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[1] A historical climatology of continuous satellite-derived global land surface soil
moisture is being developed. The data consist of surface soil moisture retrievals derived
from all available historical and active satellite microwave sensors, including Nimbus-7
Scanning Multichannel Microwave Radiometer, Defense Meteorological Satellites
Program Special Sensor Microwave Imager, Tropical Rainfall Measuring Mission
Microwave Imager, and Aqua Advanced Microwave Scanning Radiometer for EOS, and
span the period from November 1978 through the end of 2007. This new data set is a
global product and is consistent in its retrieval approach for the entire period of data
record. The moisture retrievals are made with a radiative transfer-based land parameter
retrieval model. The various sensors have different technical specifications, including
primary wavelength, spatial resolution, and temporal frequency of coverage. These sensor
specifications and their effect on the data retrievals are discussed. The model is
described in detail, and the quality of the data with respect to the different sensors is
discussed as well. Examples of the different sensor retrievals illustrating global patterns
are presented. Additional validation studies were performed with large-scale observational
soil moisture data sets and are also presented. The data will be made available for use by
the general science community.
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1. Introduction

[2] Land surface moisture is important in many Earth
science disciplines. It is a key link between the land surface
and the atmosphere. Soil moisture is an important parameter
for many energy balance-related modeling applications,
such as numerical weather forecasting, climate prediction,
radiative transfer modeling, global change modeling, and
other land processes models. Soil moisture usually exhibits
a high degree of spatial variability. However, these spatial
differences are not always entirely intuitive, and are a
function not only of rainfall distributions, but are the result
of topography, heterogeneity of soil physical properties, and
land cover characteristics as well. Soil moisture is also
thought to be the single most important parameter influenc-
ing the atmospheric circulation over land during the sum-
mer. Improved estimates of spatially representative surface
moisture will significantly enhance both short- and long-
term precipitation forecasts. The soil surface is the transi-
tional link between the soil water storage and atmospheric
moisture. Surface soil moisture influences the partitioning
of the incoming energy into latent and sensible heat com-

ponents. Soil moisture, thus provides a key link between the
water and energy balances. Soil moisture was recognized as
a parameter of considerable importance by the U.S. Global
Change Research Program for improving the accuracy of
large-scale land surface-atmosphere interaction models
[National Research Council, 1990]. Additionally, soil mois-
ture has been identified throughout the new Decadal Survey,
and may be the single most important parameter linking the
key components of hydrological, biological, and geochem-
ical processes [National Research Council, 2007].
[3] From a historical perspective, researchers have had

limited information about the large-scale distribution of soil
moisture in time and space, since soil moisture is not
routinely acquired like many hydrometeorological measure-
ments. Consequently, long-term observational data at the
global scale, do not exist. While isolated observational data
sets are available [Robock et al., 2000; Brock et al., 1995;
Hollinger and Isard, 1994], they are largely regional in
nature, and rarely extend beyond several years duration.
Furthermore, while in situ observations are generally accu-
rate, they still are point measures, and are not always readily
transformed into spatial averages, especially at regional,
continental, and global scales.
[4] Space-based remote sensing offers potentially the

greatest single contribution to large-scale monitoring of
the Earth’s surface. If properly utilized, satellite systems
can offer the spatial, temporal, and spectral resolution
necessary for consistent and continuous uninterrupted cov-
erage of the whole Earth environment and its surrounding
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atmosphere. Such detailed observations are necessary in
order to detect often subtle environmental changes. Remote
sensing technology is central to the integration of many
interrelated but highly variable point-scale phenomena to
more useful, regionally oriented land surface processes.
[5] A historical data set of global surface soil moisture is

being developed from satellite microwave brightness tem-
perature observations. The data are derived from several
different satellite sensors beginning in late 1978 and will
continue to the end of 2007. The surface moisture retrievals
are made with a Land Parameter Retrieval Model (LPRM),
developed by researchers from the NASA Goddard Space
Flight Center (GSFC) and the Vrije Universiteit Amsterdam
(VU) [Owe et al., 2001]. Because the data are derived from
several sensors with different radiometric characteristics,
some differences in sensing depth, spatial resolution, and
orbit characteristics do exist. However, specifications for all
sensors are well documented in the literature, and a com-
plete list of references is provided with the data. The data
are expected to be available for download in mid-2008,
from the Goddard Earth Sciences Data and Information
Services Center (GES DISC) and the Vrije Universiteit
Amsterdam, Netherlands. These data sets should prove
valuable for many environmental modeling and monitoring
applications.

2. General Background

2.1. Soil Moisture Modeling and Retrieval

[6] A variety of modeling techniques have been devel-
oped to estimate soil moisture from microwave brightness
temperature observations. Results from early field and
aircraft experiments demonstrated strong regression-based
relationships between surface moisture and both brightness
temperature and surface emissivity [Schmugge, 1976, 1977;
Jackson et al., 1984]. Models have subsequently become
more complex by accounting for canopy effects [Mo et al.,
1982; Jackson et al., 1982; Jackson and Schmugge, 1991],
roughness [Choudhury et al., 1979], polarization mixing
[Wang and Choudhury, 1981], and other perturbing factors
[Jackson and O’Neill, 1987; Jackson et al., 1992, 1997;
O’Neill and Jackson, 1990]. While many of these models
are based on radiative transfer theory, an element of
empiricism often remains because of difficulty in parame-
terizing some components from other measurable biophys-
ical properties and at more meaningful spatial scales.
[7] Studies have shown good agreement between soil

