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[1] Quality of aerosol retrievals and atmospheric correction over land depends strongly on
accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for
AVHRR and MODIS use the latest sensor measurements of spectral reflectance and
brightness temperature and perform processing at the pixel level. The algorithms are
threshold-based and empirically tuned. They do not explicitly address the classical
problem of cloud search, wherein the baseline clear-skies scene is defined for comparison.
Here we report on a new land CM algorithm, which explicitly builds and maintains a
reference clear-skies image of the surface (refcm) using a time series of MODIS
measurements. The new algorithm, developed as part of the multiangle implementation of
atmospheric correction (MAIAC) algorithm for MODIS, relies on the fact that clear-skies
images of the same surface area have a common textural pattern, defined by the
surface topography, boundaries of rivers and lakes, distribution of soils and vegetation,
etc. This pattern changes slowly given the daily rate of global Earth observations, whereas
clouds introduce high-frequency random disturbances. Under clear skies, consecutive
gridded images of the same surface area have a high covariance, whereas in presence of
clouds covariance is usually low. This idea is central to initialization of refcm, which is
used to derive cloud mask in combination with spectral and brightness temperature
tests. The refcm is continuously updated with the latest clear-skies MODIS measurements,
thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an
internal dynamic land–water–snow classification coupled with a surface change mask.
An initial comparison shows that the new algorithm offers the potential to perform better
than the MODIS MOD35 cloud mask in situations where the land surface is changing
rapidly and over Earth regions covered by snow and ice.
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1. Introduction

[2] Cloud mask (CM) is a primary science algorithm that
precedes detailed analysis of cloud, aerosol and land sur-
face/ocean parameters from global observing space-borne
sensors. Accuracy of cloud detection has a significant
impact on aerosol retrievals and atmospheric correction.
At the global scale, undetected clouds introduce a positive
bias in aerosol concentration and increase land albedo,
whereas regional and seasonal biases correlated with cloud-
iness affect spatial distribution and temporal changes of
these parameters. Given the strong interdependence between
human induced land changes and aerosols and clouds,
accurate cloud identification has a growing importance in
our understanding of the Earth system and the role of

anthropogenic factors in the modern climate and its
changes.
[3] The heritage cloud mask algorithms for the low-

orbiting sensors, including the AVHRR CLAVR [McClain,
1993] and MODIS algorithm [Ackerman et al., 1998, 2006],
use the latest sensor measurements of spectral reflectance
and brightness temperature and perform processing at the
pixel level. These algorithms utilize a generic land type
classification but lack a priori knowledge about specific
surface reflectance and have to deal with large uncertainties
caused by wide natural variability of both land surface and
clouds. Even identification of clear pixels in cloud-free
conditions is challenging when measurements do not exhibit
explicit spectral signatures of the surface, such as dense
vegetation or deep water. Due to tremendous variability of
clouds, their detection has always been problematic over
brighter surfaces, especially snow. Because of similarities in
spectral reflectances between snow and snow/ice clouds,
and temperature inversions frequent in the low troposphere
in wintertime, no particular set of spectral reflectance and
brightness temperature tests may guarantee success over
snow and ice.
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[4] On the other hand, contemporary polar-orbiting global
observation imagers, such as AVHRR, MODIS, or future
VIIRS, provide or will provide a daily global view of the
Earth at the equator with multiple observations per day in
midlatitude and polar regions. This opens up possibilities to
add temporal and spatial dimensions into the cloud mask
processing. For example, with a high frequency of obser-
vation, the land surface can be considered as a static or
slowly changing background contrary to ephemeral clouds,
which offers a reliable way of developing the ‘‘comparison
target’’ for the CM algorithm. The modern memory and
processing power of computers allow deriving and storing a
sufficient volume of ancillary information about every
surface pixel in order to optimize performance of cloud
masking globally. An early example of such an approach is
the ISCCP CM algorithm [Rossow and Garder, 1993]
developed for geostationary platforms. It builds the clear-
skies composite map from the previous measurements and
infers CM for every pixel by comparing a current measure-
ment with the clear-skies reference value. The uncertainty of
the reference value, caused by the natural variability and
sensor noise, is directly calculated from the measurements.
[5] We present a next step in the evolution of this idea - a

new CM algorithm working with the time series of MODIS
measurements and developed as a part of the multiangle
implementation of atmospheric correction (MAIAC) algo-
rithm [Lyapustin and Wang, 2007]. It uses covariance
analysis to build reference clear skies images (refcm) and
to accumulate a certain level of knowledge about the surface
and its variability, thus constructing rather comprehensive
comparison targets for cloud masking. The new algorithm
has an internal surface classifier, producing a dynamic
land–water–snow (LWS) mask, and a surface change mask.
These are an integral part of MAIAC guiding both cloud
masking and further aerosol-surface reflectance retrievals
when the surface changes rapidly as a result of fires, floods
or snow fall/ablation. The cloud mask generated by the CM
algorithm is updated during atmospheric correction, which
makes it a synergistic component of MAIAC. The atmo-
spheric correction uses a time series of MODIS measure-
ments, acquired at different angles, to retrieve a surface
bidirectional reflectance factor (BRF). It requires consistency
between the latest retrieved BRF and the previous solution
unless land surface change has been detected. This complex
approach increases the overall quality of cloud mask.
[6] The CM algorithm described in this paper was devel-

oped specifically for the purpose of atmospheric correction
over land. Its goal is to identify clear conditions when
measurements remain useful for surface retrievals, and
cloudy conditions when no aerosol retrieval and atmospheric
correction can be applied. In this regard, it differs from
traditional cloud masks. For example, spatially homoge-
neous thin cirrus clouds are not masked out if the surface
spatial variability is detectable from space and agrees with
the known spatial pattern of refcm. The MAIAC CM
produces only an integral cloud mask with values of
CM_CLEAR for clear conditions with the mentioned caveat,
and cloudy conditions (CM_POSSIBLY_CLOUD or
CM_CLOUD), and it does not keep values of separate tests
which could be useful for cloud classification. The new
algorithm is not applicable for the global ocean and large

spatially homogeneous inland water bodies with size
exceeding �25 km.
[7] Utilizing the time series in operational processing of

