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[1] Gross ecosystem production (GEP) can be estimated at the global scale and in a
spatially continuous mode using models driven by remote sensing. Multiple studies have
demonstrated the capability of high resolution optical remote sensing to accurately
measure GEP at the leaf and stand level, but upscaling this relationship using satellite data
remains challenging. Canopy structure is one of the complicating factors as it not only
alters the strength of a measured signal depending on integrated leaf-angle-distribution
and sun-observer geometry, but also drives the photosynthetic output and light-use-
efficiency (e) of individual leaves. This study introduces a new approach for upscaling
multiangular canopy level reflectance measurements to satellite scales which takes account
of canopy structure effects by using Light Detection and Ranging (LiDAR). A tower-
based spectro-radiometer was used to observe canopy reflectances over an annual period
under different look and solar angles. This information was then used to extract sunlit
and shaded spectral end-members corresponding to minimum and maximum values
of canopy-e over 8-d intervals using a bidirectional reflectance distribution model. Using
three-dimensional information of the canopy structure obtained from LiDAR, the canopy
light regime and leaf area was modeled over a 12 km2 area and was combined
with spectral end-members to derive high resolution maps of GEP. Comparison with eddy
covariance data collected at the site shows that the spectrally driven model is able to
accurately predict GEP (r2 between 0.75 and 0.91, p < 0.05).
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1. Introduction

[2] Satellite data will be essential for driving spatially
continuous, global-scale carbon cycle models [Hall et al.,
1995a]. Satellite-derived estimates of primary production
are based on the links between plant physiological
properties, specifically the biochemical composition of

plant foliage, and the optical properties of leaves. While
the remote sensing community has long been limited by
the number and width of spectral wave bands available
for detection of leaf optical properties, the recent advent
of high spectral resolution optical sensors, capable of
detecting changes in leaf spectral properties with a high
temporal frequency, has encouraged a new phase in
global carbon cycle modeling [Prince and Goward,
1995], with an eventual goal of forcing these models
entirely with satellite data [Running et al., 2004; Rahman
et al., 2005]. As one of the most widely applied concepts
for estimating plant productivity (also known as gross
ecosystem production, GEP), the light-use-efficiency ap-
proach of Monteith [1972, 1977] expresses GEP as the
product of the incident photosynthetically active radiation
(PAR) (mmol m�2 s�1), defined as solar radiation between
400 and 700 nm wavelengths, the fraction of PAR that is
absorbed by the plant canopy (fpar) and the efficiency (e),
with which absorbed PAR can be converted into the chemical
energy associated with it:

GEP ¼ PAR � fPAR � e ð1Þ
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Remotely sensed estimates of PAR are typically derived
from top of the atmosphere solar radiances using satellite
observations combined with optical modeling [Eck and
Dye, 1991; Sellers et al., 1995; Van Laake and Sanchez-
Azofeifa, 2004], while fPAR is regarded as a function of the
leaf area index [Sellers, 1985] which in turn is closely
related to top of the canopy reflectance measurements in the
visible and near infrared region [Tucker, 1979; Daughtry et
al., 1983; Asrar et al., 1984; Sellers, 1985, 1987]. Since the
mid-1980s, physical approaches have been developed to
determine fPAR globally, based on techniques using satellite
data [Tucker and Sellers, 1986], plot scale field studies
[Asrar et al., 1984; Tucker et al., 1981], large field
experiments [Sellers and Hall, 1992; Hall et al., 1992;
Sellers et al., 1997; Running et al., 1999] and theoretical
work [Myneni et al., 2002; Hall et al., 1990; Sellers, 1985,
1987; Sellers and Hall, 1992; Sellers et al., 1996a, 1996b].
[3] Arguably, one of the most challenging components of

the Monteith model to be inferred from remote sensing is e,
which is determined by any of a large number of environ-
mental stress factors and as a result, is highly variable in
space and time. One way to infer e from remotely sensed
observations is narrow wave band detection of the epoxi-
dation state of a group of leaf-pigments named xantho-
phylls, responsible for balancing absorption and utilization
of light quanta in order to prevent oxidative damage to the
photosynthetic apparatus in leaves [Demmig-Adams et al.,
1998; Demmig-Adams and Adams, 2000]. Gamon et al.
[1990] demonstrated a principal relationship between the
status of these pigments and a narrow wave band absorption
feature at 531 nm, which led to the formulation of the
photochemical reflectance index (PRI), comparing this
absorption feature to a reference band at 570 nm [Gamon
et al., 1992, 1993]. Numerous studies demonstrated a
logarithmic relationship between e and PRI (max e values
correspond to min PRI values and vice versa as PRI is
negative) at the leaf and stand level and [Nichol et al., 2002]
and Hilker et al. [2008a] demonstrated that this signal is
detectable over a wide range of view and illumination
conditions throughout the year.
[4] However, upscaling this relationship through space

and time is difficult. A critical component in upscaling PRI
measurements is canopy structure [Rahman et al., 2001], as
it not only alters the reflected signal by physically changing
its strength depending on integrated leaf angle distribution
and the sun-surface-sensor geometry [Barton and North,
2001], but also drives the photosynthetic output of individ-
ual leaves through its effect on canopy light transmittance
[Forseth and Norman, 1991]. The capacity of passive
remote sensing to investigate such structural dependencies
is limited, since remotely sensed reflectances are largely
dependent on the properties of the top of the canopy, while
the contributions of shaded leaves lower in the canopy are
harder to quantify [Hall et al., 1992; Chen et al., 2003;
Myneni et al., 2002; Gao et al., 2003]. Further, optical
remote sensing measures are typically asymptotic with
respect to vertically distributed structural attributes such as
leaf area, volume, or biomass [Wulder, 1998]. As a result,
satellite-derived predictions of primary production often
model e as a biome dependent constant, adjusted by simple
meteorological variables such as surface temperature and
vapor pressure deficit [Turner et al., 2003; Heinsch et al.,

