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[1] Biogeochemical models must include a broad variety of biological and physical
processes to test our understanding of the terrestrial carbon cycle and to predict
ecosystem biomass and carbon fluxes. We combine the photosynthesis and biophysical
calculations in the Simple Biosphere model, Version 2.5 (SiB2.5) with the
biogeochemistry from the Carnegie-Ames-Stanford Approach (CASA) model to create
SiBCASA, a hybrid capable of estimating terrestrial carbon fluxes and biomass from diurnal
to decadal timescales. We add dynamic allocation of Gross Primary Productivity to the
growth and maintenance of leaves, roots, and wood and explicit calculation of autotrophic
respiration. We prescribe leaf biomass using Leaf Area Index (LAI) derived from remotely
sensed Normalized Difference Vegetation Index. Simulated carbon fluxes and biomass
are consistent with observations at selected eddy covariance flux towers in the
AmeriFlux network. Major sources of error include the steady state assumption for
initial pool sizes, the input weather data, and biases in the LAI.
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1. Introduction

[2] We must understand the biogeochemical processes
underlying the terrestrial carbon cycle to evaluate ecosystem
function, explain variability in atmospheric composition,
and predict future conditions. Models used in atmospheric
circulation models or data assimilation require a highly
mechanistic terrestrial ecosystem model representing a broad
variety of biological and physical processes on timescales of
minutes to decades and spatial scales of �1 km to global. To
assimilate observed Net Ecosystem Exchange (NEE), bio-
mass, and atmospheric CO2 concentrations, the model must
accurately represent terrestrial carbon stocks and fluxes. The
model must allow for easy addition of new processes without
extensive redesign to study the effects of biomass burning,
disturbances, and harvesting on carbon stocks and NEE.

[3] NEE is the net CO2 flux from the terrestrial biosphere:

NEE ¼ RH þ RA � GPP; ð1Þ

where RH is heterotrophic respiration, RA is autotrophic
respiration, and GPP is gross primary production. GPP is
the uptake of CO2 from the atmosphere by plant photo-
synthesis, RH is the release of CO2 due to the decay of
organic material by microorganisms, and RA is the release of
CO2 by plants during maintenance and growth. A positive
NEE indicates a net CO2 flux into the atmosphere. Other
than a few tower and aircraft observations, direct measure-
ments of NEE are not possible, so we depend heavily on
ecosystem models to provide insight into the carbon cycle.
Ecosystem models range from highly mechanistic, process-
based models to highly simplified statistical regression
models, depending on their intended application.
[4] We combine two existing models, the Simple Biosphere

model, version 2.5 (SiB2.5) [Sellers et al., 1996a, 1996b]
and the Carnegie-Ames-Stanford Approach (CASA) model
[Potter et al., 1993; Randerson et al., 1996], to produce
SiBCASA. Both models are fully mature with a long history
in a broad variety of research applications. SiB2.5 is a
biophysical model estimating surface fluxes of NEE, latent
heat, sensible heat, radiant energy, and momentum at
high time resolution for use in atmospheric circulation
models. Estimating latent heat flux in SiB2.5 requires a
mechanistic representation of stomatal conductance, and
thus GPP [Ball, 1988; Collatz et al., 1991]. CASA is a
biogeochemical model with a process-based representation
of RH from a number of distinct organic pools, simulating
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long-term changes in terrestrial carbon stocks at daily to
monthly time steps.
[5] Neithermodel alone canmeet our needs: SiB2.5 cannot

predict biomass, CASA cannot predict NEE on diurnal
timescales, and neither can predict RA. SiB2.5 assumes
long-term carbon balance (NEE = 0 or GPP = RA + RH)
[Denning et al., 1996], which works well at diurnal to annual
timescales, but cannot predict long-term carbon sources and
sinks. CASA uses a simple light use efficiency model to
estimate Net Primary Productivity (NPP = GPP � RA). This
assumes RA is a constant fraction of GPP, but GPP occurs
only during the day and RA is continuous, so CASA cannot
predict NEE on diurnal timescales. SiB2.5 can calculate total
respiration (RA + RH) and CASA NPP, but neither can
explicitly estimate RA. Combining the sophisticated bio-
physics and GPP model from SiB2.5 with the RH model
from CASA produces a hybrid suitable for use in a variety
of retrospective analyses and data assimilation focusing on
how disturbances, climate, and other factors affect carbon
cycle dynamics.
[6] Here we describe SiBCASA and evaluate its perfor-

mance by comparing modeled and observed NEE and
biomass at selected eddy covariance flux towers represent-
ing several forest types. We focus on new capabilities not
found in either SiB2.5 or CASA and not already described
in the peer reviewed literature, emphasizing the dynamics of
leaf, root, and wood growth. The auxiliary material1 con-
tains additional model evaluation, lists the values and
references for all biophysical parameters used in SiBCASA,
and summarizes the sensitivity of model output to parameter
values and initial conditions. Parameter values are chosen
based on literature reviews of field observations, indepen-
dent of the observed NEE and biomass used for model
evaluation.

2. SiBCASA Description

[7] To create dynamic controls on GPP allocation, we
extensively modified CASA’s prognostic equations for the
leaf, root, and wood pools. We specified leaf biomass using
remotely sensed Leaf Area Index (LAI). We added a storage
pool representing available starch for plant growth to
explicitly calculate RA and estimate NEE at the SiB2.5 time
step of 10–20 min. The CASA surface litter and soil carbon
pools are unchanged, but now use prognostic soil temper-
ature and moisture from SiB2.5 for various scaling factors.
We did not modify the SiB2.5 biophysical calculations and
GPP model.