remote sensing data is a novel concept although prototypes
have been in existence, such as the MODIS BRF/albedo
algorithm based on accumulation of 16-day time series of
gridded MODIS surface reflectance data [Schaaf et al.,
2002]. In the MAIAC algorithm, use of the time series of
MODIS data is key to all major components of processing,
including cloud mask, joint aerosol-surface retrievals, and
atmospheric correction. A brief technical background on
implementation of the time series processing is given in
section 2.
[8] Section 3 describes the algorithm constructing the

reference clear-skies image (refcm). Section 4 and Appendix B
present overall decision logic in cloud masking and pro-
vides the necessary technical detail. A dynamic surface
classification algorithm is discussed in Appendix A. Exam-
ples of the MAIAC cloud mask for 50 � 50 km2 subsets of
MODIS TERRA data for different global locations are
given in section 5. This section also shows several examples
of a large-scale comparison of MAIAC CM with the cloud
mask of the operational MODIS algorithm (MOD35). It
should be mentioned that this paper describes the results of
theMAIAC CM algorithm alone, not enhanced by additional
filtering and cloud shadow detection of the atmospheric
correction algorithm, which will be described separately.
The paper concludes with a summary.

2. Implementation of a Time Series Processing

[9] In order to arrange time series processing, MAIAC
first grids MODIS level 1B (L1B) calibrated and geolocated
data to a regular 1 km grid. We use the MODIS land
gridding algorithm [Wolfe et al., 1998] with minor mod-
ifications that allow it to better preserve the anisotropy of
signals in the gridded data when measured reflectance is
high, for example over snow, thick clouds or water with
glint. Next, MAIAC splits gridded data into 600 km Tiles
representing fixed geographical regions of the world, and
places the new Tile in the processing Queue. The Queue,
designed for a ‘‘sliding window’’ algorithm, holds up to
16 days of successive gridded measurements. The current
size of a Tile (600 km) is selected to fit the operational
memory of our workstation. As a reminder, MODIS oper-
ational processing uses 1000 km Tiles.
[10] The MAIAC processing uses both individual grid

cells, interchangeably called pixels here and fixed-size
(25 � 25 km2) areas, called blocks. In order to organize
such processing, we developed a framework of C++ classes
and structures (algorithm-specific containers) to store Tiles
of MODIS data, implement the sliding window algorithm,
and dynamically update the Queue. The class functions are
designed to easily handle processing in the various time-
space scales, for example at the pixel-versus-block level,
and for a single (last) day of measurements versus all
available days in the Queue, or for a subset of days passing
certain filters. The data storage in the Queue is efficiently
organized using pointers, which avoids physically moving
the previous data in memory when the new data arrive.
[11] The structure of the Queue is shown schematically in

Figure 1. For every day of observations, MODIS measure-
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ments are stored as Layers for reflective bands 1–7 and
thermal band 31. Besides storing gridded MODIS data
(Tiles), the Queue has a dedicated memory (Q-memory)
which accumulates ancillary information about every block
of the surface in the Refcm data structure. This structure
holds the reference clear-skies image refcm and statistical
parameters of the band 1 reflectance and brightness temper-
ature contrast (for detail, see section 3.1, item 4). The Refcm
structure is updated each time the latest measurements for a
given block are classified as cloud-free. The Q-memory
stores the latest results of the dynamic land–water–snow
classification (mask_LWS), and a surface change mask
(mask_Change). It also keeps certain information for the
other MAIAC algorithms related to the history of previous
retrievals, for example parameters of the surface BRF model
and albedo along with the date of the last retrieval (update
day). If the Q-memory was not updated for a certain period of
time (currently 45 days) because of persistent cloudiness, it is
cleared and reinitialized.

3. Building Reference Clear Skies Image

[12] The clear-skies images of a particular surface area
have a common textural pattern, defined by the surface

topography, boundaries of rivers and lakes, distribution of
soils and vegetation etc. This pattern changes slowly com-
pared with the daily rate of global Earth observations.
Clouds randomly change this pattern, which can be detected
by covariance analysis. The covariance is a metric showing
how well the two images X and Y correlate over an area of
N � N pixels,

cov ¼ 1

N2

XN

i;j¼1

xij � �x
� �

yij � �y
� �

sxsy

; s2
x ¼

1

N2

XN

i;j¼1

xij � �x
� �2

:

A high covariance of two images usually implies cloud-free
conditions in both images, whereas low covariance usually
indicates presence of clouds at least in one of the images. A
rapid surface change or significant variation of aerosol
density in the area may also reduce covariance. Because
covariance removes the average component of the signals,
this metric is equally successful over the dark and bright
surfaces and in both clear and hazy conditions if the surface
spatial variability is still detectable from space.
[13] The core of the MAIAC CM algorithm is initializa-

tion and regular update of the reference clear-skies image
for every block. The refcm is initially built from a pair of
images for which covariance is high, and caution is exer-
cised to exclude correlated cloudy fields (see section 3.1,
item 7). The algorithm calculates a block-level covariance
between the new Tile and the previous Tiles, moving
backward in the Queue until either the ‘‘head’’ of Queue
is reached, in which case initialization fails and the algo-
rithm would wait for the new data to continue, or clear
conditions are found. The latter corresponds to high covari-
ance (cov � 0.68) and low brightness temperature contrast
in the block for both days, DBT = BTmax � BTmin< D1.
The initial value of thresholdD1 is currently defined asD1 =
7 K for pure water blocks, and D1 = 25 + dT(h) K for pure
land or mixed land–water, land–snow, or land–water–
snow blocks. Factor dT(h) accounts for the surface height
variations in the block, and is defined for an average lapse
rate, dT(h) = 0.0045(hmax � hmin), where h (km) is surface
height over the sea level. Once the image refcm and the data
structure Refcm are initialized, the algorithm begins to use
the block-specific value of the brightness temperature con-
trast Refcm.DBT.
[14] When snow is detected, the high-covariance thresh-

old is slightly reduced from 0.68 to 0.65 in order to
accommodate for a rapid change of snow cover at midlat-
itudes, where snow accumulation is usually low and day-to-
day variations of reflectance during wintertime can be
enormous.
[15] After initialization, the algorithm uses the refcm to