2006], rather than attempting to model directly. The inac-
curacies inherent in this method are believed to account for
many of the differences found between field measured and
satellite derived estimates of GEP [Running et al., 2004].
While direct measurements of e using satellite data hold
promise for calculating more accurate estimates of carbon
budgets from space [Grace et al., 2007], appropriate meth-
ods to facilitate upscaling from leaf and canopy to landscape
level will be required.
[5] One way to investigate the interaction between pho-

tosynthesis, canopy radiation regime, and canopy structure
is to combine high spectral resolution optical remote sens-
ing data with structural information on the canopy obtained
from airborne LiDAR. LiDAR is an active remote sensing
technique that facilitates direct measurements of the three-
dimensional distribution of vegetation canopy components
as well as sub-canopy topography, thereby providing high
spatial resolution topographic elevation data, and accurate
estimates of vegetation height, cover density, and other
aspects of canopy structure [Lefsky et al., 2005]. Measure-
ment errors for individual tree heights (of a given species)
are typically in the order of less than 1.0 m [Persson et al.,
2002] and less than 0.5 m for plot-based estimates of
maximum and mean canopy height with full canopy closure
[Næsset, 1997, 2002; Magnussen and Boudewyn, 1998;
Næsset and Økland, 2002].
[6] In this paper, we investigate the potential of combin-

ing high spectral resolution optical remote sensing obser-
vations with small footprint LiDAR data to model e and
GEP vertically and horizontally in a forest whose dominant
species is Douglas fir (Pseudotsuga menziesii (Mirbel)). e
was determined from remotely sensed spectra acquired from
a permanently established tower-based spectro-radiometer
[Hilker et al., 2007], allowing continuous observation of the
canopy surface with high spatial and spectral resolution.
First, year-round tower-based measurements were decom-
posed into sunlit and shaded end-members [Hall et al.,
1995b; Asner et al., 1998; Peddle et al., 1999; Asner and
Warner, 2003] using a bidirectional reflectance distribution
model [Roujean et al., 1992; Hilker et al., 2008a]. The
physiological signal contained in these end-member reflec-
tances was then spatially extrapolated using information
about the canopy structure from LiDAR-based measures.
Finally, GEP was calculated separately for sunlit and shaded
canopies and compared to vertically and horizontally inte-
grated measurements of GEP obtained from CO2 exchange
measurements using the eddy covariance (EC) technique.
The goal of our approach was to investigate possibilities for
upscaling stand level observations to satellite scales thereby
improving our understanding of interactions between cano-
py radiation regime and photosynthesis.

2. Site Description

[7] The study area is a Canadian Carbon Program flux
tower site, located between Courtenay and Campbell
River on Vancouver Island, British Columbia, Canada
(49�5207.8‘‘ N, 125�2006.3’’ W, tower location) at 350 m
mean above sea level. The coniferous forest consists of 80%
Douglas fir, 17% western red cedar (Thuja plicata Donn ex
D. Don) and 3% western hemlock (Tsuga heterophylla (Raf.)
Sarg.) [Morgenstern et al., 2004] and is considered to be
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second-growth stand, planted in 1949, after harvesting of the
original stand [Goodwin, 1937]. The understorey consists
mainly of salal (Gaultheria shallon Pursh.), Oregon grape
(Berberis nervosa Pursh.), vanilla-leaf deer foot (Achlys
triphylla (Smith) DC), plus various ferns and mosses
[Morgenstern et al., 2004]. A 1998 site survey found that
the stand density was 1100 stems ha�1, tree height ranged
between 30 and 35 m, with an average diameter at breast
height (DBH) of 29 cm. Chen et al. [2006] found that the
effective leaf area index (Le) was 4.3 m2 m�2 based on
measurements using TRAC and LAI-2000 instruments.

3. Methods

3.1. Eddy Flux Measurements

[8] Continuously since 1997, half-hourly fluxes of CO2 and
water vapor were measured at the site using the EC measure-
ment technique [Morgenstern et al., 2004; Humphreys et al.,
2006] and data were extracted between 1 April 2006 and 31
March 2007 for this study. EC-fluxes were measured with a
three-axis sonic anemometer-thermometer (SAT, model R3,
Gill Instruments Ltd., Lymington, UK) and a closed-path
CO2/H2O infrared gas analyzer (IRGA) (model LI-6262,
LI-COR Inc., Lincoln, NE, USA). Net ecosystem exchange
(NEE) was calculated as the sum of the half-hourly fluxes
of CO2 and the rate of change in CO2 storage in the air
column between the ground and the EC measurement level
(42 m). Incident and reflected photosynthetically active
radiation (PAR [mmol m�2 s�1]), defined as the photon flux
density for the 400–700 nm wavelength band, were mea-
sured using up and downward looking quantum sensors
(model 190 SZ, LI-COR Inc.), installed above and below the
canopy and diffuse PAR was measured using a ‘‘sunshine
sensor’’ (model BF3, Delta-T Devices Ltd., Burwell, UK).
Gaps in data collection of less than 2 h were filled using
linear interpolation. Half-hourly measurements of GEP were
calculated using,