2.1. SiB2.5

[8] SiB2.5 is a land-surface parameterization computing
surface fluxes at 10–20 min time steps for climate models
[Sellers et al., 1986, 1996a, 1996b; Denning et al., 1996].
SiB2.5 has integrated water, energy, and carbon cycles and
predicts as prognostic variables the moisture contents and
temperatures of the canopy and soil [Sellers et al., 1996a].
Vidale and Stöckli [2005] recently added canopy air space
CO2 concentration, humidity, and temperature as prognostic
variables. SiB2.5 uses the Community Land Model (CLM)

soil model [Bonan, 1996] with 10 layers to a depth of 3.3 m.
SiB2.5 uses the CLM snow model [Dai et al., 2003], which
has a variable number of layers, depending on snowfall
amount and history. Fluxes of latent and sensible heat
include the effects of snow cover, rainfall interception by
the canopy, and aerodynamic turbulence [Sellers et al.,
1996a].
[9] To calculate GPP, SiB2.5 uses the Ball-Berry stomatal

conductance model [Ball, 1988] as modified by Collatz et
al. [1991] coupled to a modified version of the Farquhar et
al. [1980] C3 enzyme kinetic model and the Collatz et al.
[1992] C4 photosynthesis model. The semiempirical Ball-
Berry model relates stomatal conductance to GPP, linking
the exchange of CO2 and water vapor between the leaf and
the canopy air space:

gc ¼ m
An

Cs

hsP þ bLAI ð2Þ

where gc is canopy stomatal conductance, m is an empirical
slope from observations, cs is the CO2 partial pressure at the
leaf surface, hs is the relative humidity at the leaf surface, P
is atmospheric pressure, and b is the minimum possible gc.
An is canopy net assimilation:

An ¼ GPP � Rc; ð3Þ

where Rc is the canopy autotrophic respiration to maintain
the leaf enzyme infrastructure for photosynthesis. The
modified Farquhar et al. [1980] enzyme kinetic model
assumes the most limiting resource (nitrogen, short wave
energy, or leaf export capacity) determines GPP [Sellers et
al., 1996a, 1996b]:

GPP ¼ Min WC ;WE;WSð Þ ð4Þ

where WC is the Rubisco (leaf enzyme or nitrogen) limited
rate, WE is light limited rate, and WS for C3 plants is carbon
compound export limited rate. For C4 plants, WS is the PEP-
Carboxylase limited rate. Both models respond to changing
temperature, humidity, and other environmental conditions
as described by Sellers et al. [1996a, 1996b]. SiB2.5
calculates GPP by iterating the CO2 partial pressure inside
the leaf chloroplasts to minimize the difference between the
Ball-Berry and modified Farquhar et al. [1980] enzyme
kinetic models. GPP and gc are first calculated for a single
leaf at the canopy top and scaled to the entire canopy using
absorbed fraction of Photosynthetically Active Radiation
(fPAR) derived from Normalized Difference Vegetation Index
(NDVI) [Sellers et al., 1994, 1996a, 1996b].

2.2. CASA

[10] CASA represents the flow of carbon between bio-
geochemical pools as a system of first-order, linear differ-
ential equations [Potter et al., 1993]. The carbon in the ith
pool (Ci) in a system of n pools varies with time (t)
depending on gains from other pools (Gi), transfers to other
pools (Ti), respiration loses (Ri), and disturbances (di):

dCi

dt
¼ Gi � Ti � Ri þ di: ð5Þ

1Auxiliary materials are available in the HTML. doi:10.1029/
2007JG000603.
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di is the input or removal of carbon by harvest, biomass
burning, and other disturbances. Gi depends on transfers
from other pools and Ti and Ri depend on Ci:

dCi

dt
¼
Xn
j¼1

fj2ikTjCj � kTiCi � kRiCi þ di; ð6Þ

where kTi and kRi are decay rate constants for pool transfers
and respiration, and fj2i is the fraction of carbon lost from
pool j transferred to pool i. Ti and Ri are typically related, so
we define an effective decay rate constant (ki = kTi + kRi) and
transfer efficiency (ej2i) such that

dCi

dt
¼
Xn
j¼1

fj2iej2ikjCj � kiCi þ di: ð7Þ

ej2i is the ratio of carbon received by pool i to carbon lost
from pool j, with the rest released as respiration. The
respiration from the ith pool is

Ri ¼
Xn
j¼1

1� ei2j
� �

fi2jkiCi: ð8Þ

[11] The effective decay rate constant varies with envi-
ronmental conditions, which we represent using scaling
factors:

ki ¼
fiSTSFSM

ti
; ð9Þ

where ti is a reference turnover time, fi is the available pool
fraction, and ST, SF, and SM are temperature, freezing, and
moisture scaling factors. ti represents an average residence
time for carbon in each pool, fi accounts for partial
availability of the pool, and ST, SF, and SM vary from pool
to pool.
[12] SiBCASA represents the pool equations in matrix

form:

d

dt
C ¼ TKC�KCþ D; ð10Þ

where C is a vector of n pool sizes, T is an nxn matrix of
transfer fractions and efficiencies, K is a diagonal, nxn
matrix of decay rate constants, and D is a vector of n
disturbance inputs or removals. Only nonzero values of fj2i
determine which pools transfer carbon to other pools, so T
represents the pool ‘‘configuration’’ by defining the ‘‘flow’’

of carbon between pools. Because ti for the pools are
always significantly longer than the SiBCASA 10-min time
step, we chose a forward time differencing scheme without
risk of numerical instability:

CtþDt ¼ Ct þDt TKCt �KCt þ Dð Þ; ð11Þ

where Ct are the current pool sizes, Ct+Dt are pool sizes for
the next time step, and Dt is the SiBCASA time step. The
matrix formulation simplifies changing the pool configura-
tion, since all that is required is specifying constants in T and
K.
[13] Table 1 lists the 13 carbon pools in SiBCASA. The

storage pool contains Nonstructural Carbohydrates (NC) or
starch in the stems and roots used as raw material for plant
growth and maintenance. The leaf pool contains leafy
biomass and the root pool contains fine root biomass. The
wood pool includes above ground wood biomass, woody
root tissue, and seeds. The CWD pool consists of dead trees
and woody roots. The surface and soil structural pools
contain lignin and the metabolic pools contain more labile
substrates. The surface and soil microbial pools represent
microbial populations. The slow soil pool consists of humus
and other recalcitrant organic material. The armored soil
pool is organic material bound to clay, which isolates it from
microbial decay.
[14] Figure 1 illustrates the flow of carbon between pools,

as represented in the T matrix, with carbon generally
flowing from upper left to lower right. Vertical lines
represent carbon losses from each pool and horizontal
arrows indicate carbon gains to each pool. Dots indicate
transfers from one pool to another (fi2j 6¼ 0). For example,
carbon lost from the leaf pool is transferred to the surfstr
and surfmet pools. The primary input into this system of
pools is An. Photosynthesis puts starch into the storage pool,
while growth and maintenance of leaves, roots, and wood
extract starch from the storage pool. As live biomass dies,
the lignin fraction is transferred to the structural pools and
everything else to the metabolic pools. Microbes consume
the most labile material first, processing biomass into the
more recalcitrant slow and armored pools. Each time
biomass moves from one pool to another, some carbon is
lost as respiration.
2.2.1. Surface and Soil Pools
[15] The prognostic equations for the CWD, surface litter,

and soil pools are the same as in CASA [Potter et al., 1993],
except that SiBCASA uses the SiB2.5 temperature and
moisture scaling factors (ST and SM) with a new freezing
scaling factor (SF). The CWD and surface pools use the
topsoil layer temperature and moisture. For soil pools, we
assume the carbon per layer is proportional to observed root
density profiles, which decrease exponentially, with nearly
all roots (and thus soil carbon) within the top 1 m of soil.
We calculate ki, the nonzero entries in the K matrix, as a
root fraction weighted average of ST, SF, and SM from each
soil layer:

ki ¼
fi

ti

Xm
k¼1

frootkSTkSFkSMk ; ð12Þ

where m is the number of soil layers, STk, SFk, and SMk are
soil temperature, freezing, and moisture scaling factors, and

Table 1. SiBCASA Pools

Pool Name Description

storage nonstructural carbohydrates
leaf leaf biomass
root fine root biomass
wood woody biomass
CWD coarse woody debris
surfmet surface metabolic
surfstr surface structural
surfmic surface microbial
soilmet soil metabolic
soilstr soil structural
soilmic soil microbial
slow soil slow
arm soil armored
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frootk are the fraction of total roots in soil layer k. frootk are
time invariant based on average, biome dependant root
density profiles [Jackson et al., 1996].
[16] Microbial activity, and thus RH, increases with soil

temperature such that

ST ¼ Q

T�Trefð Þ
10

10 ; ð13Þ

where, T is soil temperature, Tref is a reference temperature,
and Q10 is the factor by which respiration changes for a
10 K change from Tref [Raich and Schlesinger, 1992;
Denning et al., 1996; Potter et al., 1993]. ST overestimates
RH in frozen soil, so SF inhibits microbial activity below
freezing using a curve fit to incubated soil samples [Mikan et
al., 2002]:

SF ¼ 1

1þ exp Thalf � T
� � ; ð14Þ

where Thalf (K) is the half-point temperature. The presence of
minute clay particles act to depress the freezing point of
water, limiting microbial activity in frozen soil to thin water
films coating soil grains. As temperatures drop below
freezing, the water films become thinner and microbial
activity rapidly decreases, effectively ceasing below tem-
peratures of �7 to �8�C [Oechel et al., 1997; Mast et al.,
1998; Hobbie et al., 2000; Mikan et al., 2002]. RH peaks
when the soil volume is about 15% air: too much water limits
microbial oxygen supply while too little water limits
microbial population. SM scales RH relative to the optimal
value using a curve fit to laboratory observations of
incubated soil samples [Raich et al., 1991; Denning et al.,
1996]:

SM ¼ 0:2þ RB
sat; ð15Þ

where B is the wetness exponent,

B ¼
Wskew �Wskew

opt

1�Wskew
opt

 !2

; ð16Þ

and W is soil moisture fraction of saturation, Wopt is the
optimal saturation fraction, Skew is the skewness exponent,
and Rsat determines RH at saturation.
2.2.2. Leaf and Root Pools
[17] Leaf biomass is prescribed using remotely sensed

LAI and we assume root growth is proportional to leaf
growth. We linearly interpolate between monthly NDVI
composite values to determine an instantaneous LAI growth
rate (DLAI). Positive DLAI represents new leaf growth and
negative DLAI represents dead leaves transferred to surface
litter pools. For forest biomes, leaf pool gain (Gleaf) includes
new leaf growth and replacement of dead evergreen leaves:

Gleaf ¼ LMAeff DLAI þ kleaf LAImin

� �
; ð17Þ

where LMAeff is the canopy effective leaf mass per leaf area,
kleaf is the evergreen leaf decay constant, and LAImin is the
long-term, minimum LAI. NDVI specifies growth of
perennial leaves, so kleaf applies only to the evergreen
portion of total LAI, which we assume is LAImin.
[18] For grasslands, we include the transition between C3

and C4 herbaceous plants. Since LAI represents a grid cell
average, we assume fCA, the fractional area coverage of C4

plants, also represents the C4 fraction of LAI:

Gleaf ¼ LMAeff DLAI þ kleaf LAI þDfC4LAI
� �

; ð18Þ

whereDfC4 is the rate of change in area coverage fraction of
C4 grasses. In some extra-tropical systems, C3 grasses and
forbs dominate in the spring and early summer while C4

grasses dominate in the late summer and fall. During
transitions between C3 and C4 cover, old leaves die and new
leaves grow, even though LAI may remain nearly constant.
DfC4 is interpolated from monthly values in the same
manner as DLAI. Monthly values of fC4 come from field
observations at some sites.
[19] LMAeff accounts for the fact that sunlit leaves have a

greater mass per area than shaded leaves. Leaf mass varies
linearly with visible light intensity, peaking at the canopy
top and decreasing to approximately half the maximum
value at the canopy bottom [Aranda et al., 2004]. We
assume leaf growth and senescence is evenly distributed