compute covariance with the latest measurements. Once
clear conditions are found, refcm and structure Refcm are
updated. With this dynamic update, the refcm adapts to the
gradual landcover changes related to the seasonal cycle of
vegetation. The rapid surface change events (e.g.. snowfall/
ablation) are handled through repetitive reinitialization
which is performed each time when covariance of the latest
Tile with refcm is found to be low (see section 4).
[16] The MAIAC CM algorithm uses seven 500 m reso-

lution MODIS bands B1–B7 and a 1-km thermal band B31

Figure 1. Structure of Queue for MAIAC CM algorithm.
TheQueue, designed for the slidingwindow algorithm, stores
up to 16 days of gridded MODIS observations (600-km tile,
1-km grid cell). The CM algorithm uses MODIS bands 1–7
and band 31, which are stored as layers (double-indexed
arrays) shown in the top left corner. A dedicated Q-memory
is allocated to store the ancillary information for CM
algorithm in Refcm structure, including a reference clear-
skies image (refcm) and a set of statistical parameters for
each surface block, such as maximal reflectance and
standard deviation in band 1, and a brightness temperature
contrast. This information is updated with latest measure-
ments (day L) once given block is found cloud-free. The
Q-memory also stores results of the dynamic land–water–
snow classification and a surface change mask.
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(Table 1). As mentioned earlier, data are initially reprojected
and gridded to a 1-km grid.
[17] (1) The covariance analysis is currently performed

for MODIS band B1 (0.645 mm). We have extensively
studied the use of B6 (1.629 mm) and B5 (1.242 mm). B6
was initially our band of choice because it has low molec-
ular absorption and aerosol extinction, as well as high land
surface variability and spatial contrasts. We have conducted
an independent covariance analysis for 1 year of MODIS
TERRAdata using 50� 50 km2 areas around 156AERONET
[Holben et al., 1998] locations globally. From considered
MODIS bands B2 (0.856 mm), B5, B6 and B7 (2.113 mm),
band B6 provided about 10% more high-covariance cases.
On the other hand, this band has not been working properly
on MODIS AQUA, and it has developed occasional prob-
lems since 2006 on MODIS TERRA. We have also found
that bands B5 and B6 often cannot detect significant spatial
aerosol variability or variable semitransparent clouds. Spa-
tial uniformity of aerosols within the block area is one of the
major requirements of MAIAC inversion method, and B1
was found to provide better overall performance.
[18] (2) The size of a block is currently selected as 25 �

25 pixels (km2) for two reasons. First, this size is large
enough to capture a variety of spatial variability scales
(geologic, topographic, ecologic etc.) required for covari-
ance analysis. Second, it is sufficiently large to capture
surface variability at the edge of scan where the MODIS
pixel size grows to �2 � 4 km2 for 1 km2 nadir pixels. On
the other hand, the success rate of the covariance algorithm
to select clear blocks in conditions of broken cloudiness is
higher for smaller blocks. The MISR CM algorithm [Diner
et al., 1999], which extensively uses covariance analysis,
works with the block size of 17.6 km. We plan to evaluate
the global performance of cloud masks using block sizes
from 15–25 km and select the optimum for operational
application.
[19] (3) In order to account for the effects related to scan

angle variation, e.g., pixel size growth, surface BRF effect
or reduction of contrast at higher view zenith angles (VZA),
two reference clear-skies images are maintained by the
algorithm, refcm1 for VZA � 0–45� and refcm2 for VZA =
45–60�.
[20] (4) The clear-skies image is stored in the Q-memory

in the Refcm structure, which also stores the maximal value
(Refcm.r1max) and the variance (Refcm.s1) of reflectance in
band 1 as well as the brightness temperature contrast

(Refcm.DBT = BTmax � BTmin) for each block. Analysis
of MODIS data shows that thermal contrast (DBT) is a
rather stable metric of a given land area in clear conditions.
For the pure land blocks, containing no water or snow
pixels, the thermal contrast is usually low (1–6 K) for flat
terrain at MODIS 1 km resolution. It may increase signifi-
cantly (10–20 K) when the block is a mixture of land, water
or snow pixels. In partially cloudy conditions the contrast
increases because BTmin is usually lower over clouds.
[21] (5) The algorithm keeps a two-level cloud mask, the

standard mask at the grid (1 km) resolution (CM), and a
mask at the block resolution (CM_COV). The CM_COV
mask is used to efficiently control the algorithm flow for
refcm reinitialization, and during aerosol retrievals and
atmospheric correction.
[22] (6) The allowed values of the cloud mask are clear

(CM_CLEAR, CM_CLEAR_WATER, CM_CLEAR_
SNOW), indicating surface type as well, possibly cloudy
(CM_PCLOUD), and confidently cloudy (CM_CLOUD).
Two more values of cloud mask are CM_SHADOW for
pixels defined as cloud shadowed, and CM_GREY repre-
senting one dilated pixel on cloud edges, which is used for
aerosol retrievals and atmospheric correction. The covari-
ance component of our algorithm, which offers a direct way
to identify clear conditions, renders another commonly used
value of cloud mask (‘‘possibly clear’’) redundant.
[23] (7) A high covariance between two days alone does

not guarantee clear conditions. Clouds ‘‘leak’’ into refcm in
a number of different ways, especially over snow. From an
extensive analysis of MODIS data over the world, from the
Amazon region to Greenland, we designed a set of filters
that achieve a rather satisfactory selection of clear condi-
tions. Prior to calculating covariance between the last Tile
(L) and the previous Tiles (k = L � 1, . . . 1) stored in the
Queue, the following conditions are used to reject any of the
Tiles k for a given block:
[24] . High BT contrast, which usually indicates clouds:

DBTk > min(q.DBT + 15, 25) (K).
[25] . Small time difference between observations: tL �

tk < 200 min. This test was introduced to exclude correla-
tion of the same cloudy fields on stagnant days with very
low wind speeds.
[26] . The number of pixels which passed the snow test is

significantly different between observations L and k.
[27] When no snow is detected by the snow test in both

Tiles L and k and the calculated covariance is high, the
following two tests also serve as rejection conditions:
[28] . The difference of the block-average reflectances

should not be too high:

r1Lh i � r1kh ij j > 0:18:

This test filters infrequent cases when bright continuous
clouds correlate spatially with much darker clear scenes.
[29] . The maximal reflectance of the block should not

significantly exceed the Refcm value:

r1max;L > Refcm:r1max þ 0:1 OR r1max;k > Refcm:r1max þ 0:1:

If Refcm.r1max is not defined (Refcm not initialized), the
rejection condition states that both Tiles should not be
simultaneously bright (r1max,L,k > 0.2) and cold (BTmin,L,k <
277 K), which is indicative of clouds.