GEP ¼ NEP þ Rd ð2Þ

where NEP is the daytime net ecosystem production (NEP =
�NEE) and Rd is the daytime ecosystem respiration
[Morgenstern et al., 2004], calculated using the annual
exponential relationship between nighttime NEE and soil
temperature at 5 cm depth. Gaps in GEP were filled using a
Michaelis-Menten GEP versus PAR relationship fitted to
daytime data when air temperature TAir > �1�C. A complete
description of the EC-data and processing methods applied
can be found in Morgenstern et al. [2004], Humphreys et al.
[2006], and Jassal et al. [2007].

3.2. Spectral Measurements

[9] Canopy reflectance measurements were obtained
from an automated multiangular spectro-radiometer plat-
form (AMSPEC) installed at a height of 45 m (�10 m
above the tree canopy) on the open-lattice 50-cm triangular
flux tower [Hilker et al., 2007]. The instrument features a
motor-driven probe that allows observations in a 330� view
area around the tower. The probe rotates in 11.5� intervals
every 30 s, thereby completing a full rotation every 15 min.
A potentiometer attached to the shaft of the motor facilitates

exact measurement of the probe’s position. At the end of
each sweep, the sensor is returned to its original position.
The spectro-radiometer used is a Unispec-DC (PP Systems,
Amesbury, MA, USA) featuring 256 contiguous bands with
a nominal bandwidth of 3 nm and a nominal range of
operation between 350 and 1200 nm. To allow sampling
under varying sky conditions, canopy reflectance was
obtained from simultaneous measurements of solar irradi-
ance and radiance, sampled every 5 s from sunrise to sunset.
The upward pointing probe was equipped with a cosine
receptor (PP-Systems) to correct sky irradiance measure-
ments for varying solar altitudes. The downward looking
probe measured canopy reflectance at a zenith angle of 62�
[Chen and Black, 1991]. The probe’s instantaneous field of
view (IFOV) was 20�. The outer diameter of the instru-
ment’s footprint was approximately 62 m at canopy height,
while the elliptic instantaneous view area of the probe had a
major axis of about 17.9 m and a minor axis of about 3.5 m.
No observations were made between an azimuth of 220�
and 250� (defined from geodetic north) due to obstruction
by the tower. Coinciding with the EC observations, reflec-
tance measurements used for this analysis were collected
continuously between 1 April 2006 and 31 March 2007. A
complete technical description of the instrument and its
setup can be found in Hilker et al. [2007].

3.3. LiDAR Measurements

[10] LiDAR data were acquired at the site on 8 June
2004, using a Mark II sensor (Terra Remote Sensing,
Sidney, British Columbia, Canada) with a spacing density
of 0.7 hits per m2 and a footprint (spot size) of 0.19 m (with
survey and system details in Table 1). Separation of vege-
tation and terrain was carried out using a software package
(Terrascan v. 4.006, Terrasolid, Helsinki, Finland) which
iteratively classifies LiDAR data into either ground or non-
ground returns. Figure 1 provides an overview of the study
area covered by LiDAR measurements.

3.4. Modeling the Eddy Flux Footprint

[11] Interpretation of EC-flux measurements over hetero-
geneous surfaces is largely dependent on the area or flux
footprint from which a measurement originates. The typical
size of EC-flux footprints ranges from a few hectares to a
few square-kilometres [Schmid and Lloyd, 1999] depending
on atmospheric stability and meteorological conditions
[Leclerc and Thurtell, 1990]. As a result, the footprint
spatial structure varies significantly over different time-
scales (half-hourly to multiple years) [Chen et al., 2008].
Exact knowledge of the EC-flux footprints is, however,
critical when comparing flux tower measured GEP to
spatially integrated remote sensing observations over het-
erogeneous areas. In this study, a published flux footprint
model [Chen et al., 2008] was used to predict the EC-flux
footprints for given half hour intervals. This algorithm is
based on Eulerian advection diffusion [Kormann and
Meixner, 2001] and defines the EC-flux footprint as the
product of the crosswind-integrated footprint and a Gaussian
crosswind concentration distribution function [Chen et al.,
2008]. The flux footprint estimates were calculated at half
hourly time steps for the period from 1 April 2006 to 31
March 2007 with a spatial resolution of 10 m x 10m covering
the 12 km2 area around the tower. The output of the model is
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the percent impact each 10 m x 10 m cell within the raster has
on the EC-flux measurement per half hour time step.

