn½ � � D P þ B2
t

2m0

þ r Vn � VSð Þ2
� �

¼ 0 ð5Þ

D e½ � �D r Vn � VSð Þ V� VS n̂ð Þ2

2

 "

þ g
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P

r
þ B2

m0r

�
� Bn V� VS n̂ð Þ � B

m0

�
¼ 0 ð6Þ

where r is the mass density, V is the plasma bulk velocity,
B is the magnetic field, P is the total (ion plus electron)
isotropic thermal pressure, and g is the ratio of specific
heats. The subscripts n and t denote the components
normal and tangential to the shock surface. n̂ is the shock
unit normal and VS is the shock speed along the normal in
the spacecraft reference frame. Gn, Bn, St, Et, Sn, and e are
the conservation constants across the shock corresponding
to the mass flux, normal component of the magnetic field,
tangential components of the momentum flux, tangential
components of the electric field, normal component of the
momentum flux, and energy flux, respectively. The
notation D[ ] refers to the difference across the shock.
[9] In its first step, the VSSz technique uses equation (1)

to express the shock speed as a function of the shock normal
direction and the plasma density and velocity on both sides
of the shock:

VS ¼ D rV½ �
D r½ � � n̂ ð7Þ

[10] This expression is subsequently substituted into
equations (3)–(6) to eliminate the shock speed. With the
plasma density, velocity, temperature, and magnetic field
observed and the ratio of specific heats estimated on both
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sides of the shock, the remaining set of seven equations (2)–
(6) depends only on the two angles (q and f) that define the
shock normal direction (n̂x = cosq, n̂y = sinqcosf, n̂z =
sinqsinf). This system of nonlinear equations is then used to
find the best fit q and f values that minimize the c2 merit
function

c2 q;fð Þ ¼
XN
i¼1

XK
j¼1

Yj xi;pð Þ � yj
� �2

s2
ij

ð8Þ

where Yj(x;p) are individual equations (2)–(6), x = (r1, V1,
B1, T1, r2, V2, B2, T2) are the observed quantities, p = (q, f)
are the unknown parameters, yj is the theoretically expected
value of the equation Yj, which is zero, sij is the standard
deviation of the jth equation when the ith observed data pair
is used, N is the number of data pairs x across the shock,
and K is the number of equations in the system. Once the
best fit q and f are found, these values are used with the
plasma density and velocity measurements to analytically
calculate the best fit shock speed

VS ¼
XN
i¼1

D riVi½ � � n̂
s2
i D ri½ �

	XN
i¼1

1

s2
i

ð9Þ

where si is the standard deviation of the shock speed
calculated by equation (7) when the ith observed data pair is
used.
[11] Although the separate determination of the unknown

variables (first q and f, followed by VS) aims to reduce the
problem to as small number of dimensions as possible, it
may have significant limitations. When q and f are close to
their ‘‘true’’ values, we expect the shock speed calculated
from equation (7) to be also close to its ‘‘true’’ value;
however, the more q and f deviate from their ‘‘true’’ values
the more significant the deviation of VS can be. Thus the
substitution of the VS value into equations (3)–(6) may

introduce errors into the estimated q and f confidence
regions, if not their best fit values. Separate determination
of the best fit VS also has a potential disadvantage which
comes from the form of its analytical expression (9). In
cases when VS standard deviations for individual data pairs
in expression (9) are equal (for example, when calculated
directly from the VS distribution) and the jump of the mean
density across the shock is small, expression (9) is very
sensitive to the distribution of density points on both sides
of the shock. Some pairs of density points could have very
small differences, which will lead to a significant overesti-
mation of the best fit VS. Since the consequently estimated
asymptotic magnetofluid states and the derived parameters
(Mach numbers, qBn, etc.) depend on q, f, and VS, the
accuracy of these parameters and their confidence intervals
may also be affected.
[12] In order to eliminate this source of errors, we have

modified the technique by searching simultaneously for the
best fit values of q, f, and VS. These values correspond to
the minimum of the c2 merit function

