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[1] In this study, we present a physical model to retrieve snowfall rate over land using
brightness temperature observations from NOAA’s Advanced Microwave Sounder Unit-B
(AMSU-B) at 89 GHz, 150 GHz, 183.3 ± 1 GHz, 183.3 ± 3 GHz, and 183.3 ± 7 GHz. The
retrieval model is applied to the New England blizzard of 5 March 2001 which deposited
about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In
this physical model, prior retrieval assumptions about snowflake shape, particle size
distributions, environmental conditions, and optimization methodology have been
updated. Here, single scattering parameters for snow particles are calculated with the
discrete-dipole approximation (DDA) method instead of assuming spherical shapes. Five
different snow particle models are considered. Snow particle size distributions are
assumed to vary with air temperature and to follow aircraft measurements described by
previous studies. Brightness temperatures at AMSU-B frequencies for the New England
blizzard are calculated using these DDA calculated single scattering parameters and
particle size distributions. The vertical profiles of pressure, temperature, relative humidity
and hydrometeors are provided by MM5 model simulations. These profiles are treated
as the a priori database in the Bayesian retrieval algorithm. In algorithm applications to
the blizzard data, calculated brightness temperatures associated with selected database
profiles agree with AMSU-B observations to within about ±5 K at all five frequencies.
Retrieved snowfall rates compare favorably with the near-concurrent National Weather
Service (NWS) radar reflectivity measurements. The relationships between the NWS radar
measured reflectivities Ze and retrieved snowfall rate R for a given snow particle model
are derived by a histogram matching technique. All of these Ze-R relationships fall in the
range of previously established Ze-R relationships for snowfall. This suggests that the
current physical model developed in this study can reliably estimate the snowfall rate over
land using the AMSU-B measured brightness temperatures.
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1. Introduction

[2] Falling snow is an important component of the global
water cycle. Heavy snowfall can disrupt transportation flow
and cause subsequent severe flooding. Snowpacks accumu-

lated on the ground serve as a reservoir of water for
agriculture and hydroelectric power generation. Moreover,
falling snow that persists as snow cover over land can affect
earth energy balance through a change in the surface albedo.
Understanding extratropical precipitation is critical for im-
proving the prediction capability of regional and large-scale
climate models for the water cycle. For the last several
decades, ground-based radars and snow gauges have been
used to monitor snowfall rate. However, spatial coverage of
radar and snow gauge networks outside of the USA,
Europe, and Japan is sparse. Snowfall rate measurements
from space can overcome this spatial sampling limit and
provide data sets necessary for the improvement of weather
forecasting, hydrological and climate research.
[3] While satellite-based rain rate estimates are reliable

and operational [Olson et al., 1996, 2006; Ferraro et al.,
2005], the measurement of snowfall rates from space is a
relatively new field [Chen and Staelin, 2003; Kongoli et al.,
2003; Skofronick-Jackson et al., 2004; Liu, 2004; Noh et al.,

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D09201, doi:10.1029/2007JD008589, 2008

1Center for Satellite Applications and Research, NESDIS, NOAA,
Camp Springs, Maryland, USA.

2Also at Cooperative Institute of Research in Atmospheric Sciences,
Colorado State University, Fort Collins, Colorado, USA.

3Department of Atmospheric Sciences, University of Washington,
Seattle, Washington, USA.

4Joint Center for Earth Systems Technology, University of Maryland,
Baltimore County, Baltimore, Maryland, USA.

5Also at NASA Goddard Space Flight Center, Greenbelt, Maryland,
USA.

6Forecast Research Laboratory, Meteorological Research Institute,
Seoul, South Korea.

7NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

Copyright 2008 by the American Geophysical Union.
0148-0227/08/2007JD008589

D09201 1 of 16



2006]. There are two major challenges associated with
retrieving snowfall rates (1) adequately representing and
retrieving the complex macrophysical and microphysical
features of snow clouds and (2) distinguishing surface
features from atmospheric signatures. The measurement of
snowfall within the atmosphere has been difficult using
radiometers that operate at frequencies below 100 GHz
where the atmosphere is relatively transparent and the
surface emissivity can produce brightness temperatures
(Tb) expected from precipitating clouds. Indeed, retrievals
of snowpack rely on the 19 and 37 GHz channels [Foster et
al., 2005]. Recently, falling snow retrievals have been
derived from spaceborne microwave radiometry over oce-
anic regions where the measurements are not affected by
surface snow [Weinman and Hakkarinen, 1990; Liu and
Curry, 1996; Schols et al., 1999; Bennartz and Petty, 2001].
[4] Passive microwave radiometers operating at frequen-

cies near 183 GHz, such as NOAA’s Advanced Microwave
Sounder Unit–B (AMSU-B) and the Meteorological Oper-
ational Mission (METOP) polar orbiting satellites, and
those on proposed satellites like the Global Precipitation
Mission (GPM) can minimize the surface emission problem
over land because water vapor absorption effectively masks
the surface emission. For example, AMSU-B operating at
89 GHz, 150 GHz, 183.3 ± 7, ±3, and ±1 GHz has been
employed to estimate frozen hydrometeors [Chen and
Staelin, 2003; Kongoli et al., 2003; Skofronick-Jackson et
al., 2004; Noh et al., 2006]. Kongoli et al. [2003] derived
snowfall over land from the AMSU-B Tbs using empirical
relationships. Chen and Staelin [2003] employed a neural
network technique in their snowfall retrievals. Although
such empirical relationships or statistical techniques may be
operationally useful, physical models are needed to under-
stand how the measured Tbs depend on various surface and
atmospheric parameters.
[5] Skofronick-Jackson et al. [2004] developed a physical

model at millimeter-wave frequencies from which snowfall
rates over land could be inferred. While their snowfall rate
retrievals were qualitatively validated, the retrievals are
greatly enhanced by improving the assumptions.
[6] 1. That study approximated the single scattering

properties of snow crystal as equal volume (V) to area
(A) ratio spheres [Grenfell and Warren, 1999]. In the IR/UV
frequency regions, the methods using the equal-V/A spheres
generally do not provide accurate estimates of the asymme-
try factors [Takano and Liou, 1989; Grenfell and Warren,
1999]. Recent analyses by Liu [2004] and Kim [2004]
demonstrated the limitation of such an approach at micro-
wave frequencies. A refined technique to calculate the
scattering properties of nonspherical snow particles is
employed herein.
[7] 2. In addition, the particle size distribution (PSD) of

equal-V/A spheres employed in the early study was simpli-
fied over the vertical height of the cloud. In this work, PSDs
are taken from in situ observations of snowflakes over the
vertical domain of clouds.
[8] 3. Another simplifying assumption in the previous

study was the number of atmospheric and hydrometeor
profiles used in the retrievals. Only 11 and 36 representative
profiles of relative humidity and snow water content,
respectively, were extracted from mesoscale model simu-
lations. Additionally, the model simulation resolution from

the earlier study was 40 km � 40 km, which is much larger
than the AMSU-B footprints (�16 km � 16 km at nadir).
To obtain more realistic retrievals, the number and diversity
of atmospheric profiles needed to be expanded and the
resolution of the simulated data improved.
[9] 4. Further, the method of Skofronick-Jackson et al.

[2004] was to find a final profile that minimized the differ-
ences between the observed Tbs and calculated Tbs without
any consideration of the correlation between model varia-
bles (e.g., very low relative humidity was retrieved with
heavy snowfall). The current study uses a Bayesian method
for optimizing the retrievals and correlations between var-
iables are considered in retrievals. Noh et al. [2006] also
developed a Bayesian method based algorithm to retrieve
the froze precipitation retrievals using high-frequency mi-
crowave satellite data. However, their study did not consider
error correlations between different channels so that only
diagonal terms of the error covariance matrix were
employed in the Bayesian algorithm. In this study, the
correlations between the retrieved variables are considered.
Modeling errors are obtained from systematic Tb sensitivity
tests, based upon the uncertainties of several parameters,
including particle size, water vapor content, ice content, and
surface emissivity.
[10] The purpose of this study is to improve the retrieval