Table 1. MODIS Data Used in MAIAC CM Algorithma

MODIS
Band lC, mm

Nadir
Resolution,

km Primary Use

B1 0.645 0.5 Covariance analysis, refcm. LSC –
vegetation, water. Land restore
test. Thick bright cloud test.

B2 0.856 0.5 LSC – vegetation, water.
B3 0.466 0.5 Thick bright cloud test.
B4 0.554 0.5 LSC – snow.
B5 1.242 0.5 Shadow detection. Land restore test.

Thick bright cloud test.
B6 1.629 0.5 LSC – snow.
B7 2.113 0.5 LSC – vegetation, water, snow.
B31 11.030 1. BT analysis, refcm. LSC.
aLSC, land surface classification (land, water, and snow).
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[30] . Overcast conditions with snow/ice clouds produc-
ing high covariance are ubiquitous over the tropical regions
and at northern latitudes, especially in winter. These are
filtered by our snow classification algorithm (see Appendix A)
which requires high covariance between observations and a
significant number of pixels passing snow tests on both days
in order to mask a pixel as snow for the first time. To avoid
snow detection over the tropics during the rainy season
according to this logic, we use a common sense test that
relatively low temperatures should be established for some
period of time before snowfall. On the contrary, if the
surface was warm (BTmax > 288 K) during any of the
previous clear or partially clear days, when the ground
brightness temperature (BTG) can be established, then most
probably we have the case of spatially correlated snow/ice
clouds. The 16-day time series of measurements usually
provides an assessment of BTG for any given block from
previous days.
[31] . Finally, we are using a ‘‘sigma’’ test to filter Tiles

with significantly higher or lower spatial variability than
that of a clear-skies surface:

sL � Refcm:sj j > Ds OR sk � Refcm:sj jDs; where

Ds ¼ max Refcm:s; 0:015ð Þ:

This test is particularly useful over very homogeneous
snow-covered regions lacking terrain features, such as inner
regions of the Greenland ice sheet, where clouds usually
have significantly higher amplitude of spatial variation.
[32] According to testing performed globally, the devel-

oped set of filters ensures a reliable initialization or reiniti-
alization of reference clear-skies images with a low
percentage of errors. However, this set of filters will
continue to be revised as new exceptions are found.

4. CM Algorithm Flowcharts

[33] The central idea of the MAIAC CM algorithm is to
use the reference clear-skies images of the surface (refcm)
and covariance analysis to identify clear and cloudy blocks,
which are usually characterized by high and low covariance,
respectively. The low covariance of the latest Tile with
refcm may be caused by presence of clouds, dense inho-
mogeneous aerosols, or a rapid surface change on a scale
comparable to the block size. Even when covariance is high,
a few pixels of the block may still be cloudy. Following
covariance calculation, the algorithm looks for clouds at the
pixel level. For regular surfaces, not covered by snow, cloud
detection is based on a simple postulate that clouds are
usually colder and brighter than the surface. The reference
surface reflectance for every pixel is provided by the refcm
clear-skies image, whereas an estimate of the ground
brightness temperature BTG comes either from the clear
land pixels detected by spectral tests for a given block, or
from the cloud-free neighbor blocks, identified by high
covariance. For example, the bright–cold algorithm for
pixel (i,j) of the low-covariance block is formulated as
follows (see section B1 of Appendix):

IF BTij < BTG � 4
� �

AND r1ij > refcm:r1ij þ 0:05
� �

) CM PCLOUD:

The logic is shown in the general flowchart of the CM
algorithm (Figure 2). Here rectangles represent separate
functions, diamond shapes stand for the separate subrou-
tines (algorithms), and round-corner rectangles indicate
decision (branching) points. The thick arrows show the
points of exit. The letters in parentheses show spatial and
temporal domains of operations, for example at pixel (P)
and/or block (B) level, and using the data of the last Tile
(LT) only or using the full time series of the Queue (Q).
[34] (1) As a first step, Spectral tests are performed for

every pixel of the last Tile to detect clear vegetated, water,
and possibly snow pixels as described in Appendix A.
These tests are used to initialize and/or update pixel-level
surface classifications and change masks (mask_LWS,
mask_Change). The detected clear vegetated and water
pixels are used to calculate brightness temperature of the
ground (BTG) and of the water (BTW) for every block, which
are required in further analysis.
[35] (2) Next, a Cold/Thick cloud test is performed for

each pixel of the last Tile. The Cold test is designed to find
clouds which are rather cold as compared to either the BTG

if the latter is available, or to the maximal brightness
temperature BTmax found among a given block and its four
closest neighbors. This test is formulated as follows:

r1 > 0:15 AND BT < BT0 �D;) CM CLOUD:

where BT0 = BTG, D = 15 K if BTG is defined, or BT0 =
BTmax, D = 20 K if BTG is undefined. This is a relative test,
which does not use an absolute BT threshold, and thus can
be used with the full range of temperatures from the poles to
the equator. The threshold D is selected to be high enough
to avoid a possible error due to temperature inversions in the
boundary layer.
[36] The Thick cloud test is designed to detect spectrally

neutral bright and thick clouds. Usually, reflectance of such
clouds decreases slowly with wavelength within the spectral
range of 0.4–1.25 mm. The test is formulated as:

r1 > 0:2 AND r3 > r1 AND r1 > r5;) CM CLOUD

where MODIS bands 3 and 5 represent wavelengths of
0.47 mm and 1.24 mm.
[37] If the pixel passed the snow test, neither of the

described cloud tests is used, and the algorithm delays
decision until the covariance analysis, which may confirm
cloud-free conditions and snow on the ground.
[38] The CM_CLOUD value of the cloud mask generated

by these tests can be overwritten later if high covariance is
found.
[39] (3) The subsequent processing path depends on

whether refcm (Refcm structure) has been initialized. If
not, then the algorithm tries to initialize refcm as described
earlier in section 3 (module initRefcm). During initializa-
tion, the algorithm consecutively computes covariance of
the last measurements with each of the earlier images of the
Queue for a given block, until a high covariance is found
and clear conditions in both images are confirmed. If
initialization is unsuccessful because of clouds, the algo-
rithm runs a backup pixel-level algorithm cloudMask1.
[40] If refcm was initialized earlier, then the algorithm