moisture derived from microwave-based models and field
observations [Owe et al., 1992; Jackson, 1997; Drusch et
al., 2001; Jackson and Hsu, 2001]. However, an inherent
problem with ground measurements has been the issue of
scaling point observations to sensor footprint-sized averages,
especially at satellite scales. This task becomes increasingly
problematic with increasing land cover heterogeneity.
The lack of large-scale surface moisture observations, has
often forced researchers to calculate soil wetness indices
(e.g., Antecedent Precipitation Index) from more readily
available meteorological data, for comparison to satellite
observations [McFarland, 1976;Wilke andMcFarland, 1986;
Owe et al., 1988, Ahmed, 1995; Achutuni and Schofield,
1997]. McFarland and Neale [1991] developed a regression

technique that used brightness temperatures from several
Special Sensor Microwave Imager (SSM/I) channels in a
series of three empirical equations that accounted for
different vegetation density classes. However, this approach
calculated a soil wetness index, and was calibrated to
regional Antecedent Precipitation Index calculations for test
sites in the U.S. Southern Great Plains region. Errors
associated with this method were found to be quite high,
and its application to other locations and at global scales
may therefore be less useful, especially in data-poor regions
where validation and recalibration may be more difficult.
These approaches have successfully demonstrated the spa-
tial and temporal sensitivity of satellite sensors, and have
also been extremely useful for studying long-term seasonal
and interannual climatologies. However, wetness indices do
not necessarily relate directly to actual surface moisture
quantities, and therefore their value is limited for use in
many environmental monitoring and modeling applications.
[8] Only a few modeling approaches can be considered

true retrieval. These techniques are, for the most part,
physically based and account for most of the major compo-
nents in radiative transfer theory. They typically solve for
the soil emissivity, from which volumetric soil moisture is
subsequently derived by inverting the Fresnel relationships
and a dielectric mixing model [Schmugge, 1985]. The
model developed by Jackson [1993] has compared well
with aircraft data from several large field experiments
[Jackson et al., 1995, 1999]. The model has also performed
well with Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI) and SSM/I measurements over
these same experimental sites [Jackson and Hsu, 2001;
Jackson et al., 2002]. However, this approach requires a
parameterization of the vegetation water content (VWC) in
order to calculate the canopy optical depth [Jackson et al.,
1982; Jackson and Schmugge, 1991]. While extensive
biophysical measurements were made during field experi-
ments from which VWC was calculated, it may be more
difficult to obtain this information on a regular basis for
application at the global scale.
[9] The method developed by Njoku and Li [1999] and

Njoku et al. [2003] is the official Advanced Microwave
Scanning Radiometer (AMSR-E) soil moisture science team
contribution [Njoku, 2004]. This approach is based on
polarization ratios, which effectively eliminate or minimize
the effects of surface temperature. The original approach
used six microwave channels (three frequencies, each at two
polarizations) to solve for three land surface parameters
(soil moisture, vegetation water content, and surface tem-
perature). It was expected to provide surface soil moisture
with an accuracy of 6% absolute moisture content (0.06 cm3

cm�3) in areas with low vegetation biomass (< 1.5 kg m�2).
However, unanticipated radio frequency interference (RFI)
problems were encountered at the 6.9 GHz frequency,
requiring modification of this approach [see Njoku, 2004].
[10] Another recently developed retrieval approach is

based on the microwave polarization difference index
[Owe et al., 2001; De Jeu and Owe, 2003; Meesters et
al., 2005]. This method uses a forward modeling optimiza-
tion procedure to solve a radiative transfer equation for both
soil moisture and vegetation optical depth, and requires no
calibration or fitting parameters, or other biophysical meas-
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urements during the retrieval process. A unique feature of
this approach is that it may be applied at any relevant
microwave frequency, and it was used in the retrieval of the
data sets described in this paper. A more detailed description
of this model is provided in section 4.

2.2. Sensors and Specifications

[11] The soil moisture data sets were derived from meas-
urements obtained from a variety of satellite sensors begin-
ning in late 1978. All sensors have several common wave
bands, while some wave bands are either unique or common
to only two or three of the satellite systems. Comparative
specifications for the different sensors are provided in
Tables 1 and 2. Brief descriptions of the four sensors are
provided, however, readers are referred to the various
references provided for a more comprehensive discussion.
[12] The Scanning Multichannel Microwave Radiometer

(SMMR) was flown onboard the Nimbus-7 satellite
[Gloersen and Barath, 1977; Gloersen et al., 1984]. The
instrument was launched in October 1978 and was eventu-
ally deactivated in August 1987. Power constraints onboard
the Nimbus satellite permitted data acquisition on alternate
days only, however, the 24 hour on-off cycle still permitted
both day and night observations. The satellite orbited the
Earth approximately 14 times per day, with a local solar noon
and midnight equator crossing. Because of the on-off
instrument cycling, complete global coverage required
6 days. SMMR brightness temperatures were measured at
five frequencies, from 6.6 GHz to 37 GHz, at both hori-
zontal and vertical polarization. Spatial resolution of SMMR
was comparatively coarse, relative to later instruments
(from approximately 25 km at 37 GHz to almost 150 km at

6.6 GHz) [National Snow and Ice Data Center (NSIDC),
2005a].
[13] The Special Sensor Microwave Imager (SSM/I) is

found on board a series of Defense Meteorological Satellite
Program (DMSP) platforms designated F-8, F-10, F-11,
F-13, F-14, F-15, and F-16. The first satellite was launched
in July 1987, while the last one was launched in October
2003. Orbit characteristics are very similar to Nimbus-7 (see
Table 1). Equator crossing times vary between the different
satellites and are provided in Table 3 [Armstrong et al.,
1994; NSIDC, 2005b].
[14] Tropical Rainfall Measuring Mission (TRMM) Mi-

crowave Imager (TMI) began acquiring data in December
1997. The TMI instrument is a nine channel radiometer,
based largely on SSM/I technology. However, unlike the
previous platforms, TRMM is in a near-equatorial orbit, so
as to maximize observations over tropical ocean regions.
Orbit characteristics are less straightforward than polar
orbiting platforms. The satellite orbit is in a constant plane
relative to the sun, with about 16 orbits per day. The Earth’s
inclination and rotation, therefore, results in a sine wave-like
pattern of Earth coverage between about 38� north and south
latitude, with local overpass times drifting over the entire
24-hour day approximately once each month [Kummerow et
al., 1998] (see also http://tsdis.gsfc.nasa.gov/).
[15] The Advanced Microwave Scanning Radiometer

