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1. Introduction

[1] In a recent paper, Schwartz [2007] (hereinafter
referred to as S07) estimated climate sensitivity using
globally averaged observed time series. He estimated the
planet’s effective heat capacity and ‘‘pertinent time constant’’
from ocean heat content and observed global temperature
records, assuming that the latter can be modeled as a first-
order Markov (AR(1)) process after removing the trend due
to climate forcing by subtracting a linear trend.
[2] As S07 correctly states, the autocorrelation of an

AR(1) process at lag Dt follows the simple relation

r Dtð Þ ¼ e�Dt=t; ð1Þ

where t is the e-folding time constant. This makes it
possible in principle to estimate t from the sample
autocorrelation estimate r̂ of a finite time series:

t̂ ¼ �Dt= ln r̂ Dtð Þð Þ: ð2Þ

[3] This is the crux of S07’s method for estimating
the time constant of the global climate system from the
125-year record of global annually averaged temperature
anomaly. The result for GISTEMP annual data is shown in
S07’s Figure 5g, for monthly data in S07’s Figure 7; he
concludes that the relevant time constant for global climate
is 5 ± 1 years. It is important to recognize that S07’s
analysis does not depend on detailed assumptions
concerning the Earth’s climate system, only requiring
that it obeys simple zero-order energy balance principles.
Therefore, if his analysis method is valid, it should apply
equally to all models which obey these same principles. In
this comment, we test the performance of his analysis
technique on a range of complex (section 3) and simple

(section 4) models. First, in section 2, we explore the
plausibility of the AR(1) approximation.

2. Autocorrelation of an AR(1) Process

[4] Even if the stochastic part of the temperature time
series can be approximated by an autoregressive process, it
may still exhibit numerous time scales. The climate system
is likely to show such behavior, as it has multiple compo-
nents with physically distinct characteristics: the atmo-
sphere, land, upper ocean, deep ocean, and cryosphere. In
fact the principal physical mechanism which leads us to
believe that not all committed greenhouse gas warming has
yet been experienced, and a substantial amount remains ‘‘in
the pipeline,’’ is the warming of the deep ocean [Hansen et
al., 2005; Wigley, 2005].
[5] Such a multicomponent physical system cannot be

expected to act with a single time scale. Even if the system
evolves according to an AR(1) process, it must be a vector
AR(1) process with many distinct time scales. The observed
surface temperature will be some function of the vector
describing the entire system, and its time series is likely to
exhibit all these time scales given a long enough set of data.
Hence, basic physical considerations argue strongly against
the notion that the global average surface temperature has a
single characteristic time scale, or time constant.
[6] Furthermore, much of the low-frequency variability in

temperature time series is very likely not stochastic, but
represents a response to radiative forcing changes that are
external to the climate system (both natural and anthropo-
genic). Under the simplifying assumption that the forced
and internal variability ‘‘noise’’ components are linearly
additive, the latter component alone might be considered, as
a null hypothesis, to conform approximately to an AR(1)
process [Gilman et al., 1963; Hasselmann, 1976] in the
asymptotic limit where complicating processes such as
advective and diffusive exchanges of heat with the deep
ocean are ignored [e.g., Wigley and Raper, 1990]. However
the increase in forcing that has taken place over the 20th
century is both strong and not linear. Therefore it seems
unreasonable to expect that an AR(1) process should
adequately describe observed temperature variations, even
after detrending [Mann and Lees, 1996].
[7] For an AR(1) process, the ratioDt/ln(r̂(Dt)) should be

roughly constant. The results in S07, both for annual and
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monthly data sets, show a distinctly increasing ratio as a
function of lag; the estimated time scale is, for low lag,
roughly proportional to the lag. This casts severe doubt on
the applicability of equation (1), which is the basis for the
estimate of the time constant. The monthly data result
(Figure 7 in S07) is in clear contradiction to the AR(1)
model.
[8] S07 tests for the appropriateness of the AR(1) model

by regressing the detrended GISTEMP annual surface air
temperature data Ts against its lag-1 value, then examining
the residuals. The conclusion is (S07, paragraph 24)
‘‘Satisfaction of the assumption of a first-order Markov
process was assessed by examination of the residuals of the
lag-1 regression, which were found to exhibit no further
significant autocorrelation.’’ However, it appears this test
was applied only to the annual time series, which consists of
only 125 data points. For such a short time series the
detection threshold is about ’±0.2, which makes the null
hypothesis rather hard to refute conclusively, but there is
still strong evidence that a higher-order model is more
appropriate [e.g., Smith et al., 2003].
[9] Nevertheless, treating the system as an energy balance

system with a single time constant may still be a reasonable
approximation under some circumstances, so we do not
reject the approach in S07 out of hand. Instead, we apply the
method to some numerical experiments where the correct
answer is known, in order to investigate its accuracy. First
we use a climate model which simulates the multiple time
scales of fast atmospheric and slower oceanic processes, and
then we test the method on the simple energy balance model
from which it was derived by S07. Finally, we provide a
simple theoretical analysis to explain a significant source of
bias and uncertainty which is intrinsic to the method.