3.5. End-member Reflectance of PRI

[12] Building upon the theoretical foundation of Li and
Strahler [1985], Hall et al. [1995b] illustrated that multi-
angular stand level reflectance signals for a given species
can be decomposed into spectral end-members, namely
sunlit crown, sunlit background, and shadow. The fraction
of area occupied by each of these end-members for a given
observation varies as a function of the sun - observer
geometry and can be determined using linear mixture
modeling if the reflectance for totally sunlit and totally
shaded crown and background are known [Hall et al.,
1995b; Asner et al., 1998; Peddle et al., 1999; Asner and
Warner, 2003]. In this study, we simplified this concept by
reducing the number of end-members to sunlit and shaded

crown components only, as the background reflectance was
assumed to make a minimal contribution due to the high
canopy density at the study site. Sunlit and shaded end-
member reflectances can only be approximated from direct
AMSPEC measurements, as the instrument, which has a
field of view of approximately 60 m2, will always observe a
mixture of sunlit and shaded canopies. However, it is
possible to accurately determine these end-members using
a bidirectional reflectance distribution function (BRDF)
derived from the AMSPEC acquired spectra. A BRDF
describes how land surface reflectance varies with view
zenith, solar zenith and azimuth angle [Barnsley et al.,
1997; Gao et al., 2003] and is often applied to standardize
multiangular reflectance measurements to common viewing
geometries. Once a BRDF model is established for a series
of multidirectional measurements, reflectance values can be
estimated for any possible sun-observer geometry, including

Figure 1. QuickBird satellite image of the study area covered by LiDAR. The total size of the area is
approximately 12.5 km2.
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those for which no measurements were acquired. In terms of
a BRDF, the sunlit end-member reflectance corresponds to a
geometry where probe is perfectly aligned with the sun
being behind it (the so-called BRDF hot spot) while the
shaded end-member corresponds to a geometry where sun is
located in front of the probe (BRDF dark spot) [Li and
Strahler, 1985; Middleton et al., 1987; Li and Strahler,
1992; Wanner et al., 1995]. The shaded PRI end-member
then defines the highest possible photosynthetic perfor-
mance for a given time interval, while the sunlit PRI end-
member defines its lowest performance. Hilker et al.
[2008a] demonstrated that the PRI reflectance as observed
by AMSPEC is a function not only of the sun-observer
geometry, but also of the sky condition at the time of
measurement and the physiological status of the vegetation
canopy observed (i.e., e). To facilitate accurate modeling of
BRDF, geometric effects need to be separated from both
leaf physiological effects as well as reflectance effects
related to sky conditions. This can be achieved by stratify-
ing spectra into homogeneous subsets of observations with
respect to both sky conditions and tower measured e and
subsequently fitting individual BRDF models to each of
these strata [Hilker et al., 2008a].
[13] The time period for modeling BRDF needs to be

chosen carefully, as a set of spectral observations is required
that is large enough to establish a stable BRDF surface [Los
et al., 2005; Hilker et al., 2008a] but the time period should
not be so long as to incorporate physiological responses in
leaves as this may not adequately represent variations in
photosynthetic performance over shorter time intervals.
In this study, an 8-d period was chosen for calculation of
PRI end-members and thus also for calculating GEP, as this
interval is also commonly used in satellite products such as
the GEP product of the Moderate Resolution Imaging
Spectro-radiometer (MODIS) [Heinsch et al., 2006].

3.6. Determining Stand Structural Parameters Using
LiDAR

[14] LiDAR data were used to estimate forest stand
attributes, including Le and the probability of canopy gaps
within different layers of the forest canopy (Pgap). Compu-
tation of Pgap from the top of the canopy to a given depth
into the canopy (z) has been described in detail by Lovell et

al. [2003] and Coops et al. [2007]. For a given cell, Pgap can
be estimated by summing the total number of LiDAR
returns down to z and comparing them to the total number
of independent LiDAR pulses (N):

PgapðzÞ ¼
1�

Pz¼zmax

z¼j

#zj

N
ð3Þ

where #zj is the number of hits down to a height z above the
ground. From Pgap, the cumulative projected foliage area
index L(z) from the top of the canopy down to a height z can
be derived using,

LðzÞ ¼ � log PgapðzÞ
� �

ð4Þ

where the first derivative of L(z) is the apparent foliage
density profile [Lovell et al., 2003; Coops et al., 2007]. The
effective Pgap of a clumped forest canopy at a given time of
the day (Pe), can be calculated if L(z) and the solar zenith
angle (q) are known [Chen, 1996]:

Peðq; zÞ ¼ exp
�GtðqÞLðzÞ

cos q

� �
ð5Þ

where Gt(q) is the projection coefficient for total PAR
transmission approximated as 0.5 [Chen, 1996; Chen et al.,
2006]. q was calculated for each 30-min interval using the
timestamps from the flux measurements [Reda and
Andreas, 2004]. Estimates of canopy structure were based
on a spatial resolution of 10 m 	 10 m, corresponding to the
flux-footprint model [Chen et al., 2008].

3.7. Establishing a Spatial GEP Model

3.7.1. Modeling PAR as a Function of q and z
[15] As a simplifying assumption, the forest canopy is

herein modeled as two populations of sunlit and shaded
leaves, with photosynthesis driven by the direct and diffuse
radiation components, respectively [Norman, 1980; Forseth
and Norman, 1991]. Following this concept, incident PAR
at the top of the canopy (Qtotal0) can be decomposed into
direct and diffuse radiation components, measurable using
total and diffuse PAR sensors.