algorithm for estimating snowfall rate with millimeter-wave
channels. The major improvements from this study are
given below. First, the discrete-dipole approximation
(DDA) method [Purcell and Pennypacker, 1973; B. T.
Draine and P. J. Flatau, User guide for the discrete dipole
approximation code DDSCAT 6.0, 2003, available at http://
arxiv.org/abs/astro-ph/0409262v2, hereinafter referred to as
Draine and Flatau, unpublished manuscript, 2003] is
employed to calculate more precisely the single scattering
parameters of nonspherical snow crystals in radiative trans-
fer calculations. Second, snow particle size distributions are
based on in situ observations by Houze et al. [1979] and Lo
and Passarelli [1982], and these distributions are allowed to
vary with height. Third, an a priori database containing
appropriate and realistic simulated profiles is created for
snowfall parameter retrievals within a Bayesian methodol-
ogy. In addition, an error analysis and sensitivity tests are
performed.
[11] The paper is organized as follows: The blizzard snow

storm case considered in this study is briefly described in
section 2; radar and AMSU-B observations as well as MM5
simulated cloud profiles are also presented. Details of the a
priori database are explained in section 3. The retrieval
methodology including the Bayesian method is described in
section 4. Retrieval results and uncertainty analysis are
presented in section 5. Finally, summary and conclusions
are given in section 6. In Appendix A, the sensitivity of the
AMSU-B radiometer to humidity and precipitation profiles
and surface snow coverage are examined by calculating
Jacobians [after Bauer and Mugnai, 2003].

2. Snowstorm Case: Northeastern Blizzard on
5 March 2001

[12] The snowstorm considered in this study is the blizzard
of 5–6March 2001 over the Northeastern United States. This
is the same blizzard case reported by Skofronick-Jackson et
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al. [2004]. The blizzard deposited about 75 cm of snow over
much of Vermont, New Hampshire, and northern New York
during its lifetime. Figure 1a shows a composite of the
National Weather Service (NWS) operational weather radar
reflectivity 5 March 2001 at 2300 UTC. The NWS radar
reflectivity data were averaged over 16 km � 16 km grid
template to match the finest spatial resolution of the AMSU-
B channels. The maximum reflectivity in the smoothed radar
reflectivity data over land is �40 dBZ.

[13] Shown in Figures 1b–1f are the Tbs measured by the
AMSU-B on the NOAA 15 satellite at 2302 UTC on
5 March 2001. The AMSU-B is a cross-track scanner with
an angular swath of ±50�. The southeast to northwest
intense snow band is at about 35� off nadir. It is noted that
the 89 GHz channel shows ambiguity in distinguishing
snow in the atmosphere from other surface features on the
ground such as lakes, rivers, and snow on the ground. On
the other hand, the 183 GHz channels (especially those
closest to the water vapor line center) can screen the surface

Figure 1. (a) Radar reflectivity (dBZ) obtained from the NWS operational radar composite at variable
heights between 0.5 and 2.5 km measured at 2300 UTC on 5 March 2001. Note the heavy snowfall over
CT, MA, NH, and VT. Tbs (K) observed from (b) 89 GHz, (c) 150 GHz, (d) 183.3 ± 7 GHz, (e) 183.3 ±
3 GHz, and (f) 183.3 ± 1 GHz of AMSU-B at 2302 UTC on March 2001. The color scale shown in
Figure 1b applies to the subsequent figures.

D09201 KIM ET AL.: MICROWAVE SNOWFALL RETRIEVAL ALGORITHM

3 of 16

D09201



effect except in the driest atmospheric conditions such as
those found in the arctic and it can also mask the scattering
signature of shallow snowfall events.