3. Application to Climate Model Results

[10] We have applied the method of S07 to the output of
5 simulations of the GISS-ER GCM [Hansen et al., 2007]
run with observed forcing for the same time period, 1880
to 2003. All the estimated parameters were derived as
described by S07, using the total heat content anomaly
(derived from the radiative imbalance at the top of the
atmosphere) and the global mean surface temperature
anomaly; the results are presented in Table 1.
[11] The time constant was estimated by computing

�Dt/ln(r̂(Dt)) up to the last nonnegative r̂(Dt) value, for
the linearly detrended Ts time series. In order to compute
estimates that are the most favorable possible for the S07
method, we took the highest estimated t̂ of all these values.

We tested both methods given in S07 for estimating the
effective heat capacity [Wigley and Raper, 1990], first
(columns C1 and S1) by regressing the heat content
anomaly (H) and temperature anomaly (Ts) from 1956 to
2002 (bisector of the slope of regressing H against Ts and
the inverse of the slope of the regression of Ts against H),
and second (columns C2 and S2) by taking the ratio of the
estimates of dH/dt and dTs/dt.
[12] The average of all these sensitivity estimates for the

model runs is merely 0.175 K/(W/m2), and none of the
estimates exceeds 0.324 K/(W/m2). These values
imply warmings of 0.7 C and 1.3 C, respectively, for a
CO2-doubling experiment (for the GISS-ER model, a
doubling of CO2 results in a forcing of around 4 W/m2).
Yet this model is known to exhibit a true equilibrium
climate sensitivity of 2.7 C under doubled CO2 conditions.
[13] Although the effective heat capacities of these

simulations seem rather high compared to the S07 observa-
tionally based estimate, the estimated time constants appear
to be the greater problem with this analysis. A comparison
of the autocorrelation estimates for the five runs of GISS-ER,
and the GISTEMP time series data, is shown in Figure 1. It
is apparent from Figure 1 (bottom) that taking the highest
single value for the estimated time scale is, for some of the
model runs, unrepresentative of the average behavior. Yet
even with this built-in high bias, while the GISTEMP data
yield the same very short time scale estimated by S07
(slightly different here since we used data through 2006),
the model runs show even shorter and highly variable
estimates of time scale. However, it is known that the model
takes a number of decades to equilibrate after a change in
external forcing, and that its sensitivity is many times
greater than these estimates obtained via the S07 method.
Hence this time scale analysis method does not appear to
correctly diagnose the properties of the model.

4. Application to an Energy Balance Model

[14] S07 invokes the ansatz of a zero-dimensional energy
balance model to justify the analysis. We show in Figure 2
(top) the results from a large ensemble of integrations of the
first-order energy balance model

dH=dt ¼ F � lT þ � ð3Þ

where H = CT is the heat anomaly, C is the effective heat
capacity, T is the surface temperature anomaly, F is the
external forcing anomaly, l is the radiative feedback

Table 1. Estimated Climate Sensitivity From Five Realizations of Model Output for the GISS ER AOGCM for

a Simulation of 20th Century Annual Global Mean Temperature Change Using the Analysis Method of Schwartz

[2007]a

Run C1 (W a m�2 K�1) C2 (W a m�2 K�1) t̂ (years) S1 (K m2 W�1 [C]) S2 (K m2 W�1 [C])

1 25.7 30.2 2.5 0.096 [0.4] 0.082 [0.3]
2 21.4 25.3 2.9 0.135 [0.5] 0.115 [0.5]
3 24.1 24.3 2.3 0.094 [0.4] 0.093 [0.4]
4 24.9 27.6 6.9 0.275 [1.1] 0.248 [1.0]
5 23.4 26.7 7.6 0.324 [1.3] 0.284 [1.1]
Average 23.9 26.8 4.41 0.185 [0.7] 0.164 [0.7]

aS1 = tau/C1, S2 = tau/C2, and values in square brackets are equivalent warmings for a doubling of CO2.
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(inverse of the sensitivity) and � is white noise weather
forcing.
[15] The effective heat capacity was set at 19Wam�2 K�1,

and three values of t were used, 5, 15 and 30 years (giving
sensitivities of 1, 3 and 6 C for 3.7 W m�2 of forcing,
equivalent to a doubling of CO2). External forcing
(comprising volcanic aerosols, GHGs, solar variability,
and anthropogenic aerosols) was taken from [Crowley,
2000] with noise sampled from the Gaussian distribution
N(0, 1.5) (which allows for a ‘‘very unlikely’’ probability of
1–5% that natural variability could exceed the amplitude of
forced variations). After an initial spin-up, the final
125 years (1874–1998) were analyzed. The method used
by S07, of calculating �Dt/ln(r̂(Dt)) from the detrended
time series, can be seen to generate highly inaccurate and
strongly biased estimates. Each histogram is based on
1000 estimated values, each of which is the average of
the diagnosed time scales for 5–15 year lags in an integra-
tion where all these values were defined. The results are
insensitive both to these choices, and to the amount of noise
added. So even in this case, where the underlying system
does have a unique and well-defined relaxation time scale,
this method of analysis fails to diagnose it, and, contrary to
the confident estimate in S07 of t = 5 ± 1, a time scale as
high as 30 years (corresponding to a sensitivity of 6C for a
doubling of CO2) or even greater is compatible with the S07
analysis of global surface temperature. In this simple energy
balance model, the effective heat capacity is precisely