Qtotal 0 ¼ Qb0 þ Qd0 ð6Þ

where Qb0 is the direct radiation component and Qd0 is the
diffuse component a the top of the canopy. The direct
radiation penetrating the canopy will decrease exponentially
as a function of Pe(q,z):

Qbðq; zÞ ¼ Qb0Peðq; zÞ ð7Þ

The diffuse radiation component Qd also extinguishes
exponentially through the canopy but the extinction
coefficient is assumed to be invariant with solar angle and
much smaller than for direct PAR [Weiss and Norman,
1985; Brakke, 1994; Smolander and Stenberg, 2001].
Diffuse radiation is therefore mostly a function of the

Table 1. LiDAR Parameters

Parameter Performance

Sensor Mark II
Laser scan frequency 25 Hz
Laser impulse frequency 40,000 Hz
Laser power <4 Watt
Maximum scan angle <20�
Type of scanning mirror oscillating
Laser beam divergence <0.5 milliradians
Measurement density 0.5–0.8 hits per sq meter.
Geodetic datum NAD83
Plotting projection UTM Zone 10
Airborne platform Bell 206 Jet Ranger helicopter
Flight altitude above ground 900 m
Flight speed 25–30 m s�1

Version of TerraScan
used to classify data

Version 004.006
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canopy density [Annandale et al., 2002] and total PAR per
canopy height layer can be calculated using

Qðq; zÞ ¼ Qb0Peðq; zÞ þ QdðzÞ ð8Þ

3.7.2. Modeling fPAR
[16] The fraction of PAR absorbed per canopy layer

(fPAR(q, z)) varies with the solar zenith angle and canopy
depth and is a function of the foliage density profile.
Consequently, the amount of foliage intercepted by a light
beam at a specific height z can be calculated as

fPARðq; zÞ ¼ fPAR0 	 Pe q; ðz� 1Þð Þ � Peðq; zÞð Þ ð9Þ

where fPAR0 is the total fraction PAR absorbed, Pe (q, z) is
the effective probability of gap at a given height z and Pe

(q, z � 1) is the effective probability of gap of the height
above it.

3.7.3. Modeling GEP
[17] Using (1), a direct and diffuse GEP component can

be computed for each 10 	 10 m cell from the sunlit and
shaded end-members of PRI, if the e related response to a
given amount of light is assumed to be constant throughout
the canopy:

GEPbðq; zÞ ¼ f ðPRIbÞ 	 fPARðzÞ 	 Qbðq; zÞ ð10aÞ

GEPdðzÞ ¼ f ðPRIdÞ 	 fPARðzÞ 	 QdðzÞ ð10bÞ

where PRId and PRIb are the sunlit and shaded end-
members of measured PRI reflectance, respectively. While
EC-measurements provide a vertically and horizontally
integrated bulk canopy estimate of e over the flux-footprint,
the spectral measurements result in end-members of sunlit
and shaded PRI. These PRI measurements can be translated
into e values when assuming the horizontal distribution of
sunlit and shaded leaves to be constant within the yearly
daytime footprint, which is a reasonable approximation due
to the homogeneity of the examined forest stand. In order to
derive sunlit and shaded values of e from the PRI end-
members, a logarithmic relationship was established
between e and sunlit PRI (f(PRIb)), and e and shaded PRI
(f(PRId)), and applied to the model, respectively [Hilker et
al., 2008a, Figure 2].
[18] Integrating equations (10a) and (10b) over all height

intervals (z) from 1 m to the maximum tree height (zmax)
and over all 10 m 	 10 m cells (c) within the study area,
yields the total amount of photosynthesis for the direct and
diffuse radiation component.

GEPIb ¼
Zc¼cmax

c¼1

Zz¼zmax

z¼1m

GEPbðq; zÞdz

0
@

1
Adc ð11aÞ

GEPId ¼
Zc¼cmax

c¼1

Zz¼zmax

z¼1m

GEPdðzÞdz

0
@

1
Adc ð11bÞ

where GEPId and GEPIb are the remotely sensed estimates
for the direct and diffuse GEP components, respectively.

3.8. Comparing ECDetermined to Remotely Sensed GEP

[19] Estimates of GEP provided by EC-flux data were
compared with estimates derived from remotely sensed data
as follows: The integrated LiDAR and optical remotely
sensed outputs of (10a) and (10b) were weighted according
to footprint of each 10 	 10 m cell. The EC-footprint
weighted GEP components can be defined as

GEPIbw ¼
Zc¼cmax

c¼1

Zz¼zmax

z¼1m

GEPbðq; zÞdz

0
@

1
AfðcÞdc ð12aÞ

GEPIdw ¼
Zc¼cmax

c¼1

Zz¼zmax

z¼1m

GEPdðzÞdz

0
@

1
AfðcÞdc ð12bÞ

where f(c) describes the footprint per 10 m x 10 m cell (c)
and GEPIdw and GEPIbw are the footprint weighted
estimates for the direct and diffuse GEP components,
respectively.