Figure 1. The SiBCASA pool configuration, with carbon flowing from upper left to lower right.
Vertical lines represent pool losses, horizontal arrows represent pool gains, and dots represent transfers
between pools. The primary input is canopy net assimilation (An) into the storage pool.
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throughout the canopy. Using Beer’s law to represent the
relative intensity of visible light and integrating through the
canopy according to Sellers et al. [1996b] gives:

LMAeff ¼ LMAtoprsunshade 1þ fPARmax � fPAR

fPARmax � fPARmin

� �
; ð19Þ

where LMAtop is the leaf mass per area at the canopy top,
rsunshade is the ratio of sun to shade leaf mass, and fPARmax

and fPARmin are the theoretical maximum and minimum
values of fPAR. fPAR saturates as LAI increases, so LMAeff

approaches a constant value representing a weighted
average between sunlit and shaded leaves.
[20] We assume kleaf varies only with canopy temperature:

kleaf ¼
STleaf

tleaf
; ð20Þ

where STleaf is a temperature scaling factor and tleaf is
evergreen leaf lifetime. For STleaf we apply the SiB2.5
temperature scaling function for Rc [Sellers et al., 1996a]:

STleaf ¼
2:0 Tcan�Trefð Þ=10

1þ exp SRD Tcan � TRDð Þð Þ ; ð21Þ

where Tcan is the prognostic canopy temperature, Tref is a
reference temperature, SRD is the inhibition slope and TRD is
the half point temperature.
[21] We assume fine root growth is proportional to leaf

growth, so Groot = SrootshootGleaf, where Groot is root growth
and Srootshoot is the root-to-shoot ratio (the ratio of below to
above ground biomass, excluding wood). Fine root growth
is controlled by both environmental factors and plant
phenology, but is closely synchronized to leaf growth such
that the root to shoot ratio stays fairly constant with time
[Gaucher et al., 2005]. In SiBCASA, root growth is
specified by NDVI, but root mortality is not, so

dCroot

dt
¼ SrootshootGleaf � krootCroot þ droot; ð22Þ

where kroot is a root mortality decay rate constant. We
assume kroot does not vary in time (ST, SF, and SM all equal
one).
2.2.3. Storage Pool
[22] The storage pool, Cstore, consists of NC or soluble

sugars and starch [Piispanen and Saranpaa, 2001;Barbaroux
and Breda, 2002; Gaucher et al., 2005]. An adds NC to the
storage pool, while growth and maintenance of leaves, roots,
and wood extract NC from the storage pool:

dCstore

dt
¼ An � Lleaf � Lroot � Lwood ; ð23Þ

where Lleaf, Lroot, and Lwood are NC losses to the leaf, root,
and wood pools. The SiB2.5 half of SiBCASA calculates An

as part of the GPP calculations [Sellers et al., 1996a]. Leaf
and root growth are specified from LAI, so Lleaf = Gleaf /
estore2leaf and Lroot = SrootshootGleaf /estore2root, where estore2leaf
and estore2root are NC to leaf and root conversion
efficiencies. We assume wood growth depends on available

NC, so Lwood = kstoreCstore, where kstore is the storage pool
decay rate constant. Seasonally varying controls on kstore
represent the effects of environmental conditions on wood
growth:

kstore ¼
fsugarSdensitySTstoreSFstoreSMstore

tstore
; ð24Þ

where fsugar is the sugar fraction of NC, Sdensity is the ratio of
earlywood to latewood density, and STstore, SFstore, and
SMstore are temperature, frost, and moisture scaling factors.
[23] We assume that the environmental controls for wood

growth are the same as those for photosynthesis, so we
apply the formulations for STstore, SFstore, and SMstore from
the SiB2.5 photosynthesis model to wood growth. STstore
inhibits wood growth when the canopy temperature is either
too hot or too cold [Sellers et al., 1996a]:

STstore

¼ 1

1þ exp SL TLhalf � Tcan
� �� �� �

1þ exp SH Tcan � THhalf
� �� �� � ;

ð25Þ

where SL and SH are the slopes of low and high temperature
inhibition functions, and TLhalf and THhalf are half point
temperatures. SFstore represents the effects of frost by
stopping wood growth for temperatures near or below
freezing:

SFstore ¼
1

1þ exp SF TFhalf � Tmin
� �� �� � ; ð26Þ

where SF is the slope and TFhalf the half point of the frost
inhibition function, and Tmin is a running minimum canopy
temperature. Plants take time to recover from the effects of
frost, which we model by increasing Tmin by 2�C per day. If
Tcan is less than Tmin, Tmin is reset to Tcan and frost recovery
resumes. Wood growth stops when the soil is too dry
[Bouriaud et al., 2004], so SMstore represents the effect of
drought stress on wood growth:

SMstore ¼
1:0þ pð ÞfPAW
pþ fPAWð Þ ; ð27Þ

where fPAW is the plant available water fraction and p is the
stress shape parameter. fPAW is the total column liquid water
above the wilting point divided by the total possible
available water based on soil field capacity. p determines the
plant sensitivity to drought stress between field capacity and
wilting point with an assumed value of 0.2.
[24] fsugar accounts for the fact that only the sugar portion

of the storage pool is available for wood growth. In woody
plants, most NC is starch while sugar, primarily sucrose, is
the principle raw material for wood growth [Piispanen and
Saranpaa, 2001]. Trees biochemically convert starch into
sugar and back as needed, with fsugar varying between 5 and
30%, depending on species and time of year [Piispanen and
Saranpaa, 2001; Barbaroux and Breda, 2002; Gaucher et
al., 2005]. We assume fsugar is 0.1 for all biome types based
on observed NC in oak trees [Barbaroux and Breda, 2002].
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[25] Sdensity accounts for seasonal changes in wood den-
sity. Earlywood forms in spring during leaf growth while
latewood forms after leaf growth stops. Earlywood is less
dense than latewood because it contains more vessels for
water and nutrient transport to the leaves. Since radial
growth rate is constant throughout the growing season
[Barbaroux and Breda, 2002], wood growth is less in spring
than in summer. In spring, Sdensity equals the ratio of
earlywood to latewood density. In summer, after leaf growth
has stopped, Sdensity equals one.
2.2.4. Wood Pool
[26] The wood pool, Cwood, depends on wood growth,

tree mortality, and sapwood maintenance:

dCwood

dt
¼ estore2woodkstoreCstore � kwoodCwood �

fsapwoodSTstore

tsapwood
Cwood ;