calculates covariance between the new measurements and
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the refcm image, and performs further processing depending
on the value of covariance (modules CM_highCov and
CM_lowCov). If covariance is low, the algorithm takes an
intermediate step and attempts to reinitialize refcm with
latest measurements. This conservative strategy serves to
mitigate errors if partially or completely cloudy images
bypassed filters of initRefcm and were used to update refcm.
If this happened, the latest cloud-free image will not
correlate well with refcm. Reinitialization also helps to
update refcm when the surface reflectance changes rapidly.
[41] Following covariance calculations, the pixel-level

cloud mask is produced by modules CM_highCov and
CM_lowCov described in Appendix B. Although the logic
implemented in these modules is somewhat different, the
clouds in the absence of snow are detected similarly using
the bright–cold algorithm.

[42] Each of modules CM_highCov, CM_lowCov, and
cloudMask1 produces pixel-level cloud mask for the new
tile. Module initRefcm produces the cloud mask only if it
finds high covariance. The refcm image and block param-
eters of the Refcm structure are updated in the modules
initRefcm and CM_highCov. The surface classification
scheme and algorithms implemented in modules CM_high-
Cov and CM_lowCov are described in the Appendix.

5. Performance of MAIAC CM Algorithm

[43] Performance of the cloud mask algorithm has been
tested using 1 year (2003) of MODIS TERRA data collo-
cated with 156 AERONET locations worldwide. The data
were received in the swath format with resolution aggre-
gated to 1 km in all bands over an area of 50 � 50 km2.

Figure 2. The general flowchart of CM algorithm. After spectral tests and cold/thick cloud test, the
algorithm first tries to initialize the reference clear-skies image (refcm), and if fails, then it uses a backup
cloud mask algorithm (module cloudMask1). If refcm is available, the algorithm calculates covariance
between the latest image and refcm, and carries on further analysis depending on whether covariance is
high or low. In case of low covariance, the algorithm takes an intermediate step trying to reinitialize
refcm, which takes care of rapid surface changes, as well as of possible errors in refcm caused by
previously undetected clouds. In this diagram, rectangles represent separate functions, diamond shapes
stand for separate subroutines (algorithms), and round-corner rectangles indicate decision (branching)
points. The thick arrows show the points of exit from CM algorithm. The letters in parentheses indicate
spatial and temporal domains of operations, for example, at pixel (P) or/and block (B) level, and using the
data of the last tile only (LT) or using the full-time series of the Queue (Q). The pixel-level cloud mask is
produced by modules CM_highCov, CM_lowCov, cloudMask1. Module initRefcm produces cloud mask
only if initialization is successful. The Refcm structure is updated in modules initRefcm and CM_highCov.
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Before processing, we reprojected and gridded these data to
a 1-km grid using the nearest neighbor method.
[44] The analysis was conducted by a visual comparison

of the generated cloud mask against the true color MODIS
RGB image and, if required, the brightness temperature
image. Figure 3 gives an illustration of the algorithm
performance for the area centered at the NASA Goddard
Space Flight Center (Greenbelt, Maryland, USA) for differ-
ent seasons of the year. Each column contains 20 consec-
utive images. The covered periods are shown on the top.
They are not even because data were missing for some days
while on others the area could be observed twice from
different orbits. The reproducible spatial pattern of the
surface on cloud-free days, clearly visible in these image
sequences, is a key to the success of the developed algorithm.
[45] The first two columns of images show the initializa-

tion stage of the covariance algorithm. In this demonstra-
tion, module CloudMask1 was turned off. Blocks 2 and 3
with the largest contrast are initialized first, and block 4
with the lowest contrast is initialized last. The cloud-free
blocks are identified accurately by the covariance analysis,
and performance of algorithm is robust regardless of the
surface brightness. For example, the first three columns
show rather accurate mapping of clear conditions over
variable snow. Generally, the algorithm tends to overesti-
mate cloudiness during snowmelt when surface changes are
rapid and no reliable comparison target can be established
based on previous measurements. It achieves best perfor-
mance when the surface condition is stable, for example
over deserts and arid regions, in northern latitudes in
summer months or during winter with stable snow cover.
The last two columns of Figure 3 show a reliable detection
of different types of clouds in summer and autumn.
[46] To gain insight on the large-scale algorithm perfor-

mance, we used the 2004–2005 MODIS TERRA data for
northeastern USA, Southern Africa (Zambia), Amazon
region (Brazil), Arabian peninsula, and Greenland. The
testing was done for at least half a year of continuous data
in each case.
[47] Figure 4 shows a case of cloud detection over

receding snow for three winter days (36, 37, 42) of 2005
for the north–east USA. The area of the image is 600 �
600 km2. The two RGB images have a different normali-
zation, helping visual distinction between snow and clouds.
The MAIAC cloud mask is shown on the right, and the
MODIS Collection 5 (MOD35) reprojected and gridded
cloud mask is shown on the bottom. The conditions repre-
sent differing degrees of cloudiness over the land. It is
entirely clear on day 35. MAIAC CM algorithm gives an
accurate overall classification. Thin ice on Lake Erie is
partly misclassified as clouds. It is not as bright as snow in
the visible bands, and has a higher than snow reflectance in
the shortwave infrared (2.1 mm). The same holds true for the
block of land and some pixels in the transitional zone from
snow to land which are masked as clouds. As explained
earlier, the error is expected in these cases. On day 36,
MAIAC accurately detects a cloud stretching across Lake
Erie. There are two large cloud systems on day 42, in the top
left and left bottom parts of the image, captured well by the
algorithm. These images also show the strong retreat of the
snow line by day 42, and a high quality of snow mapping by
MAIAC. The MOD35 product accurately detects clouds, but

it also overestimates cloudiness over snow on all three days,
with the highest error on day 37.
[48] In certain cases, when the land signature is indistin-