4. Results

4.1. PRI End-members

[20] Figure 2 shows the relationship between the sunlit
PRI component and tower measured e and the shaded PRI
component and tower measured e as daily averaged values
throughout the one year period. Both PRI end-members
reveal a highly significant, nonlinear relationship to tower
measured e, with the strongest correlations found between e
and the sunlit PRI component (r2 = 0.91, p < 0.05) while the
relationship between e and the shaded PRI component was
r2 = 0.86 (p < 0.05). Also, differences between sunlit and
shaded PRI end-members (DPRI) were highest under con-
ditions where e was low and became smaller with increasing
e-values.
[21] Figures 3a–3d show sunlit and shaded end-members

of PRI, averaged as 8-d values between 1 April 2006 and 31
March 2007, as a function of time (Figure 3a), the ratio of
direct to diffuse sky radiation above the canopy (Q) [Hilker
et al., 2008b] (Figure 3b), soil moisture (Figure 3c) and
atmospheric pressure deficit (Figure 3d). As expected from
previous studies conducted at this site [Hilker et al., 2008a],
the PRI of shaded leaves was generally larger than that of
sunlit leaves, indicating that shaded leaves are exposed to
less stress and thus have a higher e-value than sunlit parts of
the canopy. Hilker et al. [2008a] showed that the canopy
stress level is strongly related to the difference between
sunlit and shaded PRI components (DPRI). These differ-
ences can largely be explained by meteorological variables.
The ratio of direct to diffuse sky radiation above the canopy,
representing the state of cloudiness, accounted for about
50% of variation in DPRI alone (p < 0.05) (Figure 3b),
while the atmospheric vapor pressure deficit (D) (Figure 3d)
explained 39% of variations in DPRI (p < 0.05). The soil-
moisture content explained about 60% of variation inDPRI,
except during the mid to late summer period (DOY 190–
268) when soil moisture content was low. A linearized
multiple regression revealed that these three meteorological
variables together explained 79% of variation in DPRI
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(p < 0.05) throughout the year. Differences between sunlit
and shaded end-members of PRI were largest in late summer
when the canopy underwent significant drought and temper-
ature stress, as well as in late winter, due to snowfall.
Minimum differences were found through spring and early
summer, when the canopy underwent only moderate stress.

4.2. Determining Stand Structural Parameters Using
LiDAR

[22] Figure 4 shows vertical profiles for Le, PGap and the
sunlit component of GEP for a mature (left column: Figures
4a, 4c, and 4e) and a young (right column: Figures 4b, 4d,
and 4f) Douglas-fir dominated forest stand for 28 August,
9:30 A.M. Pacific Standard Time (PST) (solar elevation =
36.4�). The mature stand is adjacent to the flux tower site,
while the young stand is located in the northeast of the 12 km2

area and has a canopy height of 10 m (distance to tower:
1.5 km). Le (Figures 4a and 4b) and Pe (Figures 4c and 4d)
are shown for the mature and young stand respectively. A
vertical profile of GEP is shown only for the sunlit GEP
component (Figures 4e and 4f), as GEPd was calculated for
all canopy layers as a whole since it was assumed to be
independent of within-canopy shading. The sunlit compo-
nent of GEP diminishes quickly with decreasing height

Figure 2. Relationship between sunlit PRI and e and
shaded PRI and e throughout the study period. The
relationship is strongest between the sunlit PRI component
and e (r2 = 0.91, p < 0.05), but is still highly significant for
the shaded PRI component and e (r2 = 0.86, p < 0.05). The
difference between the sunlit and shaded PRI component is
highest under conditions, where e is low.

Figure 3. (a) Difference between sunlit to shaded PRI (D PRI) over a year computed as 8-d averaged
data sets. Sunlit and shaded PRI were calculated using a kernel driven BRDF approach (Ross-Thick Li-
Sparse Kernels). Relationship between D PRI and (b) 8-d averaged state of cloudiness, expressed as ratio
of direct to diffuse radiation, (c) 8-d averaged soil moisture content (%/100 (vol. water content))
(excluding DOY 190–268), and (d) 8-d averaged vapor pressure deficit (in mbar). Multiple regression
analysis of all 3 components explained 77% of variation inD PRI. (all relationships where established for
p < 0.05).
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since PARb is largely absorbed within the top 10 m of the
canopy (Figures 4e and 4f).

4.3. Spatial Modeling of GEP

[23] Figure 5 shows the spatial distribution of sunlit GEP
for a cloudy (Figure 5a) and a sunny day (Figure 5b). The
figure shows the percent coverage of the sunlit GEP
component for each 10 m 	 10 m cell. The ratio of direct
to diffuse radiation was 0.2 and 9, respectively. Differences
between sunlit and shaded GEP coverage are most distinct
for the sunny day and within younger stands with open
spaced regeneration (compare Figure 1), dominated by
direct sunlight due to the lack of canopy structure. Diffuse
radiation played a larger role in mature forested areas where
it dominates the radiation regime in the lower portions of
the canopy. On overcast days, diffuse sky radiation provides
the majority of incident PAR, and structure-related differ-

ences in percent cover as expressed in spectral descriptions
using end-members become more marginal.
[24] Figure 6 shows the spatial distribution of remotely

sensed GEP for the study area surrounding the flux tower
site as 8-d averaged values for the examples of DOY 26–33
(February, Figure 6a), DOY 98–106 (April, Figure 6b),
24–248 (August, Figure 6c) and 288–296 (October,
Figure 6d). The highest GEP values were found for the
mature forest stands with higher Le values, while young
regeneration sites (following harvesting) had the lowest
rates of photosynthesis. Maximum GEP values in February
obtained up to 9 mmol m�2s�1, while maximum values in
August reached 30 mmol m�2 s�1. Structure-related differ-
ences in GEP were persistent throughout the year, and were
most distinct for higher levels of productivity (i.e., during
the summer) with mature stands absorbing significantly
more carbon than younger stands. The productivity of