(AMSR-E) on the AQUA Earth observation satellite was
launched in May 2002. The sensor is 12 channels (six
frequencies), with 4 bands relevant to soil moisture retrieval.
Orbit characteristics are somewhat similar to its predecessor,
SMMR, although the AMSR-E swath width is nearly twice as
wide at 1445 km. Daily Earth coverage is nearly 100% above
and below 45� north and south latitude, while midlatitudes

Table 1. Specifications for the Various Microwave Sensors Used in Deriving the Soil Moisture Data Setsa

Parameter SMMR SSM/I TMI AMSR-E

Frequencies, GHz 6.6, 10.7, 18, 37 19.3, 36.5 10.7, 19.4, 37 6.9, 10.7, 18.7, 36.5
Polarization H,V all frequation H,V all frequation H,V all frequation H,V all frequation
Incidence angle 50.2� 53.1� 52.88� 55�
Swath width, km 780 1394 759 1445
Orbit type polar polar N38� to S38� polar

Equator Crossing
Ascending orbit 1200 LST see Table 3 variable 1330
Descending orbit 2400 LST see Table 3 variable 0130
Data period Nov 1978 to Aug 1987 Jul 1987 to present Dec 1997 to present May 2002 to present

aAbbreviations are as follows: AMSR-E, Advanced Microwave Scanning Radiometer for EOS; SSM/I, Special Sensor Microwave/Imager; SMMR,
Scanning Multichannel Microwave Radiometer; TMI, Tropical Rainfall Measuring Mission Microwave Imager.

Table 2. Footprint Dimensions Corresponding to the Different

Sensors at all Wavelengths Relevant to Soil Moisture Retrievala

Footprint Size, km–GHz

6.x 10.7 18–19 36–37

SMMR 148 � 95 91 � 59 55 � 41 27 � 18
SSM/I nab na 69 � 43 37 � 28
TMI na 63 � 39 30 � 18 16 � 10
AMSR-E 74 � 43 51 � 30 27 � 16 14 � 8

aDimensions are along track � cross track. Abbreviations are as follows:
AMSR-E, Advanced Microwave Scanning Radiometer for EOS; na, not
applicable; SSM/I, Special Sensor Microwave/Imager; SMMR, Scanning
Multichannel Microwave Radiometer; TMI, Tropical Rainfall Measuring
Mission Microwave Imager.

bNa means not applicable.

Table 3. Equator Crossing Times for the Defense Meteorological

Satellite Program Satellite Platformsa

SSM/I Platform

Equator Crossing Times, LST

Ascending Orbit Descending Orbit

F-8 1812 0612
F-11 1710 0510
F-13 1735 0535
F-14 2021 0821
F-15 2131 0931
F-16 2013 0813

aSSM/I, Special Sensor Microwave/Imager.
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experience about 80% coverage [Ashcroft and Wentz, 2003;
NSIDC, 2006].

2.3. Original Data Archives

[16] All sensor data were downloaded as brightness
temperatures from their public source archives. SMMR,
SSM/I, and AMSR-E data are available from the National
Snow and Ice Data Center (NSIDC) in Boulder Colorado
(http://nsidc.org/). However, SSM/I brightness temperature
data products are only available for the F-8, F-11, and F-13
satellites from NSIDC [2005b]. TMI data were downloaded
from the Goddard Earth Sciences Data and Information
Services Center (GES DISC), formerly known as the God-
dard Distributed Active Archive Center (DAAC) (http://
disc.sci.gsfc.nasa.gov/index.shtml).

3. Theoretical Background

[17] Radiometric temperature readings in the microwave
region have been shown to yield important information on
moisture phenomena in the environment, including surface
soil moisture. Microwave remote sensing is the only tech-
nology that provides a direct measure of the absolute
moisture contained in the environment. Thermal radiation
in the microwave region is emitted by all natural surfaces,
and is a function of both the land surface and the atmo-
sphere. The brightness temperature (TBp) observed by a
satellite sensor is a function of the land surface emission as
well a contribution from the atmosphere, such that

TBp ¼ Tu þ exp �tað Þ Tbp þ rpTd
� �

ð1Þ

Where Tu and Td are the upwelling and downwelling
atmospheric emissions respectively, ta is the atmospheric
opacity, rp is the surface reflectivity, and Tbp is the surface
brightness temperature. The subscript p denotes either
horizontal (H) or vertical (V) polarization. The surface
brightness temperature is a function of the physical
temperature of the radiating body and its emissivity,
according to