c2 q;f;VSð Þ ¼
XN
i¼1

XK
j¼1

Yj xi;pð Þ � yj
� �2

s2
ij

ð10Þ

which differs from equation (8) in that it depends on three
variables (q, f, and VS) and the number of equations K is
increased by one by adding the mass flux conservation
equation (1). The 3D c2 map provides self-consistent
confidence regions for q, f, and VS jointly, and the
uniqueness of the solution can still be investigated
graphically. The joint distribution of q, f, and VS obtained
from the c2 map can also be used to generate the derived
parameter distributions and to determine their moments.
[13] Once the best fit values of the shock normal direction

and propagation speed are found, the best fit values of
conservation constants and self-consistent asymptotic mag-
netofluid states can be found by following the original
algorithm of the VSSz technique.

3. Synthetic Shocks

[14] In order to demonstrate the ability of our modified
technique to find the correct solution and to compare the
results with those obtained by the VSSz technique, we have
constructed examples of synthetic oblique, quasi-parallel,
and quasi-perpendicular fast shocks with parameters typical
for IP shocks observed at 1 AU. To reproduce the time
series of the magnetic field, ion bulk velocity and density,
and total (ion plus electron) temperature measurements by a
spacecraft before and after the shock, normally distributed
random fluctuations with zero means were superimposed on
the parameters. The parameters of the synthetic shocks and
the corresponding standard deviations used for the simu-
lations are listed in Table 1.
[15] Figure 1 shows an example of the simulated time

series of the magnetic field and plasma measurements on
both sides of the oblique shock. The vertical dashed line in
the figure separates the upstream and downstream states.
The time series are consequently used to determine the
shock normal direction and propagation speed. First, we
apply the VSSz technique to determine the best fit q and

Table 1. Parameters of the Synthetic Shocks

Parameter Oblique Quasi-k Quasi-? s

qBn (degrees) 45 5 85
q (degrees) 160 160 160
f (degrees) 135 135 135
VS (km/s) 450 450 450
Mf 1.87 2.19 1.74
B1x (nT) �4.77 �5.55 �1.57 0.33
B1y (nT) 2.98 �0.91 5.40 0.33
B1z (nT) 1.40 1.40 1.40 0.43
V1x (km/s) �360 �360 �360 2.33
V1y (km/s) 10 10 10 2.37
V1z (km/s) �10 �10 �10 2.77
n1 (cm

�3) 9.5 9.5 9.5 0.42
kTtot1 (eV) 17.5 17.5 17.5 3.50
g1 1.67 1.67 1.67
B2x (nT) �5.73 �5.70 �2.57 0.63
B2y (nT) 7.12 �0.32 10.5 0.84
B2z (nT) 1.83 1.41 2.58 0.97
V2x (km/s) �411 �412 �412 3.67
V2y (km/s) �10.8 �4.9 �4.6 4.27
V2z (km/s) 2.7 3.5 3.2 4.70
n2 (cm

�3) 18.2 18.2 18.2 1.09
kTtot2 (eV) 37.3 44.4 32.32 10.0
g2 1.77 1.87 1.69

A10110 KOVAL AND SZABO: MODIFIED SHOCK FITTING TECHNIQUE

3 of 9

A10110



f angles that minimize the c2 merit function (8). Figure 2
shows the log c2 contour plot over the q and f angles with
values denoted by color, the highest being red and the
lowest being violet. Due to the existence of two directions
normal to a surface, we assign the shock normal direction
to be the one with negative X component. Thus the q and
f values in Figure 2 represent all directions in the
corresponding hemisphere. The best fit q and f values
(q = 160.0� ± 1.1�, f = 138.3� ± 4.1�) are shown by a white

cross. The bars of the cross are the angle error bars while
solid, dashed, and dotted lines bound the q and f joint
confidence regions corresponding to 68.3%, 95.4%, and
99.73% of normally distributed data, respectively. One can
see that there is only one possible solution within the
99.73% confidence region. The ‘‘true’’ q and f values used
to construct the synthetic shock are shown by a red star.
They are within the 68.3% joint confidence region, which
indicates a good agreement between the determined q and