ð28Þ

where estore2wood is the NC to wood conversion efficiency,
kwood is the tree mortality decay rate constant, fsapwood is the
sapwood fraction of the wood pool, and tsapwood is the
sapwood turnover time. The center of a stem consists of
heartwood that contains no living cells. Sapwood between
the cambium and heartwood conducts water and nutrients to
the leaves and contains a small fraction of live, radial
parenchyma cells that store NC. Maintenance of parench-
yma cells varies with temperature [Edwards and Hanson,
1996], so we apply the same temperature scaling factor that
modulates wood growth, STstore. We assume a constant value
of tsapwood for all biome types based on observed sapwood
respiration rates per volume of wood. We use a constant,
average fsapwood based on observations from multiple tree
species.

3. Model Evaluation

3.1. Observations

[27] We evaluate SiBCASA by comparing simulated and
observed NEE and biomass at five eddy covariance flux
towers representing a range of forest types (Table 2). All
the forest tower sites have estimates of wood biomass
based on biometric measurements. Observed NEE is the
covariance between vertical wind speed and CO2 concen-
tration averaged over 30-min time intervals [Baldocchi,
2003]. Although eddy covariance techniques cannot dis-
tinguish between GPP and total ecosystem respiration
(RT = RH + RA), one can estimate GPP by statistically
training a respiration model using nighttime and winter NEE
and temperature data, and subtracting the results from day-
time NEE. Separate estimates of RT and GPP are available at
Boreas, Harvard, and Santarem. To quantify SiBCASA
performance, we calculate a residual between monthly aver-
ages of simulated and observed NEE:

d ¼ NEEobs � NEESiBCASA: ð29Þ

The mean residual, dmean, represents the bias between
observed and simulated NEE. The residual standard
deviation, dstd, measures the match between simulated and
observed variability.

3.2. Simulation Setup

[28] We estimate fPAR, LAI, and vegetation cover fraction
from the GIMMS NDVI data set, version g [Tucker et al.,
2005] using procedures described by Sellers et al. [1996b],
Los et al. [2001], and Schaefer et al. [2002, 2005]. GIMMS
consists of global, monthly composite maps of NDVI at
8 km resolution adjusted for missing data, satellite orbit
drift, differing instrument calibrations, sensor degradation,
and volcanic aerosols. We extract NDVI for each tower
location and assign a SiBCASA biome type that most
closely matches the local vegetation. We assign biome
specific biophysical parameters from Sellers et al. [1996b].
If available, we use observed soil texture at each tower site. If
not, we use soil textures from 1� � 1� maps of percent sand,
silt, and clay interpolated from the International Global
Biosphere Program soil core database.
[29] As input weather, we extract data for each tower

from the NCEP reanalysis [Kalnay et al., 1996] interpolated
to 1� � 1� resolution. Observations at each tower include
local weather conditions, but SiBCASA requires continuous
data and filling the inevitable gaps in observed weather is
difficult and time consuming. The NCEP reanalysis con-
tains surface temperature, pressure, wind speed, precipita-
tion, and radiation data every six hours from 1958 to 2003.
Except for incident light, SiBCASA linearly interpolates
NCEP weather in time between input data points. We scale
incident light by the cosine of the solar zenith angle to
conserve incoming energy and assure no light falls on the
canopy at night [Zhang et al., 1996].
[30] We assume steady state conditions for initial pool

sizes, which implies mature ecosystems with no disturbances
where growth balances decay and NEE� 0. The steady state
assumption is typical for many biogeochemical models
because observations of biomass and detrital pools often
do not exist. The armored pool, with t � 222 years, may
require 5000 or more simulation years to achieve steady
state. Such long simulations are impractical with SiBCASA’s
10-min time step, so we set time derivatives in the pool
equations to zero and algebraically solve for steady state
pool sizes:

0 ¼ �T�K � �K½ 
Csteady þ �D; ð30Þ

where Csteady is a vector of steady state pool sizes and the
overbars represent long-term means. In �T, only the transfer
fractions from storage to the leaf, root, and wood pools vary
with time. We don’t include disturbances in these test

Table 2. Flux Tower Sites for Model Evaluation

Tower Name Biome Location References

Harvard Forest (main tower) Deciduous Needleleaf Forest Harvard Forest, MA USA Barford et al. [2001]
Howland Forest (main tower) Deciduous Needleleaf Forest Howland Forest, ME, USA Hollinger et al. [2004]
WLEF tall tower Deciduous Needleleaf Forest Park Falls, WI, USA Berger et al. [2001]; Davis et al. [2003]
BOREAS Old Black Spruce Needleleaf Forest Manitoba, Canada Dunn et al. [2007]
Santarem Tropical Forest Santarem (Km67), Brazil Saleska et al. [2003]
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simulations, so �D only includes the time mean An into the
storage pool. We adjust Csteady to match the amplitude and
phasing of each pool’s average seasonal cycle. We run three
simulations at each tower: the first estimates Csteady, the
second balances NEE within 1%, and the third balances
NEE within 0.5%. The earliest flux data starts in 1991 and
the 1� � 1� NCEP reanalysis ended in 2003, so all
simulations started in 1990 and ended in 2003.
[31] In some simulations we use the ‘‘quasi-steady state’’

assumption to initialize the pools using observed wood
biomass. We set initial wood biomass equal to an observed
value and assume the other pools are in equilibrium with
wood. The wood pool is by far the largest carbon pool at all
the forest sites and is the dominant source of detrital matter
to the soil and surface pools. Quasi-steady state assumes the
faster CWD, surface, and soil pools reach equilibrium
relative to the wood pool long before the wood pool itself
reaches equilibrium.
[32] At Harvard, Howland, Boreas, and WLEF, we also

compare simulated and observed biomass as a function of
stand age from disturbance. Following Masek and Collatz
[2006], we assume each site is logged and remove 90% of
the above ground wood. Assuming 75% of wood is above
ground [Jenkins et al., 2001], we transfer 22.5% of the
wood to the CWD pool, and the rest is removed. We assume
80% mortality in the fine root pool and transfer the dead
fine roots to the soil structural and metabolic pools. To
estimate wood carbon from observed aboveground biomass,

we assume 50% of wood is carbon [Miller et al., 2004] and
75% is above ground [Jenkins et al., 2001]. We ran 200 year
simulations at each site by repeating the 1990–2003 NCEP
weather and NDVI.