Tbp ffi espTs ð2Þ

where Ts is the thermodynamic temperature of the emitting
layer, and esp is the smooth-surface emissivity. The
emissivity may be further defined as

esp ¼ 1� Rsp

� �
ð3Þ

where Rs is the smooth-surface reflectivity. The absolute
magnitude of the soil emissivity is lower at H polarization
than at V polarization. However, the sensitivity to changes
in soil moisture is considerably greater at H polarization
than at V polarization. Conversely, at V polarization, the
sensitivity to surface temperature is greater. This phenom-
enon forms the basis for surface temperature retrieval
techniques by microwave radiometry [Owe and Van de
Griend, 2001].
[18] Soil emissivity is a function of its dielectric proper-

ties. The dielectric constant is defined as a complex number,
where the real part determines the propagation character-

istics of the energy as it passes upward through the soil, and
the imaginary part determines the energy losses. In a
heterogeneous medium such as soil, the complex dielectric
constant is a combination of the individual dielectric con-
stants of its constituent parts, and includes air, water, rock,
etc. Other factors which will influence the dielectric con-
stant include temperature, salinity, soil texture, and wave-
length. The dielectric constant is a difficult quantity to
measure on a routine basis outside the laboratory, and
values are generally derived from dielectric mixing models
[Dobson et al., 1985; Wang and Schmugge, 1980].
[19] Microwave energy originates from within the soil,

and the contribution of any one soil layer decreases with
depth. For practical purposes, the surface layer provides
most of the measurable energy contribution and is defined
as the thermal sampling depth [Schmugge, 1983], although
it is also commonly referred to as the skin depth or
observation depth. The thickness of this layer is thought
to be only several tenths of a wavelength thick. However, its
actual thickness will vary according to moisture content,
wavelength, polarization, and incidence angle. As the aver-
age moisture content of this layer decreases, its thickness
increases. It is the average dielectric properties of this layer
that determines the observed emissivity. Soil moisture
retrieval from microwave measurements is made possible
owing to the large contrast between the dielectric constants
of dry soil (�4) and water (�80). This contrast results in a
wide range in the dielectric properties of soil-water mixtures
(from about 4 to about 40), and is the primary influence on
the natural microwave emission from the soil [Schmugge,
1985].
[20] Increasing incidence angle will decrease the soil

emission at horizontal polarization. Furthermore, a greater
viewing angle also increase the path length of the upwelling
radiation, making it more susceptible to attenuation effects
of the atmosphere and vegetation canopies.
[21] Vegetation affects the microwave emission as ob-

served from above the canopy in two ways. First, vegetation
will absorb or scatter the radiation emanating from the soil.
Secondly, the vegetation will also emit its own radiation.
These two effects tend to counteract each other. The
observable soil emission will decrease with increased veg-
etation, while emission from the vegetation will increase.
Under a sufficiently dense canopy, the emitted soil radiation
will become totally masked, and the observed emissivity
will be due largely to the vegetation. The magnitude of the
absorption depends upon the wavelength and the water
content of the vegetation. The most frequently used wave-
lengths for soil moisture sensing are in the L and C
bandwidths (�1.4 and �6 GHz respectively), with L-band
sensors having greater penetration of vegetation. While
observations at all frequencies are subject to scattering
and absorption and require some correction if the data are
to be used for soil moisture retrieval, shorter wave bands are
more susceptible to vegetation influences. A variety of
models have been developed to account for the effects of
vegetation on the observed microwave signal, and range
from empirical linear models [Jackson et al., 1982; Ahmed,
1995; Owe et al., 1988], to more physically based radiative
transfer treatments [Mo et al., 1982; Njoku and Li, 1999;
Wigneron et al., 1995; Wegmuller et al., 1995].
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[22] The radiation from the land surface as observed from
above the canopy may be expressed in terms of the radiative
brightness temperature, Tbp, and is given as a simple
radiative transfer equation [Mo et al., 1982],

Tbp ¼ TSerpGp þ 1� wp

� �
TC 1� Gp

� �

þ 1� erp
� �

1� wp

� �
Tc 1� Gp

� �
Gp ð4Þ

where TS and TC are the thermodynamic temperatures of the
soil and the canopy respectively, w is the single scattering
albedo, and G is the transmissivity. The first term of the
above equation defines the radiation from the soil as
attenuated by the overlying vegetation. The second term
accounts for the upward radiation directly from the
vegetation, while the third term defines the downward
radiation from the vegetation, reflected upward by the soil
and again attenuated by the canopy. The transmissivity is
further defined in terms of the optical depth,t, and incidence
angle, u, such that

G ¼ exp �t= cos uð Þ ð5Þ

The optical depth is strongly related to the canopy density,
and for frequencies less than 10 GHz, it can be expressed as
a linear function of vegetation water content [Jackson et al.,
1982]. Maximum values for t were found to be about 1.3 at
C band for a soybean canopy with a vegetation water
content of about 1.5 kg m�2 [Mo et al., 1982]. However, the
same canopy yields an optical depth of only 0.35 at L band.
An optical depth of 1.3 translates to a transmissivity of
about 0.13, which indicates minimal penetration of the soil
signal through the canopy at C band. Furthermore, it was
shown that at C band, the above-canopy signal becomes
totally saturated at an optical depth of about 1.5 (w = 0.06)
in the horizontal channel, although for practical purposes,
the sensitivity is already quite low above 0.75 [Owe et al.,
2001]. At low soil moisture conditions, this threshold is
seen to occur even sooner. In another study, African
savannas were found to exhibit an annual course for the
optical depth that varied from about 0.4 to 0.7 [Van de
Griend and Owe, 1994].
[23] The single scattering albedo describes the scattering

of the soil emissivity by the vegetation, and is a function of
plant geometry. The scattering albedo may be calculated
theoretically [Wegmulller et al., 1995], however, experi-
mental data for this parameter are limited, and values for
selected crops were found to vary from 0.04 to about 0.13
[Mo et al., 1982; Owe et al., 2001]. Few values are found
for natural vegetation. A 3-year time series of the scattering
albedo at both 6.6 GHz and 37 GHz was calculated for an
African savanna region [Van de Griend and Owe, 1994].
The scattering albedo exhibited considerable variability
during the period, although no relationship with vegetation
biomass or other seasonal indicators was observed.
[24] While there is some experimental evidence indicat-

ing possible polarization dependence of both the optical
depth and the scattering albedo, these differences have been
observed mainly during field experiments and over vegeta-
tion elements that exhibit some uniform orientation such as
vertical stalks in tall grasses, grains, and maize [Wigneron et
al., 1995; Wegmuller et al., 1995; Kirdiashev et al., 1979].