Figure 1. Magnetic field, ion bulk velocity and density, and total (ion plus electron) temperature
simulations for the synthetic oblique shock.
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f and the ‘‘true’’ values. The shock speed best fit value
is then determined using equation (9), which gives VS =
451.8 ± 3.2 km/s with the ‘‘true’’ value (450 km/s) within
the 68.3% confidence interval.
[16] Next we apply our modification of the technique to

the simulated time series to simultaneously determine the
best fit normal direction and propagation speed by mini-
mizing the c2 merit function (10). Figure 3 shows the log c2

map over q, f, and VS with values shown by the same colors
as in Figure 2. The q, f, and VS joint confidence region that
corresponds to 99.73% of normally distributed data is
shown in black. As evident in the figure, the uniqueness
of the region of likely solutions can still be established in
the 3D case. In order to investigate the likely solutions for q,
f, and VS in more detail, Figure 4 shows a zoomed in
portion of the plot. Here the black 3D region in the center of
the figure bounds the q, f, and VS joint confidence region
corresponding to 68.3% of normally distributed data. The
best fit values of the parameters (q = 159.5� ± 2.1�, f =
137.5� ± 6.2�, VS = 448.7 ± 6.7 km/s) are indicated by the
crossing of the bars, which are the error bars of the
individual parameters. The ‘‘true’’ values of q, f, and VS

are indicated by a red star and they lie within the 68.3% 3D
confidence region of the best fit parameters. Although the
best fit 3D solution slightly differs from its two-dimensional
(2D) counterpart obtained by the VSSz technique (about
0.6� in direction and 3.1 km/s in speed), both solutions are
in good agreement with the ‘‘true’’ values.
[17] We now compare the confidence regions of likely

solutions obtained by the 3D and 2D techniques. In Figure 4,
the black 2D regions on the q� f, q� VS, and f� VS planes
represent the 68.3% confidence regions of the corresponding

Figure 2. Log c2 contour plot over the q and f angles for
the synthetic oblique shock. The best fit q and f values are
shown by a white cross while the ‘‘true’’ values are shown
by a red star. See the text for details.

Figure 3. Log c2 map over q, f, and VS for the synthetic
oblique shock showing the uniqueness of the 99.73% 3D
confidence region (in black).

Figure 4. The q, f, and VS best fit solution (shown by a
white cross) and the 68.3% confidence regions (shown in
black) for the synthetic oblique shock. The ‘‘true’’ values of
q, f, and VS are indicated by a red star. See the text for
details.
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Table 2. Parameters of the Synthetic Shocks as Estimated by the Viñas and Scudder [1986] and Szabo [1994] Technique (2D) and by our

Modification of the Technique (3D)

Parameter ‘‘True’’ Value

Oblique Quasi-k Quasi-?
2D 3D 2D 3D 2D 3D

q (degrees) 160 160.0 ± 1.1 159.5 ± 2.1 158.5 ± 1.2 157.5 ± 3.8 159.7 ± 1.1 161.5 ± 2.5
f (degrees) 135 138.3 ± 4.1 137.5 ± 6.2 133.0 ± 4.1 133.3 ± 6.9 123.8 ± 3.4 124.7 ± 4.3
VS (km/s) 450 451.8 ± 3.2 448.7 ± 6.7 445.8 ± 2.6 442.0 ±12.5 446.0 ± 3.1 451.0 ± 7.0

Figure 5. Magnetic field, proton bulk velocity and density, and total (proton plus electron) temperature
observations by Wind for the IP shock on 6 August 1998.
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parameter pairs. They are determined from the 3D param-
eter distribution given by the c2 map by allowing the third
parameter to take all possible values. The color contours on
the planes show the corresponding 2D slices of the 3D log
c2 map with the third parameter set to its best fit value. One
can clearly see that the likely solutions for VS are strongly
dependent on q and f, which is different from the 2D case
of the VSSz technique where the independence of the VS

confidence interval from q and f is assumed. The VS

dependence on q and f leads to the q and f joint confidence
region (black region on the q � f plane) being different in
both size and shape from the confidence region obtained by
the 2D technique (shown by a solid line on the q�f plane in
Figure 4 for comparison). This also results in significantly
larger confidence intervals of individual parameters deter-
mined by our modifier technique (Table 2).
[18] Both techniques have also been applied to a synthetic