4. Results

[33] Table 3 summarizes SiBCASA performance. Nega-
tive dmean indicate the average observed NEE is less than the
simulated NEE. At steady state, the simulated NEE � 0, so
all these sites indicate net carbon sinks of various magni-
tudes. Below we explore why SiBCASA performs better at
some sites than others and, when possible, identify techni-
ques to improve performance.

4.1. Mixed Deciduous Forest

[34] Harvard Forest, Howland Forest, and WLEF are
deciduous or mixed deciduous/evergreen forests of varying
stand age. The match between simulated and observed
NEE improves with increasing stand age as the steady
state assumption becomes more applicable (Figures 2–4).
SiBCASA shows the best match at WLEF, which has a
stand age of 60–80 years and is near steady state [Davis et
al., 2003]. Howland (90–140 year stand age) and Harvard
(60 year stand age) have stronger sinks indicative of younger,
less mature stands [Barford et al., 2001; Hollinger et al.,
2004].
[35] Differences in biomass between and young and

mature forests can partly explain differences between
modeled and observed fluxes at the three mixed forest
sites. Younger stands not in steady state have less dead
biomass and lower RH, resulting in larger summer drawdown
and a stronger overall sink. Thematch between simulated and
observed NEE improves if we use the quasi-steady state
assumption and observed wood biomass. The WLEF and
Howland simulations show only slight changes because they
are closer to steady state (not shown). The improvement is

Table 3. SiBCASA Performance at Flux Tower Sites

Tower Name dmean (mmol m�2 s�1) dstd (mmol m�2 s�1)

Harvard Forest �0.75 2.00
Howland Forest �1.12 1.09
WLEF tall tower �0.11 0.76
BOREAS �0.07 1.02
Santarem �0.86 2.83

Figure 2. Observed (gray) and simulated (black) NEE at WLEF.
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greatest at Harvard, which has the youngest stand age and is
not near steady state (Figure 4).
[36] At Harvard Forest, the quasi-steady state assumption

only decreases dmean to 0.57 because observed wood bio-
mass improves simulated summer NEE drawdown, but
makes the winter NEE worse. At steady state, the simulated
RT is nearly double observed RT, but at quasi-steady state,
simulated RT closely matches observed RT (see auxiliary
material). However, SiBCASA overestimates GPP in winter
because the NCEP reanalysis is warmer in winter than
observed (see auxiliary material). The pixel containing
Harvard Forest in the original 1.875� � 1.904� NCEP data
is partly ocean, resulting in a less extreme diurnal variation
in temperature. Interpolating to 1� � 1� does not change the
diurnal cycle, resulting in warmer than observed temper-

atures and GPP in winter. Using gap-filled observed weather
[Stöckli et al., 2008] improves the match between simulated
and estimated GPP (see auxiliary material).
[37] The simulated storage pool is consistent with obser-

vations of total NC in various deciduous trees (Figure 5).
NC as a function of time is measured by taking tree ring
cores at regular time intervals, drying them, and using
chemical washes to extract soluble starches and sugars.
Observations are expressed as mg NC per g of dry wood, so
dividing the storage pool by the wood pool allows a
reasonable comparison with field data. Lacking NC obser-
vations at the tower sites, we compare our modeled NC
with available observations for sessile oak and European
beech in France for 1998 [Barbaroux and Breda, 2002],
yellow birch and sugar maple in southeast Canada in 1998

Figure 3. Observed (gray) and simulated (black) NEE at Howland Forest.

Figure 4. Observed NEE (gray), simulated NEE assuming steady state (thin black), and simulated NEE
with observed wood biomass (thick black) at Harvard Forest.
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[Gaucher et al., 2005], and silver birch in Finland in 1996–
7 [Piispanen and Saranpaa, 2001]. The average simulated
seasonal cycle at Harvard best matches the beech observa-
tions in amplitude and timing, but the magnitude best
matches the oak observations. Howland and WLEF show
similar seasonal cycles with average values at 54 ± 7 and
45 ± 11mg NC per g of dry wood respectively (not shown).
The simulated NC at all three sites are well within the ±20–
50% tree-to-tree and interannual variability in observed NC.

4.2. Boreal Forest

[38] At the Boreas Old Black Spruce site modeled and
observed fluxes do not match very well due to a snow cover

bias in the estimated LAI (Figure 6). This site consists of
needleleaf, evergreen trees with an understory dominated by
mosses [Dunn et al., 2007]. Accounting for perennial plants
and deciduous brush, we expect to see some seasonal
variation in LAI, but the LAI algorithm misinterprets the
burial of vegetation by snow as an annual loss of leaves.
The peak summer LAI of �4 m2 m�2 matches observed
values [Gower et al., 2001], but the seasonal variation of
3.8 m2 m�2 is unrealistic. Regrowing all leaves each year
produces large, physically unrealistic spikes in RA and RH

and greatly reduces the available NC, resulting in signif-
icantly less simulated wood than observed. The Boreas site
is fully mature with a stand age of �120 years, so the

Figure 5. Observed NC for various hardwood species (thin lines) and the average seasonal cycle of
simulated NC at Harvard Forest (thick line).