However, the canopy and stem structure for most crops and
naturally occurring vegetation are randomly oriented. Fur-
thermore, the effects of any systematic orientation exhibited
by vegetation elements would most likely be minimized at
satellite scales [Owe et al., 2001].
[25] The issue of salinity effects on soil emissions has

received only limited attention in the way of field studies
and experimental data. Jackson and O’Neill [1987] com-
pared modeling results of saline soils using several dielec-
tric mixing models to controlled field measurements with
both L- and C-band radiometers. However, observed effects
were not found to be as large as the model predictions. The
dielectric constant of pure water is approximately 80 at L
band (20�C), while only about 73 for sea water (�3.5%
saline), with the difference in brightness temperature being
only about 5 K. Furthermore, the difference in the dielectric
constant between sea water and pure water is considered to
be significant only at frequencies below 5 GHz, with only
minimal dependence above that frequency [Rees, 2001].
Consequently, the salinity effects on soil emissions can be
expected to be low at salt concentrations on the order of sea
water. However, in regions of high evaporative demand, salt
concentrations may be significantly higher, especially from
the combined effects of fertilization and irrigation. The
resulting effect on the soil emissivity may therefore be
greater as well. A priori knowledge of soil salinity con-
ditions could potentially allow investigators to make appro-
priate adjustments in a dielectric mixing model if the soil
dielectric constant were known.

4. Land Parameter Retrieval Model

[26] Polarization ratios, such as the Microwave Polariza-
tion Difference Index (MPDI)

MPDI ¼ Tb Vð Þ � Tb Hð Þ
� �

= Tb Vð Þ þ Tb Hð Þ
� �

; ð6Þ

are frequently used to normalize for temperature depen-
dence, resulting in a parameter that is quantitatively and
more highly related to the dielectric properties of the
emitting surface(s). At lower frequencies (longer wave-
lengths), the MPDI will contain information on both the
canopy and the soil emission, and consequently the soil
dielectric properties as well. The theoretical relationship
between the MPDI, vegetation optical depth, and the soil
dielectric constant [Owe et al., 2001; Meesters et al., 2005],
forms the basis for LPRM optimization. The latter reference
describes an analytical solution to this relationship, which
improves the accuracy and overall efficiency of the retrieval
algorithm, while also allowing one to change the scattering
albedo ‘‘on the fly.’’
[27] The retrieval methodology uses a nonlinear iterative

procedure in a forward modeling approach to partition the
surface emission into its primary source components, i.e.,
the soil emission and the canopy emission, and then
optimizes on the canopy optical depth and the soil dielectric
constant. Once convergence between the calculated and
observed brightness temperatures is achieved, the model
uses a global database of soil physical properties [Rodell et
al., 2004] together with a soil dielectric mixing model
[Wang and Schmugge, 1980] to solve for the surface soil
moisture. No field observations of soil moisture, canopy
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biophysical properties, or other observations are used for
calibration purposes, resulting in a model that is largely
physically based with no regional dependence, and is
applicable at any microwave frequency suitable for soil
moisture monitoring (i.e., L, C, X, or Ku band).
[28] The LPRM does not establish or assume a soil

moisture sampling depth during retrieval calculations, nor
is there a depth implied by the retrieval, other than in the
estimation of an average thermodynamic temperature for the
emitting layer, which is assumed to be approximately 3
tenths of the wavelength. It will be left to the individual
investigator to make any further assumptions as to the soil
moisture sampling depth, based on the sensor used and any
additional climate information that one may have available.
Land surface temperature is derived directly from 37 GHz
vertical polarization brightness temperature observations, in
a manner similar to the original model description [Owe et
al., 2001, 2005; O’Neill et al., 2006], although additional
large-scale field observations and experimental data were
used to refine the original relationship. The most reliable
emitting layer temperature estimates will occur during the
nighttime because of increased thermal equilibrium condi-
tions of the near-surface air, canopy, and surface soil.
Daytime emitting layer temperatures are often more difficult
to estimate because of more intense surface heating. While
this is a significant problem in arid and semiarid locations, it
may pose problems in more temperate regions as well,
especially in vast agricultural areas, or other locations with
a high percentage of exposed soils. However, even though
comparisons between daytime and nighttime retrievals have
shown good consistency, it is expected that nighttime
retrievals will most likely have smaller temperature-related
errors than daytime retrievals.

5. Retrieval Data Sets

[29] The LPRM will be used to derive global surface soil
moisture for the period November 1978 through December
2007. These data sets will be produced from brightness
temperature observations acquired from all available active
and historical sensors, including Nimbus-SMMR (1978–
1987), DMSP-SSM/I (1987 to present), TRMM-TMI (1997
to present), and AQUA-AMSR-E (2002 to present). In cases
where multiple sensors were/are active during the same time
period, we will process all available observational data. We
will also process multiple frequencies where a given sensor
has more than one suitable waveband for soil moisture
retrieval. (i.e., SMMR, AMSR-E). All retrieval data sets
will be written and stored in Hierarchical Data Format
(HDF), which is the accepted standard for all EOS data
products. This will ensure maximum compatibility with
other EOS-era data sets, and will also ensure maximum
compatibility with GES DISC data formatting protocols.
Furthermore, HDF retains the Coordinated Universal Time
(UTC) time stamp and geo-referencing information of the
original orbit data.
[30] Since the soil moisture data are derived from several

different satellite sensors with varying spatial resolution and
radiometric frequency, investigators should exercise care in
the interpretation of these data and when using them in
specific applications. The LPRM algorithm has certain
known limitations, however, they are due entirely to limi-