quasi-parallel and quasi-perpendicular shock. The estimated
parameters and their 68.3% confidence intervals are sum-
marized in Table 2. We briefly discuss the obtained best fit
parameters and their confidence regions (not shown). In the
case of the quasi-parallel shock, ‘‘true’’ values of q and f lie
within the 68.3% joint confidence region of the solution by
the VSSz technique, while the VS ‘‘true’’ value is slightly
outside the 68.3% confidence interval. When we determine
q, f, and VS simultaneously, the ‘‘true’’ values lie within the
68.3% 3D confidence region. In the case of the quasi-
perpendicular shock, the VSSz technique gives the solution
with ‘‘true’’ q and f values within the 99.73% joint
confidence region and the ‘‘true’’ VS value slightly outside
the 68.3% confidence interval. The simultaneous determi-
nation of q, f, and VS results in ‘‘true’’ values inside the
99.73% 3D confidence region.
[19] In both quasi-parallel and quasi-perpendicular cases

we observe the same behavior of the 3D confidence regions
as in the case of the oblique shock. Namely, the regions are
strongly dependent on VS which leads to significant differ-
ences between the q and f joint confidence regions and their
counterparts obtained by the VSSz technique, which also
results in significantly larger confidence intervals of indi-
vidual parameters determined by our modifier technique.
Since our modified technique is free from the simplification
of the VSSz technique, we believe that the confidence
regions obtained by our modified technique describe more
precisely the regions of likely solutions for the shock
normal direction and propagation speed.

4. Application to an IP Shock

[20] We apply the new 3D technique to a fast forward IP
shock that passed the Wind spacecraft on 6 August 1998.
The passage of the shock was observed at 0716 UT when
the spacecraft was located at (92.1; 8.7; �3.0) RE in GSE
coordinates. Figure 5 shows the magnetic field, proton bulk
velocity and density, and total (proton plus electron) tem-
perature as observed by the spacecraft. The vector quantities
are present in GSE coordinates. The proton parameters and
electron temperature are measured by the SWE instrument
[Ogilvie et al., 1995] while the magnetic field is provided by
the MFI instrument [Lepping et al., 1995]. The electron and
magnetic field data are averaged to fit the 92-second proton
measurements.

[21] The measurements on both sides of the shock are
used for the estimation of the shock normal direction and
propagation speed by the VSSz technique and by our
modification of the technique. The pairs of vertical dashed
lines in Figure 5 bound the chosen upstream and down-
stream regions. We first apply the VSSz technique to
determine the shock normal direction. Figure 6 shows the
contour plot of the log c2 over all possible shock normal
directions. The notations in this and the following figures
follow the notations developed for the synthetic oblique
shock, discussed above. The obtained best fit solution for
the shock normal direction is q = 153.4� ± 2.1� and f =
83.4� ± 5.3�, and the uniqueness of the solution can be
established within the 99.73% confidence region. The best
fit q and f angles are then used to determine the best fit
shock speed, which gives VS = 483.9 ± 24.7 km/s.
[22] The same measurements are used with our modified

technique to simultaneously obtain the best fit values for q,
f, and VS. Figure 7 shows the log c2 map over q, f, and VS

with the 99.73% 3D confidence region shown in black.
Figure 8 investigates the likely solutions for this case. The
best fit solution is q = 153.9� ± 8.5�, f = 83.8� ± 10.0�, and
VS = 469.1 ± 37.1 km/s. The best fit shock normal direction
is very close to the direction obtained by the VSSz tech-
nique; however, the difference in the shock speed is more
significant. Although this difference is within the 68.3% VS