3. Generation of a Prori Database

3.1. Mesoscale Model Simulation

[14] In the retrieval algorithm, vertical profiles of pres-
sure, temperature, relative humidity, cloud ice, cloud water,
and hydrometeor profiles are derived from the MM5 model
[Grell et al., 1994] which was used to the Northeastern
Blizzard at 4 km resolution. The MM5 model was initial-
ized at 0000 UTC on 5 March 2001 and the model
integration was performed for a period of 24 h. The
simulation domain with 36 km resolution was nested to
the domain with 12 km resolution and then to the domain
with 4 km resolution. The model domain was centered at
35� N and 70� W and consisted of 231 � 231 grid points at
4 km resolution. These profiles were linearly averaged to
16 km � 16 km resolution to match the AMSU-B foot print
size at nadir.
[15] The Goddard scheme [Tao and Simpson, 1993] was

used for ice microphysics parameterizations in the simula-
tions. All the temperatures near the surface over New
England were below �2�C and the observations are at
1900 local time; therefore, the precipitation was either snow
or graupel over land. Graupel generated by the MM5 model
over land was converted to snow of equivalent water
content in this study because the National Lightning Detec-
tion Network (NLDN) observed some lightning offshore,
but not over New England. Besides, this assumption is
reasonable given the well known difficulty of current cloud
resolving models to distinguish between these two types
of ice.
[16] In addition to the MM5-generated profiles at 16 km�

16 km resolution, assumed fractional surface snow cover
values of 0, 0.1, 0.2, . . ., 1.0 are used as input to forward
radiative transfer calculations to adjust the surface emissivity.
Thus, the surface varies from 100% mixed bare soil/frozen
soil/winter forest to 100% snow cover. Employing these
input profiles and calculated Tbs in an a priori database, a
Bayesian algorithm is used to retrieve atmospheric environ-
ment and hydrometeor profiles and surface snow cover
fraction using AMSU-B observed Tbs. Details of the
scattering parameterizations, particle size distributions, snow
particles’ orientation, radiative transfer calculations, and the
Bayesian retrieval framework are presented in the following
sections.

3.2. Single Scattering Parameter of Snow Particles

[17] The Discrete Dipole Approximation (DDA) method
was used to compute single scattering parameters of various

idealized nonspherical snow crystals which were then used
in the Tb calculations. The DDA method is a flexible
technique for calculating the electromagnetic scattering
and absorption by particles with arbitrary shapes and
composition [Draine, 1988; Mishchenko et al., 2000]. The
DDA treats the actual particle as an array of dipoles. Each of
the dipoles is subject to an electric field which is the sum of
the incident wave and the electric fields due to all of the
other dipoles. Through the solution of the electric field at
each dipole position, the scattering and absorption proper-
ties of the particle are obtained. The DDA replaces a solid
particle with an array of point dipoles occupying positions
on a cubic lattice, and the lattice spacing must be small
compared to the wavelength of the incident radiation.
Therefore, the DDA method requires large computer storage
and CPU time. The technique is not well suited for particles
with very large complex refractive indices because it
requires much narrower distance between dipoles, thus
requiring much larger memory size. This study employs
the DDA codes developed by Draine and Flatau (unpub-
lished manuscript, 2003).
[18] The five idealized snow crystal models considered in

this study are shown in Figure 2: hexagonal columns (HC),
three types of snow aggregates composed of two cylinders
(C2), three cylinders (C3) and four cylinders (C4), and
hexagonal plates (HP). Single scattering parameters of HCs,
C2s, C3s, C4s, and HPs were previously calculated by Kim
[2006] for the aspect ratio (the ratio of small dimension to
large dimension of ice crystals) �0.1.
[19] For this work we changed the aspect ratio to one that

had a thinner column based on the observations in the
previous studies [Auer and Veal, 1970; Heymsfield, 1972].
Following Auer and Veal [1970] and Heymsfield [1972], the
relationship between diameter (D) and length (L) for hex-
agonal columns is given by

D ¼ 0:197� L0:414 mm½ � ð1Þ

The aggregates (C2s, C3s, and C4s) are modeled with two,
three, and four circular cylinders having the same aspect
ratio as a hexagonal column.
[20] The thickness (T) and width (W) relationship for

hexagonal plates follows Auer and Veal [1970] and is given
by

T ¼ 0:048�W0:474 mm½ � ð2Þ

The density of ice for each cylinder and plate is assumed to
be the same as pure ice (0.91 g/m3). Dielectric constants are
calculated with formulas given by Mätzler and Wegmüller
[1987].