tations inherent to microwave theory. Microwave brightness
temperatures at X and C band are sensitive to only the soil
moisture in the top 1 to 1.5 cm of the soil, averaged over the
spatial extent of the footprint. Owing to the masking effects
of vegetation on the soil emission, measurements of soil
moisture from microwave radiometers are most accurate in
areas of low vegetation density. Therefore attenuation of the
emission signal from the soil owing to excessive vegetation
will usually increase the retrieval error. When the vegetation
density is too great, the LPRM will often not achieve
convergence. In such cases, pixels are assigned an appro-
priate nondata flag.
[31] One must consider the radiometric characteristics of

the individual sensor in estimating the impact of error
sources on the data retrievals. Radiometric frequency is
the primary factor influencing a sensor’s ability to retrieve
soil moisture and determines its effective global coverage.
A lower-frequency (longer wavelength) sensor will provide
greater coverage for soil moisture retrieval than a sensor of
higher frequency, largely owing to its ability to penetrate
denser vegetation canopies. It may also be helpful to use
other data sets in the interpretation of soil moisture retriev-
als, for instance terrain and topographic maps, vegetation
maps, and land use maps, many of which may be available
as digital remote sensing products as well.
[32] Certain other land cover characteristics may also

increase the error in data retrievals, and may include
excessive surface roughness affecting a significant percent-
age of the pixel, gross topography such as steep mountain-
ous terrain, significant amount of pixel area occupied by
water (as well as coastal pixels), as well as ice snow, and
frozen soils. Data screening for snow or frozen surface
conditions is limited to flagging those pixels where the
surface temperature is observed to be at or below 273 K, as
determined by the model’s temperature algorithm. All non-
data pixels (i.e., water, snow, ice, frozen soils, nonconver-
gence, etc.) are assigned unique values in order to retain
their identity.
[33] It has been determined that RFI may have a signif-

icant impact on both H and V polarization brightness
temperatures at C band, and to a lesser extent at X band.
RFI is usually caused by communications and broadcast
signals, and frequently results in abnormally high brightness
temperatures. While the existence of RFI has been known
for some time, rigorous studies of this phenomenon in Earth
observation data (AMSR-E) have only recently been
reported [Li et al., 2004; Njoku et al., 2005]. Similar studies
should be conducted with other sensors to determine the
extent of this problem in historical data as well. The
presence of RFI in radiometer data may be identified from
original brightness temperature values [Li et al., 2004].
Radio frequency contamination in 6–7 GHz range is seen
to be highly prevalent in the U.S., Southwest Asia, and the
Middle East, with occurrences in Europe seemingly associ-
ated with selected urban locations. RFI in the 10 GHz is less
prevalent globally, but appears to be concentrated in several
European locations, such as Italy and the United Kingdom
[see Njoku et al., 2005]. In the event of extreme RFI, the
LPRM will often not achieve convergence. The LPRM will
continually test for RFI by calculating the RFI Index as
defined by Li et al. [2004], and identify such pixels with
appropriate data flags.
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5.1. Scanning Multichannel Microwave Radiometer

[34] SMMR surface moisture retrievals are performed at
6.6, 10.7, and 18 GHz. C band is most susceptible to RFI
contamination and has been found to be quite widespread in
many global locations for the AMSR-E period (see above).
However, its occurrence during the SMMR period has not
been fully established, and the availability of the longer-
wavelength retrievals for unaffected areas would seem to be
highly valuable. As indicated earlier, X-band RFI has been
detected in Europe in recent years as well. Consequently,
conducting surface moisture retrievals at both bands will
maximize global availability of these data. Furthermore, the
availability of 18 GHz retrievals will also allow investiga-
tors to evaluate the higher-frequency data relative to the
contemporaneous longer-wavelength retrievals. Such com-
parisons will permit improved interpretation of similar
higher-frequency surface moisture retrievals from SSM/I
measurements during periods when longer-wavelength data
are unavailable (for example, during the period after the

deactivation of SMMR and the launch of TRMM). Global
maps of daytime and nighttime SMMR retrievals are
provided, illustrating the extent of daily (24-hour) orbital
coverage (Figure 1). Global coverage is achieved in about
six days because of the sensor’s availability only on
alternate days.
[35] Average monthly surface soil moisture maps for the

6.6, 10.7, and 18 GHz bands are also provided for compar-
ison (Figure 2). Both the soil sampling depth and the
sensor’s ability to penetrate vegetation decreases with
frequency, and a subsequent decrease in global coverage
of soil moisture is clearly observed as the frequency
increases. Since all three frequencies are contained on the
same sensor platform, more meaningful direct comparisons
between the three wavebands may be possible with these
data.

5.2. Special Sensor Microwave Imager

[36] SSM/I retrievals are performed from the end of the
SMMR period to the beginning of the AMSR-E period in

Figure 1. Twenty-four-hour day and night Scanning Multichannel Microwave Radiometer surface soil
moisture retrievals for 7 July 1980.
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Figure 2. Monthly average Scanning Multichannel Microwave Radiometer surface soil moisture
retrievals at (a) 6.6 GHz, (b) 10.7 GHz, and (c) 18 GHz for July 1980.
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2002. Even though TMI data are available beginning in
1997, global coverage does not extend beyond ±35� N and
S. Therefore SSM/I will remain useful by providing soil
moisture retrievals at those latitudes not covered by TMI.
Daily SSM/I retrievals illustrate orbital coverage that is
similar to SMMR, although swath widths of SSM/I are
somewhat wider (Figure 3). Average monthly soil moisture
retrievals also appear similar in their distribution, magni-
tude, and extent of coverage as previous SMMR retrievals
at a similar waveband (Figure 4).