Figure 4. Vertical profile of cumulative leaf area, effective probability of canopy gap and sunlit
components of GEP for (a, c, e) a mature and (b, d, f) a young Douglas fir stand as derived from spectral
and LiDAR measurements for a given q (25�). The shaded GEP component has been derived as
integrated measurement over all heights as the diffuse radiation component was assumed to be constant
throughout the canopy.
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non-forested areas estimated from this model is close to zero
throughout the year, as the LiDAR derived leaf area for
these areas is nearly zero.

4.4. Comparing EC Measured and Remotely Sensed
GEP

[25] Figure 7 shows the yearly averaged footprint of
daytime EC-flux measurements as modeled using Chen et

Figure 6. Spatial distribution of GEP (sunlit plus shaded) as a function of canopy structure for the study
area, estimated as 8-d averages for the examples of a 8-d time period in (a) late winter (February), (b) early
spring (April), (c) late summer (August), and (d) fall (October). The moderate climate conditions allow
vegetation to photosynthesize almost year-round [Morgenstern et al., 2004].
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al. [2008], overlaid over the footprint of the radiometer
instrument installed at the fluxtower. The contour lines
show the time-averaged impact (in percent) each 10 m 	
10 m cell has on the EC-determined GEP values. The area
with a daytime EC-footprint of greater than 0.1% had a
diameter of approximately 150 m 	 200 m (downwind and
crosswind, respectively). As expected, the area with the
largest impact was located closest to the tower.
[26] Figure 8 shows a comparison between remotely

sensed GEP, weighted the EC footprint (f) versus EC-
determined GEP over four 8-d time intervals between 31
March 2006 and 1 April 2007; DOY 26–33 (February,
Figure 8a), DOY 98–106 (April, Figure 8b), 24–248
(August, Figure 8c) and 288–296 (October, Figure 8d), in

correspondence with Figure 5. All graphs show a high
correlation between remotely sensed (predicted) and EC-
determined GEP (r2 = 0.85, 0.91, 0.75 and 0.89, respec-
tively, p < 0.05) for the time intervals observed. The slope
of the relationship between the remote sensing based model
and tower measured GEP showed a maximum deviation of
9% from the 1:1 line.

5. Discussion

[27] This study demonstrated an approach for upscaling
remotely sensed GEP to the landscape level by using
structural information of the canopy derived from airborne
laser scanning, combined with multiangular high spectral

Figure 7. Footprint of the spectro-radiometer (gray) and eddy covariance (EC) data (yearly average
between 31 March 2006 and 1 April 2007) over the backdrop of a QuickBird high-resolution satellite
image. While the radiometer footprint is constant, the EC footprint varies throughout the year. The
contour lines show the different levels of impact (in percent) an area had on the EC measurement over the
study period. The figure shows daytime averages only.
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resolution PRI measurements which were decomposed into
sunlit and shaded end-members. GEP was predicted verti-
cally and horizontally over a 12 km2 area at 8-d time steps.
[28] The BRDF approach of Hilker et al. [2008a] was

successfully used to derive minimal and optimal photosyn-
thetic performance for a given time interval throughout the
year. We undertook our analysis at 8-d time steps, compa-
rable to those used by the MODIS GEP product, as it not
only provided enough spectral observations for establishing
stable reflectance models, but was also flexible enough to
account for changing environmental conditions at the re-
search site (Figures 6 and 8). Differences between sunlit and
shaded PRI were largely determined by environmental
conditions, suggesting that canopy level PRI is a useful
indicator for plant stress and thus photosynthetic efficiency.
Both sunlit and shaded end-members of PRI revealed a
strong relationship with tower measured e throughout the
one year study period (Figure 2). This result is consistent
with Hall et al. [2008] and Hilker et al. [2008a], who
showed that e can be detected at stand scales and under a
wide range of view and illumination conditions throughout
the year from spectral observations and that changes in e are
largely a result of changes in meteorological conditions
[Hilker et al., 2008b]. The slightly higher correlation
between the sunlit PRI end-member and e in comparision
to the shaded PRI end-member can be explained by the
greater likelihood of the sunlit canopy to be exposed
excessive radiation conditions leading to downregulation

of photosynthesis. Differences between sunlit and shaded
end-members of PRI were greatest under conditions where e
was low as under these conditions the sunlit canopy showed
the most distinctive reaction to light saturation.
[29] The approaches of Lovell et al. [2003] and Coops et

al. [2007] were successfully used for modeling the vertical
and horizontal distribution of foliage and light interception
within the tree canopy over two different-aged forest stands
and thus allowed useful predictions of light interception at a
landscape level with a high spatial resolution. Largest
values for GEP were found in the older stands throughout
the year, largely due to a bigger canopy surface, which led
to greater absorption of PAR. Our results also demonstrate
that diffuse sky radiation plays an important role in forest
productivity, even on sunny days, as the diffuse radiation
component largely dominates the radiation regime below
the top of the canopy. This result is consistent with Alton et
al. [2007] and Kotchenova et al. [2004] finding that within
canopy foliage can contribute significantly to stand level
GEP. While spectral measurements alone often fail to
account for within canopy productivity [Hall et al., 1992],
LiDAR has been successfully used for extrapolating top of
canopy level reflectance throughout different height levels
of the canopy. The LiDAR based model yielded good
results for forested areas throughout the year (Figures 6
and 8) the approach, however, is likely to underestimate the
productivity of new regeneration areas as the leaf area is
only assessed with a vertical resolution of 1 m and LiDAR