Figure 2. Model crystal habits considered in this study.

D09201 KIM ET AL.: MICROWAVE SNOWFALL RETRIEVAL ALGORITHM

4 of 16

D09201



3.3. Orientation of Snowflakes

[21] Single scattering parameters of nonspherical particles
strongly depend on the orientation of the particles in the
snowfall. Vivekanandan et al. [1994, 1999] showed that
differential reflectivities of snow particles measured by
polarimetric radar observations were close to zero. Differ-
ential reflectivity is the ratio of the horizontal copolar return
to the vertical copolar return and can be interpreted as the
reflectivity weighted mean-axis ratio of the precipitation
particle in the radar resolution volume. Thus it is a good
indicator of orientation of particles. This implies that snow
particles are randomly oriented in dry snow regions of
various precipitating systems. For this reason, snow par-
ticles are assumed to be randomly oriented in our analysis.
[22] In addition, the atmosphere was known to be strong-

ly turbulent in the snowstorm under study. Shown in
Figure 3 are the profiles of wind speed and Richardson
number observed by NWS instrumentation in Brookhaven
(41� N, 73� W), New York at 0000 UTC on 6 March 2001,
an hour after the NOAA 15 AMSU-B observations; Figure 3
shows that wind speed was greater than 10 m/s with strong
wind shear at most altitudes.
[23] The Richardson number, Ri [Bluestein, 1993], which

is a measure of the importance of buoyancy forces to inertial
accelerations, is defined as follows:

Ri ¼
g d ln q

dz

� �
djvj
dz

� �2
ð3Þ

where q is the potential temperature and v is the wind speed.
When Ri is small (
0.25), the flow becomes turbulent
[Bluestein, 1993]. Small Ri numbers were observed during
this storm, suggesting that the atmosphere below 10 km

height was turbulent and the particles are randomly
oriented.
[24] It should be stressed that this case study is very limited

and the random orientation of snow particles assumed here
may not be generalized to all snowstorms. For example,
Hogan et al. [2002] analyzed simultaneous aircraft and
polarimetric radar data for a warm-frontal mixed-phased
cloud. By analyzing the differential reflectivity given by

ZDR = 10 log10
ZH

ZV

� �
dB, where ZH and ZV are reflectivity

factors measured at horizontal and vertical polarizations,
respectively, they showed the possibility of horizontal align-
ment of the ice crystals in the region of embedded convection
where high concentrations of small crystals were observed.
More comprehensive observations of the orientation of snow
particles using radar and passive microwave radiometer
measurements, in situ snow crystal microphysics samples,
atmospheric stability observations, and wind profiles from
high-resolution soundings are necessary to clarify the particle
orientation issue, and to gain a more complete understanding
of falling snow retrievals.

3.4. Snow Particle Size Distributions

[25] In situ microphysics data describing snow crystal
shapes and size distributions were not available during this
snow storm. Therefore, we employ snow particle size
distributions (PSDs) measured by Houze et al. [1979] and
Lo and Passarelli [1982] for midlatitude winter storms.
[26] According to these studies, the snow PSDs are

represented by exponential functions given by

N Dð Þ ¼ N0 exp �lDð Þ mm�1m�3
� �

ð4Þ

where N0 is the intercept parameter and D is the large
dimension of snow particle.

Figure 3. Profiles of (a) wind speed and (b) Richardson number measured in Brookhaven, NY, at 1800
UTC on 5 March and 0000 UTC on 6 March 2001 during the New England blizzard.