determined by the ratio of heat anomaly to surface temper-
ature, so these erroneous estimates of t directly feed though
into equivalently erroneous estimates for the sensitivity of
the model.
[16] Results from a similar analysis of 14 state-of-the-art

GCMs from the World Climate Research Programme’s
(WCRP’s) Coupled Model Intercomparison Project phase
3 (CMIP3) multimodel data set are also shown in Figure 2.
Lags of 5–10 years were used in this analysis, in order not
to exclude too many models from the sample. As with the
GISS model analysis presented earlier, the estimates of time
scale produced by this method are generally unrealistically
low in comparison to the known behavior of the models in
response to changes in GHG forcing. A more detailed
analysis, considering also their effective heat capacities,
confirms that the sensitivity estimates provided by the
method of S07 are inaccurate and strongly biased [Knutti
et al., 2008].

5. Application to a Pure AR(1) Process

[17] As the length N of a sampled time series increases,
the sample autocorrelation r̂j converges to the true autocor-
relation rj, and follows an unbiased Gaussian distribution
with variance given by Bartlett’s formula [Bartlett, 1946].
What is widely overlooked is that the usual (Yule-Walker)
estimate of autocorrelation is intrinsically biased [Priestly,

Figure 1. Autocorrelation, and estimated time constant by S07’s method, for GISTEMP temperature
time series and the output of five runs of the GISS-ER GCM.
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1982; Percival and Walden, 1993], more so when the time
series is short and the time scale is long.
[18] Figure 2 (bottom) shows the results obtained when

the deterministic external forcing is omitted from the energy
balance model, resulting in a pure AR(1) process with
known time scale. Even with a true time scale as long as
30 years, there is a significant probability of obtaining an
estimate as low as 5. No detrending was performed in this
experiment; doing so would have reduced the estimated
time scale still further.
[19] This possibly surprising result is readily explicable

when considering the statistical behavior of the Yule-Walker
estimate of correlation coefficients for short time series in
the presence of strong autocorrelation. The lowest-order
bias in the lag-1 autocorrelation estimate for an AR(1)
process is [Tjostheim and Paulsen, 1983]

r̂1h i � r1 ¼ �N�1 1þ 4r1ð Þ: ð4Þ

[20] For a series with N = 125 data points and time scale
t = 30, the true value of r1 is 0.9672, but the expected
value of r̂1 is only 0.9283. This value would lead to an
estimated time scale �1/ln(r̂1) of only 13.4. In fact, as the
time scale increases, the expected value of the estimated
lag-1 autocorrelation approaches a limiting value of 0.96,
which implies an estimated time scale of only 24.5.
[21] For higher lags, bias in the autocorrelation estimate

reduces the estimated time scale even more, and linear
detrending reduces it still further. For t = 30 with N =
125, the biases conspire to lower the mean estimate of the

autocorrelation time scale to less than half its actual value,
with a significant probability of even lower results, as
observed in our numerical tests.

6. Conclusions

[22] S07 has proposed an analysis method based on
approximating the climate system as a linear trend plus an
autoregressive process of order 1, forced by random noise.
There are strong physical arguments why this approach is
likely to be an oversimplification, and as we have shown,
the data contradict this hypothesis. The S07 analysis method
generates strongly biased results when applied to a climate
model of known sensitivity, and even when applied to the
simple energy balance model S07 invokes to justify the
approach. In fact the S07 method for estimating the time
scale of an AR(1) process is strongly biased for realistic
parameter values, and we have provided a simple demon-
stration and explanation of this effect. We suggest that such
credibility checks, which are not difficult to perform, should
be considered a first step when a novel analysis technique
such as that presented by S07 generates results that are
inconsistent with previous work. Previous research indicates
that, when correctly analyzed, the 20th century trends do
not strongly constrain climate sensitivity other than to rule
out low values [e.g., Gregory et al., 2002; Forest et al.,
2006]. The belief that climate sensitivity is likely to lie in
the range 2–4.5 C and very unlikely less than 1.5 C
[Intergovernmental Panel on Climate Change, 2007] is
supported by numerous diverse analyses of the climate
system [e.g., Annan and Hargreaves, 2006; Hegerl et al.,

Figure 2. Estimation of time scale: (top) EBM and GCM results. (bottom) AR(1) process. Red, cyan,
and blue indicate results for true t values of 5, 15, and 30 years, respectively (true value marked by
vertical lines).
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2006] and we conclude that S07 presents no substantive
basis to challenge this view.
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