guishable from clouds both at the block and pixel levels,
MAIAC algorithm masks the whole block as cloudy. This
creates ‘‘blockiness,’’ or mosaic effect in the CM image
seen in Figure 4. The blockiness propagates into the
downstream products using cloud mask as input, such as
aerosol optical thickness and surface reflectance. Generally,
these artifacts disappear in the higher level weekly or
monthly averaged products. However, consistent blockiness
over a particular region may bias the long-term statistics of
environmental parameters. So far, the subsets of MODIS
data used in the testing showed only a random blockiness
without consistent pattern. This issue will be studied further
in global tests of the algorithm.
[49] Figure 5 compares the cloud mask of the two

algorithms for the late spring of 2005 for the same region.
Over land, the accuracy is similar. Some difference exists
with regards to thin cirrus, or otherwise semitransparent
clouds. MAIAC CM does not explicitly try to mask these
clouds. Created for the purpose of aerosol retrievals and
atmospheric correction, the algorithm maximizes the vol-
ume of data available for the atmospheric correction. Our
study shows that achievable accuracy of surface reflectance
retrievals through thin cirrus is sufficiently high [Lyapustin
and Wang, 2007] but more investigation is necessary.
Another notable difference is cloud detection over the water.
One should bear in mind that the current algorithm has been
developed for the land applications. Cloud detection over
water at this stage is rudimentary, and presented examples
may display a number of artifacts.
[50] A large-scale comparison of cloud mask products is

shown in Figure 6 for a 1200 � 1200 km2 region of the
African Savannah (Zambia). This is a region of intense
biomass burning in the dry season. The MAIAC and
MOD35 cloud masks are generally comparable. MAIAC is
a little more sensitive, detecting more clouds. One stark
difference is the large number of ‘‘possibly clear’’ pixels in
MOD35 when the algorithm cannot declare clear conditions
with confidence. This category is not used inMAIAC, which
has a covariance criterion and ancillary refcm data to identify
clear conditions. This feature is particularly appealing to land
applications, sometimes significantly increasing the volume
of measurements, which may be confidently used in the
atmospheric correction and in further applied analysis.
[51] A final example of the cloud mask comparison for

the large (1800 � 1800 km2) bright desert area of the
Arabian Peninsula is shown in Figure 7 for days 145 and
207 of 2005. Here the MAIAC cloud mask is shown in the
middle of image and the MOD35 product is shown on the
bottom. Except for a few small differences, the products
agree quite well for day 145. On day 207, MOD35 over-
estimates cloudiness masking the dust storm areas as clouds.
[52] These examples show that overall the new algorithm

is demonstrating a high accuracy of cloud discrimination
over land.

6. Conclusions

[53] The cloud mask algorithm described here imple-
ments relatively simple and straightforward logic. Using
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Figure 3. Examples of performance ofMAIAC CM algorithm for 50 � 50 km2 MODIS TERRA subsets
for 2003, centered at GSFC, USA. Normalized gridded RGB images are shown on the left, cloud mask is
shown on the right. CM legend: blue and white, clear over land and snow, respectively; red, cloudy;
black, undefined (Refcm not initialized).
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covariance calculations, the algorithm has a reliable metric
to identify cloud-free conditions at the block level, and to
define the reference clear-skies image for every block of the
land surface. The image- (block-) based processing helps to
establish the ground brightness temperature. BTG and refcm
reflectance form a comparison target which is used for the
pixel-level cloud detection using a simple bright-cold algo-
rithm. A new approach has been developed for snow
detection and cloud discrimination over snow.

[54] Because of the covariance component, the new
algorithm works successfully over both dark and bright
surfaces, including deserts and snow, as well as in both clear
and hazy conditions. With dynamic updates of the reference
clear skies image, the CM algorithm smoothly adjusts to the
seasonal surface variations. Rapid surface change events
(fire burns, snow fall, etc.) are accommodated through
repetitive reinitialization of refcm. Keeping memory of the
clear-skies image and of the essential statistical properties of

Figure 4. Example of MAIAC (third row) and MOD35 (bottom) cloud mask over snow from MODIS
TERRA for days 36, 37, and 42 of 2005. The image shows one tile (600 � 600 km2) for the north–east
USA. The two RGB images have a different normalization helping visual distinction between snow and
clouds. Legend for MOD35 CM: blue, clear; green, possibly clear; yellow, possibly cloudy; red, cloudy;
black, undefined. Legend for MAIAC CM: blue, light blue, and white, clear (land, water, and snow,
respectively); yellow, possibly cloudy; red, cloudy.
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Figure 5. Example of MAIAC (center) and MOD35 (bottom) cloud mask from MODIS TERRA data
for days 138 (left) and 152 (right) of 2005. The image shows the same tile (north–east USA) as in Figure 4.

D16207 LYAPUSTIN ET AL.: MODIS CLOUD MASK BASED ON TIME SERIES

10 of 15

D16207



Figure 6. Example of MAIAC (center) and MOD35 (bottom) cloud mask at the beginning of dry season
for Zambia, Africa, from MODIS TERRA data for days 130 (left) and 141 (right) of 2005. The image
shows four tiles (1200 � 1200 km2).
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Figure 7. Example of MAIAC (top) and MOD35 (bottom) cloud mask for Arabian Peninsula from
MODIS TERRA data for days 145 (left) and 207 (right) of 2005. The image shows nine tiles (1800 �
1800 km2).
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reflectance and brightness temperature for every land sur-
face block strongly enhances the probability for correct
cloud detection in difficult cases. An internal dynamic
land–water–snow classification proves very helpful as it
permits adapting the logic of cloud detection as a function
of surface type.
[55] Comparison with the MODIS Collection 5 cloud

mask shows that MAIAC CM improves performance over
snow and deserts. The accuracy ofMAIAC CM and MOD35
over regular land surfaces is found to be similar. On the
other hand, the MOD35 product often leaves some doubt
for the land disciplines in a form of ‘‘possibly clear’’ pixels.
When the high quality of input data is required, as in the
MODIS BRDF/albedo algorithm, such pixels are often
discarded from processing thus noticeably reducing the
volume of data. MAIAC CM does not use the ‘‘possibly
clear’’ category because clear surface regions are identified
with covariance analysis.
[56] Changing variability of scenes as a function of view

zenith angle and size of the footprint is one of largest
sources of uncertainty in the time series cloud screening.
Although our gridding algorithm reduces the resolution of
MODIS 500 m bands to 1 km, it still cannot eliminate the
resultant noise. In this sense, data from a geostationary orbit
would provide better performance conditions.
[57] The MAIAC CM algorithm was developed and