5.3. TRMM Microwave Imager

[37] The application of TMI soil moisture retrievals may
potentially be somewhat more complex owing to the
TRMM orbit characteristics. Since TMI is not a polar
orbiter, the timing of daily coverage over any geographic
location appears less systematic and almost random, al-
though actually it is not. Daily coverage of polar orbiters
occurs at the same local solar time at any given longitude, as
the platform orbits the Earth. Furthermore, daytime and

nighttime coverage for polar orbiters are typically archived
separately, and are indicated as either ascending or descend-
ing orbits, respectively. However, TRMM is in a low-
inclination orbit, extending from ±38� north and south,
which does not lend itself well to such systematic separa-
tion. A series of selected daily orbit tracks (orbits 0, 2, and 4)
is illustrated, and shows the timing and coverage character-
istics of TMI throughout part of a 24-hour day (Figure 5).
The resulting map of daily soil moisture retrievals is also
illustrated (Figure 6). Patchiness in daily observations is
frequently observed, and will result from soil moisture
differences during subsequent overlapping and intersecting
orbits as a result of precipitation events or extreme drying
conditions.

5.4. Advanced Microwave Scanning Radiometer

[38] AMSR-E orbital coverage is similar to the other
polar orbiting satellites, as illustrated in the daytime and
nighttime surface soil moisture retrievals (Figure 7). The
wider swath width, however, results in almost 100% daily

Figure 3. Twenty-four-hour day and night global Special Sensor Microwave Imager surface soil
moisture retrievals for 7 July 2003.
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global coverage when the ascending and descending orbits
are combined. One must keep in mind, however, that day
and night coverage occurs at 12 hour intervals, and that the
inherent timing information associated with the daytime and
nighttime orbits would be lost during compositing. Average
monthly global surface soil moisture retrievals for July 2003
are also illustrated for both 6.9 GHz and 10.7 GHz fre-
quencies (Figure 8). From these two examples, it is ob-
served that consistency between the two frequencies
appears to be quite good. The presence of RFI is also seen
to be greater in the C-band data, and is especially observed
in the western and eastern portions of the U.S. These

observations are also consistent with results found by Li
et al. [2004].

6. Evaluation and Validation

[39] Surface soil moisture retrievals from earlier versions
of the LPRM have been evaluated in several previous
studies against both observational and model simulation
data sets from a variety of global test sites, and compared
quite well. These comparisons include test sites located in
Illinois, Iowa, Mongolia, Russia, Turkmenistan (all from the
Global Soil Moisture Data Bank), model simulation data

Figure 5. Selected Tropical Rainfall Measuring Mission orbit tracks during a 24-hour period,
illustrating a typical pattern of daily coverage. A given daily pattern will repeat approximately every
47 days.

Figure 4. Monthly average global surface soil moisture for July 2003 as retrieved from Special Sensor
Microwave Imager.
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from the European Center for Medium-Range Weather
Forecast (ECMWF) Model and the NASA Land Informa-
tion System (LIS), and the Oklahoma Mesonet [Owe et al.,
2001; De Jeu and Owe, 2003; O’Neill et al., 2006]. Wagner
et al. [2007] compared surface soil moisture derived with 4
different satellite retrieval models with a dense network of
surface soil moisture observations in central Spain, and
found the LPRM to yield the highest correlation (R =
0.83) with the ground measurements.
[40] Additional validations in support of the new retrieval

data sets are presented here. However, it is important to
realize that very few observational data sets exist at the
spatial and temporal scales and vertical sampling resolution
necessary for optimal validation. The most widely used data
sets are part of the Global Soil Moisture Data Bank,
maintained at the Department of Environmental Sciences,
Rutgers University [Robock et al., 2000], and extensive
comparisons have already been conducted with these data.

While these data are among the best available, they are far
from optimum, and several issues must be understood when
using them for validating satellite-based retrievals. These
include:
[41] 1. Differences in spatial resolution. Satellite data are

spatial averages integrated over the entire footprint, whereas
the ground data are point measurements and often with high
spatial variability.
[42] 2. Differences in vertical resolution. The satellite

data represent a soil sampling depth ranging from about
0.5 cm to 1.5 cm (depending on the sensor), whereas the
ground measurements are often made at a depth of 10 cm or
greater.
[43] 3. Differences in acquisition times. Satellite and

ground observations rarely occur on the same day, and
often as much as 5 to 7 days apart.
[44] 4. Interobservation periods. These periods may be as

long as 10 days or more in some soil moisture data sets. It is

Figure 6. (a) Twenty-four-hour global surface soil moisture retrievals for 7 July and (b) average
monthly global surface soil moisture retrievals for July 2003, derived from Tropical Rainfall Measuring
Mission Microwave Imager at 10.7 GHz.
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important to realize that significant changes in surface
moisture may occur during these interobservation periods
that are often not captured by one or both of these data sets.
[45] An understanding these of issues is important when

evaluating the validation process. The common expectation
during validation is that two data sets agree as closely as
possible. Unfortunately, this will often not be the case with
the remote sensing data and ground observations, most
notably for the reasons cited above. Because of this uncer-
tainty, it is often more meaningful to compare time series
trends than to make direct numerical comparisons.
[46] Time series of surface moisture retrievals from sev-

eral satellite sensors are compared to averaged soil moisture
observations from 7 measurement stations in southern
Illinois [Hollinger and Isard, 1994]. The test site is approx-
imately 1.5� � 2� in size. Sampling was typically conducted
2 to 3 times per month by neutron probe, and reflects the
average soil moisture in the top 10 cm. Please refer to the
website, http://climate.envsci.rutgers.edu/soil_moisture/, for

additional details pertaining to this data set. Land use/land
cover descriptions for this test site are also provided in the
work of Owe et al. [2001]. Surface moisture retrievals from
SMMR (C band) for the period 1982–1987 are illustrated in
Figures 9a and 9b. Retrieval data from AMSR-E (C band)
are shown in Figure 9c, and exhibit similar patterns and
magnitudes relative to the ground data as the SMMR data.
This appears to indicate good consistency between the two
instruments. The satellite retrievals are displayed as a 6-day
mean trace of all footprint values falling within the test area
during a daily orbit track. Six-day means were used in order
to account for orbit tracks which may only have provided
partial coverage of the test site on any given day and to
make the satellite retrievals more readable. This approach is
reasonable, especially in light of the coarse temporal reso-
lution of the ground observations. The vertical dotted lines
reflect the standard deviation of the individual retrieval
values of all the footprints used to obtain a mean. Ground
measurements are displayed as a mean trace with the full