Figure 8. Relationship between remotely sensed GEP, computed using PAR measurements, end-
member reflectance of PRI and LiDAR derived information about the canopy structure and GEP
measured as using eddy covariance technique. Both data sets are computed over an 8-d period for the
examples of (a) late winter (February), (b) early spring (April), (c) late summer (August), and (d) fall
(October) (corresponding to Figure 6).
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returns below this threshold are often, such as in the case of
this study, considered ground returns rather than shrub or
herbal vegetation. A possible way to mitigate this false
estimation is to estimate GEP from surface reflectance
directly within these areas.
[30] The spectro-radiometer installed at the site was able

to capture the majority of the top of canopy reflectance for
the EC-footprint area as estimated using the flux footprint
model of Chen et al. [2008]. Daytime GEP originated from
a relatively restricted area around the tower, but due to the
nature of EC-flux measurements, was vertically integrated
throughout the canopy. The approach of modeling the
within-canopy light regime using LiDAR combined with
estimates of e derived from multiangular top of canopy
reflectance measurements yielded accurate predictions of
stand level photosynthesis for the time periods observed
(Figure 8). Although remotely sensed data did slightly
underestimate GEP (Figure 8) due to the simple logarithmic
conversion of PRI [Hilker et al., 2008a], which was linearly
scaled according to the maximum of EC-determined e, the
slope of the relationship between EC measured and remote-
ly sensed GEP showed less than 10% variation from one
(Figure 8). The remote sensing based model was therefore
able to yield accurate predictions of GEP at the site for the
time periods observed.
[31] The approach described in this study assumes that

vegetation stress factors other than light are spatially constant
and that the xanthophyll related response to light is constant,
which is only reasonable over smaller areas within homog-
enous environmental conditions. Another assumption is that
changes in the pigment pool size (=carotenoid to chlorophyll
ratio), were small within each 8-d period and over the study
area [Barton and North, 2001] and possible age related
biochemical differences in foliage composition had only
minor effects on PRI. As a result, the area to which spectral
measurements can be extrapolated is limited as (1) the
empirical relationship between e and PRI will change with
species composition and (2) light independent stress factors
such as soil-water or nutrition supply are likely to change
with slope soil type and water table thereby affecting PRI.
More research will be required to investigate the interactions
between of these factors and stand level e. A further simpli-
fying assumption made in here is that the diffuse radiation
component is independent of both mutual shading effects and
q (lambertian leaf surfaces) and thus approximately uniformly
distributed within the canopy. This assumption is valid to a
first approximation, as the magnitude of the scattering effect
of direct radiation within the canopy is small [Norman, 1980;
Forseth and Norman, 1991].
[32] While this study has demonstrated a possibility to

extrapolate stand-based findings of GEP to the landscape
level at a mature Douglas-fir site, further research is neces-
sary to investigate the potential and limits of this method for
different vegetation types and across sites. For example,
different canopy structures may yield different relationships
between sunlit and shaded PRI components and e (Figure 2
[Rahman et al., 2001]), with potential implications for the
modeling algorithm introduced in this study. For instance,
more uniformly distributed deciduous forests in more south-
ern latitudes, may show less distinction between sunlit and
shaded PRI end-members, as shading was found to be less
important for these forest types [Rahman et al., 2001].

Additionally, multiple studies have demonstrated that the
PRI-e relationship varies with species composition site con-
ditions and leaf pigment concentrations [Barton and North,
2001]. As a result, the findings of this study may not be easily
transferable across sites. The modeling approach introduced
in this study is however, suitable for upscaling canopy level
(or even leaf level) observations from tower based spectral
observations to small scaled satellite measures around the
tower, such as 1km2 MODIS pixels and does therefore allow
a calibration between tower-based and satellite based instru-
mentation. Tower measured spectra sampled year-round at
multiple sites using the existing eddy covariance tower
network can therefore be helpful in future efforts trying to
relate stand-based GEP measurements with globally avail-
able satellite data [Heinsch et al., 2006; Running et al., 2004;
Drolet et al., 2005].

6. Conclusions and Implications

[33] Multiangular, high spectral resolution optical remote
sensing data are useful for determining stand level photo-
synthesis. Spectra obtained from such observations can be
decomposed into their sunlit and shaded end-members using
bidirectional reflectance distribution functions. Simulta-
neous measurements of the canopy structure, such as
demonstrated in this study using LiDAR, will then allow
determining the area fraction covered by each of these end-
members thereby facilitating an extrapolation of stand level
measurements to landscape and satellite observable scales.
Tower-based optical remote sensing instruments in combi-
nation with airborne LiDAR measurements can therefore be
vital components for calibrating high spectral resolution
satellite instruments designed to measure landscape and
global level photosynthesis from space.
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