optimized for practical needs of aerosol retrievals and
atmospheric correction over land. It requires the surface to
have some spatial variability, reproducible in the time series
of measurements, and it is not applicable over large water
bodies. The new algorithm does not mask ubiquitous thin
cirrus or other semitransparent clouds that are homogeneous
at a scale of 25 km or more, but corresponding MODIS
measurements remain useful for the land discipline process-
ing. On the other hand, because of covariance analysis and
enhancements from the atmospheric correction algorithm,
MAIAC CM is sensitive to the subpixel clouds and medium-
size semitransparent clouds (<25 km). Unlike conventional
CM algorithms, MAIAC requires an initialization time to
construct refcm and acquire necessary statistics of surface
reflectance and brightness temperature for each surface
block (25 � 25 km2) from cloud-free observations. Thus
it may take from 2–3 days to several weeks depending on
cloudiness for the algorithm to reach its optimal perfor-
mance. Once refcm is initialized, the measurements for the
initialization period can be reprocessed to produce a high-
quality cloud mask.
[58] TheMAIAC CM algorithm is still a work in progress.

For example, capability to discriminate thick (opaque)
aerosol plumes from clouds has not yet been developed.
The algorithm has not been tested over shallow waters,
which may display a relatively stable spatial pattern of
reflectance due to depth variation. A global analysis is
needed in order to fully optimize the spectral and brightness
temperature tests. We will continue analysis of the infor-
mation content of other MODIS channels to enhance Refcm
structure for better cloud discrimination in partly cloudy
conditions, especially over snow.
[59] The MAIAC CM algorithm offers the potential to

perform better than the MODIS MOD35 cloud mask in
situations where the land surface is changing rapidly, and
over Earth regions covered by snow and ice. Work has been

initiated on a global intercomparison of MAIAC and
MOD35 cloud mask in collaboration with the University
of Wisconsin.

Appendix A: Spectral Tests and Dynamic Surface
Classification

[60] The MAIAC algorithm maintains a dynamic land–
water–snow mask (mask_LWS) which guides the cloud
mask algorithm and controls the path and selection of the
surface BRF model during aerosol-surface reflectance
retrievals. It also helps processing algorithms to adjust to
surface changes, such as snow fall/ablation, flooding etc. It
has three stable values (MASK_LAND, MASK_WATER,
MASK_SNOW) and two transitional values used when
surface change is detected (MASK_TO_LAND, MASK_
TO_WATER). For example, value MASK_TO_LAND rep-
resents transition from snow or water to land. In this work,
the term ‘‘land’’ implies any land surface other than water or
snow. In order to handle surface change, the algorithm uses
a supporting mask indicating stability of state (mask_
Change) which has values of MASK_STABLE and
MASK_CHANGE. The vegetation and water classification
is performed at the pixel level using binary logic, which is
enforced by the BT analysis. Because the snow test does not
necessarily distinguish between the snow/ice clouds and the
snow, the snow detection uses a different logic described in
section A2.

A1. Detection of Vegetation and Water

[61] When the new Tile is received, two tests are used to
detect clear pixels and validate or change the status of mask
mask_LWS:
[62] 1. High NDVI test: NDVI = (r2 � r1)/(r2 + r1) > 0.6,

) CM_CLEAR.
[63] If the pixel passes this test, the value of cloud mask is

set to CM_CLEAR. If the previous value of land–water–
snow mask was MASK_LAND or MASK_TO_LAND,
then the value of mask is validated: mask_LWS = MASK_
LAND, mask_Change = MASK_STABLE. Otherwise,
change is detected: mask_LWS = MASK_TO_LAND,
mask_Change = MASK_CHANGE.
[64] This test finds heavily vegetated pixels of the land.

Sparsely vegetated regions, bare soil, rocks, sand, etc., are
classified as land during covariance analysis when the pixel
is cloud-free, covariance at the block level is high, and the
pixel was not classified as either water or snow.
[65] 2. Water test: r2 < 0.07 and r5 < 0.02 and r7 < 0.015

and NDVI � 0.2, ) CM_CLEAR_WATER.
[66] The water test is conducted only for the off-glint

geometries, which are defined according to a condition rglint <
0.02, where rglint is a Cox–Munk glint reflectance for the
wind-ruffled water surface calculated at wind speed of 7 m/s.
Theoretical reflectance is precalculated using the Nakajima
and Tanaka [1983] model with mutual shadowing of waves
and stored in a LUT. The algorithm can use a real time wind
speed, if it becomes known operationally from independent
sources.
[67] In a similar manner as above, the value MASK_

WATER is either validated with a new measurement or
change is detected if spectral tests find a signature of
vegetation or soil.
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[68] Different factors may lead to failure of the water test
for a given pixel: elevated aerosol loading, clouds, transition
to land (drying of shallow water, drainage), etc. For this
reason, additional processing is performed for the pixels
which were earlier classified as water (mask_LWS =
MASK_WATER) but did not pass the water test this time.
First, the land-restore test (r5/r1 > 1.2) checks the possible
transition to land. Next, the brightness temperature of water
for the block (BTW), evaluated from the detected water
pixels, is used either to confirm the clear water pixels,
according to criteria:

BT > BTW � 1K; AND r5 < rglint þ 0:03;

) CM CLEAR WATER;

or detect clouds if

BT < BTW � 1K; AND r5 > rglint;) CM CLOUD:

If BTW is unavailable, the brightness temperature is
compared to a fixed threshold:

BT > 272:5K; AND r5 < rglint þ 0:03;) CM CLEAR WATER:

Last, the algorithm tests pixels of medium brightness, which
may be the result of aerosols enhancing reflectance over the
water:

r1 < 0:12 AND r1� r2j j < 0:015;) CM CLEAR WATER:

A2. Detection of Snow

[69] Snow detection begins with the snow test:
[70] (3) Snow test: NDSI = (r4 � r6)/(r4 + r6) � 0.35 and

r1 > 0.15 and r7 < 0.12.This test is performed for every
pixel of the block if the maximal brightness temperature of
the block and its nearest neighbors does not exceed 293 K
(to avoid false snow detection in summer), and for the
pixels inside the block with BT < 283 K over land or BT <
275 K over water. The temperature thresholds are high
because snow-free patches of land surface can be very warm
in spring, while the snow amount still being significant to
warrant snow detection. The last condition (r7 < 0.12)
serves to filter some of the mixed-phase clouds which are
abundant and often have a higher reflectance at wavelength
of 2.1 mm. The snow, as seen in MODIS imagery, is usually
darker than the specified threshold (r7 � 0.03–0.09),
although fresh snow and some types of snow/ice, for
example on the high elevation slopes of Greenland, can
be as bright as r7 � 0.15–0.20. The band 7 threshold also
filters some pixels partially covered by snow. To classify
these pixels as snow, we have a different mechanism,
described later (Appendix B).
[71] Overall, snow detection is a difficult problem. First,

snow/ice clouds often pass the snow test so it alone cannot
guarantee reliable snow detection. Second, snow in the
midlatitudes during winter is often short-lived, which gives
rise to high variability of surface brightness in time and thus
requires changing the logic of refcm update and of the
overall use of the reference comparison target. Third,
partially snow-covered pixels are particularly difficult and
are often misclassified as cloud.

[72] To filter out clouds that pass the snow test, we
adopted a conservative approach whereby a pixel can be
masked as snow for the first time only during initialization
or reinitialization of refcm. The requirement of high covari-
ance and a carefully designed set of filters, described in
section 3.1 (item 7), is usually effective in separating clouds
from snow. For snow, we reduce the high covariance
threshold to 0.65 in order to accommodate the transient
nature of snow in midlatitudes. When the high-covariance
conditions are satisfied, the cloud mask for the earlier Tile k,
which had correlated with the last Tile, is reset to the value
CM_CLEAR_SNOW. In this sense, the cloud mask of any
given block of a Tile may change anytime while the Tile
remains in the Queue. This postprocessing modification
always increases the number of CM_CLEAR or
CM_CLEAR_SNOW pixels. Once the snow is recorded
at the Q-memory (in mask_LWS), the algorithm returns to
the binary pixel-level logic of snow confirmation which is
described in Appendix B.
[73] This conservative strategy, which requires two clear

days in the Queue, may delay detection of fresh snow up
until the high covariance with the later Tile is found, during
which time it will be masked as clouds. On the other hand, it
dramatically reduces misclassification of high clouds in
midlatitudes during the summer and in tropical regions
generally, although it cannot completely eliminate this error.
Despite being a conservative algorithm, our limited testing
indicates that it still finds significantly more clear snow
pixels than the MODIS cloud mask algorithm (MOD35)
which is known to overestimate cloudiness over snow (D.
Hall, NASA GSFC, personal communication of the first
author, 2008).

Appendix B

B1. Module CM_highCov

[74] This module is called when refcm is initialized and
covariance between refcm and new Tile for a given block is
high (cov > 0.68 or 0.65 for snow) indicating clear-skies
conditions although a few pixels may still be cloudy. If the
BT contrast is low, then all pixels of the block are masked as
CM_CLEAR, the ground BT is calculated, and refcm is
updated. If it exceeds a threshold of q.DBT + 3, the algorithm
masks possibly cloudy pixels that exceed the refcm reflec-
tance and at the same time are colder than the ground
brightness temperature with an offset:

IF BTij < BTG � 4
� �

AND r1ij > refcm:r1ij þ 0:05þ dif
� �

) CM PCLOUD:

Dif is the difference between the average reflectance of the
last Tile and of refcm over the common area of a given
block. It is designed to remove bias caused by differences in
the view geometry or aerosol concentration. The remaining
pixels are masked as CM_CLEAR. If BTG remains
undefined after spectral tests, it is first evaluated as a
minimal value for 90% of the warmest pixels of the block
from a histogram analysis.
[75] In the presence of snow, amounts of which may

change rapidly, comparison of reflectance is not helpful, and
the logic changes. Our algorithm calculates the minimal
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brightness temperature of the block for 90% of the warmest
pixels, which are assumed to be cloud-free, BTmin =
min{BT(0.9)} � 2, and masks pixels which are colder than
BTmin as CM_PCLOUD. The bright pixels of intermediate
temperature between BTmin and 280 K are masked as
CM_CLEAR_SNOW, and the value of the mask_LWS is
set to MASK_SNOW. Those pixels darker than 0.2 are
masked as clear:

IF r1ij > 0:2

f IF BTij < BTmin OR BTij > 280 ) CM PCLOUD:

ELSE ) CM CLEAR SNOW;

mask LWSij ¼ MASK SNOW:

g
ELSE ) CM CLEAR:

Because the covariance is high, and a given block for both
days is known from the snow test to contain snow, the
described procedure is a relatively safe way to introduce
new snow pixels which did not pass snow test, and were not
detected as snow before. As mentioned earlier, the snow test
often misses partially covered snow pixels, which have
relatively high reflectance in band 6 and are not so bright in
band 4. It also misses some forms of snow/ice with high
reflectance in band 7 (2.1 mm). Because covariance with the
refcm image is high, these newly introduced snow pixels
have a low error of false detection.

B2. Module CM_lowCov

[76] This module is called when covariance is low (cov �
0.68) indicating that the block may be cloudy or partly clear.
It starts with evaluation of BTG for a given block if it is
undefined. Further processing depends on whether snow
was previously detected (in mask_LWS). If not, then the
algorithm uses the bright-cold algorithm to mask clouds:

IF BTij < BTG � 4
� �

AND r1ij > refcm:r1ij þ 0:05
� �

) CM PCLOUD:

In this case, the average brightness of the scene is not
subtracted because it can be biased by clouds.
[77] When there is snow on the ground, the logic is

reversed as compared to the case of high covariance. This
algorithm does not add new snow: the pixel can be declared
as CM_CLEAR_SNOW only if it satisfies three conditions:
(1) it passes the snow test, (2) snow was detected previously

(mask_LWS = MASK_SNOW), and (3) its reflectance is
close to the refcm value, |r1ij � refcm.r1ij| � 0.05. The last
conservative requirement, which assumes rather stable snow
conditions, is essential because otherwise a significant
number of snow/ice clouds end up detected as snow.
[78] If any of the three conditions is not satisfied, and the

pixels’ band 1 reflectance exceeds 0.12, it is masked as
CM_CLOUD. For this reason, darker surfaces partially
covered by snow are often masked as cloud. This is a
common misclassification error typical of all snow detection
algorithms.
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