Figure 6. Observed NEE (gray), simulated NEE with variable LAI (thin black), and simulated NEE
with constant LAI (thick black) at BOREAS old black spruce.
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steady state assumption applies. The observed wood bio-
mass is �71 Mg C ha�1 [Gower et al., 2001] while the
simulated wood with snow biased LAI is �47 Mg C ha�1.
[39] Assuming constant LAI equal to the maximum value

produces much more realistic simulated NEE (Figure 6).
With or without assuming constant LAI, the simulated
GPP about 10–15% higher than observed (see auxiliary
material). Since Boreas is in steady state, the simulated RT

is also 10–15% higher than observed (see auxiliary
material). The excess GPP in combination with constant
LAI results in simulated wood biomass that is too large
(�112 Mg C ha�1). We can partly attribute this to the fact
that the observed precipitation is less than the NCEP
precipitation, resulting in less simulated drought stress in
summer than observed. However, we did not have gap-
filled observed weather data to test how strongly using
observed precipitation affects the simulated fluxes and
biomass.

4.3. Tropical Forest

[40] At Santarem (km67), a tropical evergreen forest in
the Amazon Basin, simulated biomass is consistent with
observed, but SiBCASA produces a strong seasonal cycle in
simulated NEE that is out of phase with observations
(Figure 7). The site is near steady state with simulated
wood biomass of 256 Mg C ha�1, consistent with observed
wood biomass of 246–273 Mg C ha�1 based on three
separate biometric surveys [Miller et al., 2004]. The simu-
lated seasonal cycles of RT and GPP are much stronger than
observed (see auxiliary material), resulting in a NEE sea-
sonal cycle in NEE much stronger than observed.
[41] The differences between observed and simulated

fluxes result from noisy NDVI and excessive modeled
drought stress in SiBCASA. Clouds, water vapor, and
aerosols contaminate the NDVI, resulting in an unrealistic
50% reduction in LAI at Santarem during the rainy season
and producing a fairly strong seasonal cycle in simulated RT

from the decay and regrowth of leaves. The trees at

Santarem have deep tap roots which, when combined with
hydraulic redistribution by roots [Lee et al., 2005], provide
sufficient water for photosynthesis in the dry season [Saleska
et al., 2003]. However, the soil in SiBCASA extends only to
�3.3 m depth, which is not deep enough to represent deep
water access by tap roots, resulting in seasonally varyingGPP
due to excessive simulated drought stress.
[42] Eliminating NDVI noise by assuming a constant LAI

equal to the maximum observed value removes the season-
ality in simulated RT, but not the seasonality in simulated
GPP. GPP depends on fPAR, which is much less sensitive to
noise and tends to saturate to a maximum value of �0.95 for
LAI > 2 m2 m�2. With LAI peaking at �7 m2 m�2, even a
50% seasonal cycle in LAI does not significantly change fPAR
to affect GPP.
[43] Increasing the total depth of the soil column from

3.3 m to 15 m greatly increases the water available for
plant growth, eliminating the simulated drought stress and
resulting in a nearly constant GPP. This, in combination
with constant LAI, significantly improves the match
between the simulated and observed NEE, reducing dstd
to 0.88 mmol m�2 s�1 (Figure 7), but simulated GPP, RT,
and wood biomass are all �20% higher than observed.
Using observed, gap-filled weather [Stöckli et al., 2008]
in combination with constant LAI and a deep soil column
does not effect NEE, but results in simulated GPP and RT

that match estimated values quite well (see auxiliary
material). Similar experiments at the nearby logged site
produce similar results (not shown).

4.4. Stand Age Experiments

[44] Simulated wood biomass as a function of stand age is
consistent with observed values derived from biometric
measurements. Figure 8 shows simulated and observed
wood biomass as a function of stand age at Harvard,
Howland, Boreas, and WLEF [Curtis et al., 2002; Hollinger
et al., 2004]. Figure 8 also shows average observed wood
biomass in the northeast U.S. from the national Forest

Figure 7. Observed NEE (gray), simulated NEE with variable LAI and a shallow soil depth (thin
black), and simulated NEE with constant LAI and a deep soil layer (thick black) at Santarem (km 67).

G03034 SCHAEFER ET AL.: SIBCASA TERRESTRIAL CARBON MODEL

10 of 13

G03034



Inventory Analysis (FIA) at an average stand age of 53.6 ±
22.4 years [Jenkins et al., 2001]. Simulated wood biomass
approaches steady state between 100 and 150 years after
the initial disturbance, depending on site. Repeating the
same 14 years of NCEP weather replicates the pattern of
inter-annual variability, giving the simulated wood biomass
curves a distinctive wavy look.
[45] At all four sites, simulated wood biomass falls within

the spread of observed wood biomass from the FIA sites,
but is slightly higher than locally observed. We can attribute
part of this small, positive bias to differences between
observed and NCEP weather increasing GPP, as seen at
Harvard Forest. However, part of the bias also results from
the fact that our wood pool includes seeds. Seed growth can
consume between 3 and 20% of annual GPP, depending on
species. A separate seed pool would have a turnover of
�1 year, but when combined with the wood pool, seed
biomass has an effective turnover equivalent to wood,
resulting in a positive bias. Even with this positive bias,
however, the simulated wood biomass at all four sites fall
within the 30% uncertainty in biometric-based biomass
estimates [Jenkins et al., 2001].
[46] Extending these 200-year simulations out to 5000

years validated our algebraic calculation of steady state pool
sizes. Within 10–15 years after the initial disturbance, the
litter and soil pools reached steady state relative to the wood
pool, confirming our quasi-steady state calculations. After
100–150 years, the wood, litter and soil pools all reached
their long-term steady state values. The armored pool, with
its 222-year turnover time, took 3000–5000 years to reach
steady state. The difference in flux between the 200-year
and 5000-year simulations was minor since respiration from
the armored pool at most accounted for only 0.5% of RH.