confidence intervals for both techniques, our investigation
demonstrates that this difference is caused by the sensitivity
of the equation (9) in the VSSz technique to significant
fluctuations of the density when the density jump is small.
For the investigated IP shock the mean of the density jump
is 8.3 cm�3 while the standard deviation is 3.0 cm�3. We
have also used two-spacecraft observations to estimate the
shock speed from the times and locations of the shock
observations using the previously determined best fit q and
f angles. Although this technique assumes shock planarity
and constant propagation speed, it may provide comparison
with the locally determined shock parameters. The same IP
shock was also observed at  0644 UT by the ACE
spacecraft located at (243.6; 28.4, 20.4) RE in GSE coor-
dinates. Estimation of the shock speed from the two
spacecraft observations gives 409 km/s and 412 km/s for
the VSSz and our modified technique, respectively. Com-
parison of these values with the results of the two local
techniques demonstrates that our modified technique pro-
vides the best fit VS value which is closer (than that of the
VSSz technique) to the shock speed determined from the
two-spacecraft observations. However, the difference be-
tween the best fit VS determined by our modified technique
and that from the two-spacecraft observations is significant
and may indicate deviation of the shock front shape from
planarity assumption on the large scale of separation be-
tween the two spacecraft in the direction perpendicular to
the shock normal direction (which is 94 RE for this case).
This difference corresponds to a radius of curvature of 265
RE or, equivalently, to an angle of 21� between the normal
directions at the two spacecraft locations. Similar differ-
ences between the shock normal directions at the locations
of two well-separated spacecraft were reported by Szabo
[2005].
[23] It can be seen in Figure 8 that the 68.3% 3D

confidence region (shown in black in the center of the
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figure) is fully 3D and is highly elongated in the VS

direction. The 68.3% q and f joint confidence region
(shown in black on the q � f plane) differs significantly
from the region obtained by the VSSz technique (shown by
a solid line on the q � f plane in Figure 8 for comparison):
they are oriented roughly perpendicular to each other and
the former region is much larger than the latter one. This
also results in much larger confidence intervals for the
individual parameters as obtained by our modified tech-
nique compared to the original VSSz technique.

5. Summary

[24] We have introduced a modification of the VSSz
technique with simultaneous determination of the unknown
shock normal direction (expressed by q and f) and propa-
gation speed. Similar to the 2D case of the VSSz technique,
the uniqueness of the solution can still be graphically
demonstrated in the 3D space of the unknown variables.
The influence of the technique modification on the resulted
best fit parameters and their confidence regions has been
investigated on synthetic oblique, quasi-parallel, and quasi-
perpendicular shocks and on an IP shock observed by Wind.
[25] Our modification of the technique provides self-

consistent 3D confidence regions for the parameters while
the VSSz technique assumes the independence of the VS

confidence interval from q and f. The 3D confidence region
is highly dependent on VS that results in the q and f joint
confidence regions that are generally significantly larger
and oriented differently than the confidence regions
obtained by the VSSz technique. This also leads to signif-

Figure 6. Log c2 contour plot over the q and f angles for
the IP shock on 6 August 1998. The best fit q and f values
are shown by a white cross. See the text for details.

Figure 7. Log c2 map over q, f, and VS for the IP shock
on 6 August 1998 showing the uniqueness of the 99.73%
3D confidence region (in black).

Figure 8. The q, f, and VS best fit solution (shown by a
white cross) and the 68.3% confidence regions (shown in
black) for the IP shock on 6 August 1998. See the text for
details.
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icantly larger confidence intervals for the individual param-
eters as obtained by our modified technique.
[26] While the best fit values provided by the two

techniques are usually close to each other, we have also
demonstrated that the separate determination of the VS best
fit value by the VSSz technique may be sensitive to
significant density fluctuations in the case of small density
jump. Although the shocks with such conditions are rela-
tively rare (10% of the IP shocks observed at 1 AU), such
possibility should be taken into account when a shock with
small density jump is investigated. On the other hand,
significant differences in the best fit values of the parame-
ters obtained by the two technique, if they occur, may
indicate that the upstream and downstream intervals chosen
for the analysis do not represent self-consistent magneto-
fluid states. This difference may occur because of the
different numbers of degrees of freedom of the techniques,
allowing our technique to adjust the solution more easily to
the chosen upstream and downstream intervals. Thus the
agreement between the best fit solutions of the techniques
can be used as a test for the correctness of the chosen
upstream and downstream intervals. Once the correct inter-
vals are chosen, our technique can provide self-consistent
joint confidence regions for q, f, and VS.
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