Figure 7. Twenty-four-hour global daytime and nighttime surface soil moisture retrievals for 7 July
2003 at 6.9 GHz from Aqua Advanced Microwave Scanning Radiometer for EOS.
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dynamic range indicated above and below. The spatial
variability observed in both the satellite data and the ground
data truly reflects the inherent nature of surface soil mois-
ture. Satellite data coincide well with the ground data and
tend to fall between the minimum and the mean ground data
values for the most part, which is consistent with the fact
that the sampling depth for the sensor is less than 1.5 cm.
TRMM-TMI and AMSR-E X-band retrievals and SSM/I
Ku-band data are illustrated in Figures 10 and 11, respec-
tively. Again, the soil moisture data derived by these sensors
are highly consistent with the ground data.
[47] A one-year daily time series of AMSR-E surface

moisture retrievals is illustrated (Figure 12) for a 1� square
test site in Oklahoma (35�–36� Wand 98.5�–99.5� N), and
compared to average daily soil moisture measurements from
8 observation stations from the Oklahoma Mesonet [Brock
et al., 1995]. Readers are referred to the website, http://
www.mesonet.org/ for details concerning the Oklahoma

Mesonet program, including site descriptions of the obser-
vation stations. Daily average surface moisture based on the
satellite retrievals compare well to the site-averaged ground
measurements taken at 5 cm. It is seen that the satellite
observations are highly sensitive to changes in soil moisture
at the surface, especially to rapid changes resulting from
precipitation events. These changes are seen to be reflected
in the deeper ground measurements as well, although not at
the same magnitude and with some delay, since the soil in
the top 1 cm surface layer will wet and dry much faster than
at 5 cm.

7. Summary and Discussion

[48] A historical global soil moisture climatology is being
developed from microwave radiometer measurements from
multiple satellite sensors dating back to 1978. The surface
moisture retrievals are derived with the Land Parameter

Figure 8. Average monthly global surface soil moisture retrievals at (a) 6.9 GHz and (b) 10.7 GHz from
Aqua Advanced Microwave Scanning Radiometer for EOS for July 2003.
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Figure 9. (a) Six-day average time series of Scanning Multichannel Microwave Radiometer (SMMR)
6.6-GHz surface moisture retrievals and ground measurements from 1982 through 1985 over southern
Illinois. The dynamic range of the ground data and standard deviation of the satellite retrievals is also
depicted. Also shown are the six-day average time series of (b) SMMR 6.6-GHz surface moisture
retrievals (1986–1987) and (c) Aqua Advanced Microwave Scanning Radiometer for EOS 6.9-GHz
retrievals (2002–2004) and corresponding ground measurements over southern Illinois.

Figure 10. Six-day average time series of Aqua Advanced Microwave Scanning Radiometer for EOS
10.7-GHz and Tropical Rainfall Measuring Mission 10.7-GHz surface moisture retrievals and
corresponding ground measurements in southern Illinois for the period 2001–2004.
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Retrieval Model. The data will be hosted at the Goddard
Earth Sciences Data and Information Services Center (GES
DISC), formerly known as the Goddard Distributed Active
Archive Center (DAAC), and at the Vrije Universiteit
Amsterdam, Netherlands, and will be made available for
download by the scientific community. Data storage will be
in HDF, which will maximize compatibility with other EOS
era data sets. The sensors used in deriving surface soil
moisture vary in frequency from C band to X band to K
band, and users should understand the significance of
wavelength differences in the interpretation of these data.
[49] Recommendations were made by several reviewers

to include the dielectric constant as part of the data set.
While this suggestion had not previously been considered, it
could potentially add considerable value to the data set,
such as in regions were the soil dielectric constant may be
affected by high concentrations of salts, calcium, or other
compounds. Efforts will be made to include this value-
added data product.
[50] Examples of the global retrieval products from both

historical and current sensors are presented and appear

consistent with each other and with known global climato-
logical zones. Additional data validation studies are also
presented and evaluated together with observational soil
moisture data sets. Comparisons between satellite and
ground data appear quite good, considering the considerable
differences in spatial coverage and the vertical sampling
characteristics between the two data sets.
[51] Although a number of satellite-based soil moisture

data products have been developed in recent years, most are
limited in their spatial and temporal coverage or limited to
only the AMSR-E period. The new data set is a global
product, and is consistent in its retrieval approach for the
entire period of data record. It must be remembered that the
data retrievals are made from different sensors with some-
what different radiometric characteristics. This results in
differences in thermal sensing depth, spatial resolution,
acquisition times, and possibly other characteristics as well.
While these data should prove useful for many types of
environmental monitoring studies, users are encouraged
exercise care in their interpretation, and especially in forming
conclusions derived from long-term observational studies.

Figure 11. Six-day average time series of Special Sensor Microwave Imager 19.3-GHz surface
moisture retrievals and corresponding ground data in southern Illinois for the period 2001–2004.

Figure 12. Time series of average daily Aqua Advanced Microwave Scanning Radiometer for EOS
6.9-GHz surface moisture retrievals and corresponding ground data for test site in western Oklahoma
for 2003.
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