5. Discussion

[47] SiBCASA’s simulated biomass and seasonal vari-
ability of NEE are generally consistent with observations
at flux towers in the AmeriFlux network. When run to
stand age after disturbance, simulated wood biomass at all

forest sites is slightly higher than observed, but still within
the uncertainty of the biometric measurements. The sea-
sonal cycle and magnitude of simulated NC for deciduous
and mixed deciduous-evergreen forests are well within the
variability of available observations. We found three main
sources of mismatch between simulated and observed
fluxes and biomass: initial pool sizes (particularly wood),
input weather, and biases in the LAI.
[48] The steady state assumption for initial pool sizes

works well for mature forests sites, but not for young forests,
which are not in steady state. Initializing pools with observed
wood using the quasi-steady state assumption improves the
simulated fluxes, but observed wood biomass is typically
unavailable. Spinning up to stand age from a disturbance also
improves the simulated fluxes, but is computationally expen-
sive and observed stand age is also often unavailable.
[49] We can partially attribute differences between

observed and simulated NEE to errors in the input weather
from the NCEP reanalysis data. Although useful, reanalysis
products have significant deficiencies, especially with pre-
cipitation [Costa and Foley, 1998; Betts et al., 2005]. Higher
precipitation than observed resulted in increased GPP at
Boreas. Higher than observed temperatures at night at
Harvard resulted in excessive simulated GPP in winter.
Using observed weather improves the simulation results,
as we saw at Harvard Forest, but observed weather is not
available at all sites and not available globally.
[50] Using LAI from NDVI to specify leaf biomass has

advantages and disadvantages. NDVI products are readily
available, global in coverage, well understood, and widely
used. Using NDVI to drive the seasonal cycle of NEE in a
global atmospheric circulationmodel produces a better match
with observed CO2 concentration than prognostic vegetation
models [Heimann et al., 1998]. NDVI offers observational
constraints on leaf growth, but does not provide the ability to
predict into the future. Currently available NDVI data sets
contain biases and noise that result in false variability in LAI.
LAI is sensitive to small changes in NDVI, so errors in NDVI
cause SiBCASA to incorrectly lose and regrow leaves,

Figure 8. Simulated and observed wood biomass at Harvard, Howland, Boreas, and WLEF as a
function of stand age. Lines are simulated values; labeled dots are locally observed values; gray dots are
values from the Forest Inventory Analysis (FIA).
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producing unrealistic spikes in RT, drawing too much carbon
from the storage pool, and stunting wood growth.
[51] Nearly all sites showed some problems with the LAI,

but by far Santarem, with cloud and aerosol contamination,
and Boreas, with snow cover bias, had the largest NDVI
errors. NDVI errors fall into three categories: atmospheric
contamination, snow cover, and temporal interpolation; all
of which produce false variability in LAI. At Santarem, the
LAI signal contains considerable noise consistent with
cloud, water vapor, and aerosol contamination, fluctuating
up and down as much as 4.0 m2 m�2 in a single month.
Simulated GPP, which depends on fPAR, is much less
sensitive to NDVI errors, so false variability in NDVI does
not often produce obvious problems in simulated GPP. At
Boreas, for example, the snow cover bias mimics the effects
of seasonal variation in temperature on GPP. Interpolating
between monthly composite values does not capture the
rapid changes in LAI during spring and fall. Using 15-day
rather than monthly NDVI composites can better resolve
seasonal transitions, but are noisier, worsening problems
associated with false LAI variability.
[52] These problems with NDVI are not new, but linking

simulated leaf biomass directly to NDVI now requires a
better treatment of snow cover, cloud, aerosol, and water
vapor contamination when estimating LAI. Developing
practical techniques to minimize atmospheric contamination
and counter the effects of snow cover is a difficult and
ongoing task. Improved interpolation techniques, better
representation of plant phenology, longer compositing peri-
ods, and enhanced radiative transfer models with snow
cover, clouds, and aerosols can improve the estimation of
LAI from NDVI.

6. Conclusions

[53] We successfully integrated the biogeochemical model
CASA into the biophysical model SiB2.5 to produce the
hybrid SiBCASA. Simulated biomass and carbon flux are
consistent with observations at flux towers in the AmeriFlux
network. Major sources of uncertainty include the initial pool
sizes (particulary wood biomass), input weather, and biases
in the LAI.
[54] SiBCASA can simulate long-term carbon sources and

sinks, which SiB2.5 could not. A new NC storage pool, not
present in CASA, allows SiBCASA to stockpile starch for
use when needed. In addition to using fPAR derived NDVI to
drive GPP, SiBCASA also uses LAI derived from NDVI to
prescribe leaf and root growth. This, in combination with the
new storage pool and wood growth controls, allows dynamic
allocation of GPP to leaf, root, and wood growth, instead of
fixed fractions of annual GPP as seen in CASA. The storage
pool and dynamic allocation also allow explicit estimation of
RA, absent in both SiB2.5 and CASA. The new matrix pool
formulation simplifies changing the pool configuration and
adding disturbance processes. The simple procedure to
initialize the pools assuming steady state or quasi-steady
state with observed wood greatly reduces spinup time.
[55] SiBCASA is suitable for a variety of research appli-

cations to study processes affecting the carbon cycle. The
biophysical processes from SiB and the biogeochemical
processes from CASA combined with high time resolution
and short spinup time make SiBCASA well suited for use

in global or regional atmospheric circulation models. The
biogeochemistry from CASA fully integrated with the
photosynthesis from SiB2.5 make SiBCASA suitable for
data assimilation of a variety of trace gas, flux, and
biomass observations. Prognostic biomass combined with
a simple matrix pool design simplifies the representation
of various disturbances, such as biomass burning and harvest.
SiBCASA can be run ‘‘off-line’’ with reanalysis products and
observed, gap-filled weather for a variety of process-based
studies relating climate to the carbon cycle. The quasi-steady
state assumption allows initialization of pools using gridded
maps of observed wood biomass derived from forest inven-
tory data, which will greatly improve estimates of regional or
global carbon fluxes.
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