D09201 KIM ET AL.: MICROWAVE SNOWFALL RETRIEVAL ALGORITHM

5 of 16

D09201



[27] By fitting a curve to the data shown by Houze et al.
[1979], l is assumed to follow:

l ¼ 10�
T
41 mm�1

� �
ð5Þ

where T(�C) is the air temperature. It is noted that equation
(5) can be used to describe the l versus air temperature
relationship shown by Lo and Passarelli [1982].

3.5. Falling Velocity of Snow Particles

[28] To convert snow water contents to snowfall rates, the
following equation by Rutledge and Hobbs [1983] for
terminal velocity (Vt) of snow particles is employed:

Vt Dð Þ ¼ 1:139� D0:11 � P0

P

� �0:4

m=s½ � ð6Þ

where P is atmospheric pressure for a given altitude and P0
is a reference value equal to 1000 mbar [Rutledge and
Hobbs, 1983]. The factor P0

P

� �
0.4 allows for the change in

fall speed with air pressure [Foote and DuToit, 1969], such
that as the pressure decreases with altitude, the particles fall
faster.
[29] Then snowfall rates are calculated using

RR mm=hrð Þ ¼ 6p� 0:91� 10�4

Z
D3

effVt Dð ÞN Dð ÞdD ð7Þ

where Deff [mm] is the diameter of an equal-mass ice sphere
corresponding to a given snow particle. The factor of 0.91 is
multiplied in equation (7) to convert ice snow to an
equivalent volume of liquid water.

3.6. Radiative Transfer Calculations

[30] The radiative transfer model used to compute Tbs
from a hydrometeor profile is the delta-Eddington model
[Weinman and Davis, 1978; Thomas and Stamnes, 1999;
Kim et al., 2004]. Vertical profiles of pressure, temperature,
humidity and hydrometeors are provided by the MM5
model simulations described in section 3.1. Single scatter-
ing coefficients, asymmetry factors, and single scattering
albedos of snow particles are calculated with scattering
models described in section 3.2, based upon the particle
size distributions described in section 3.4. Gaseous absorp-
tion coefficients for oxygen and water vapor are obtained
from the millimeter propagation model (MPM) of Liebe et
al. [1992].
[31] The radiative transfer calculations also require a

knowledge of the emissivity of the variable surface features,
including snow cover. The boundary conditions were deter-
mined partially by the accumulated antecedent snow for
which the emissivities es for deep dry snow at a 35� viewing
angle are 0.64, 0.724, and 0.8 at 89, 150, and 183 GHz,
respectively [Hewison and English, 1999]. The emissivity
used in the radiative transfer model is a weighted mean of the
emissivity of snow cover es and e0, where e0 is an average of
the emissivities of bare soil, frozen soil, and winter forest/
conifer surfaces. The value of e0 is 0.98 for all frequencies
based on the observations shown in Hewison [2001]. The
effective emissivity is thus

e ¼ fes þ 1� fð Þe0 ð8Þ

where f is the snow cover fraction that is assigned 11
discrete values: 0.0, 0.1, 0.2, 0.3, 0.4, . . . . , 1.0.

4. Retrieval Methodology

4.1. Bayesian Inversion Method

[32] A Bayesian inversion technique is used to retrieve
falling snow profiles. An a priori database was built using
the MM5 generated atmospheric and hydrometeor profiles.
For a given snowfall profile, different snow particle shapes
(5 kinds) and various surface emissivity values (11 snow
cover fractions) were considered in the radiative transfer
calculations. That is, 11 different Tbs were generated at
each frequency for a given snowfall profile and a given
snow particle type. In situ microphysics observations of
snow particle habits were not available; therefore, the five
snow particle models discussed in section 3.2 are used in the
Tb calculations. However, for a given retrieval application
to the AMSU-B data, only one shape was allowed at a time
due a lack of information about the number and types of
particle shapes for this blizzard case. Retrievals assuming
different particle shapes are compared.
[33] Following Olson et al. [1996] and Moreau et al.

[2003], if it is assumed that the errors in the observations
and the simulated observations are Gaussian and uncorre-
lated then the ‘‘best’’ estimate of state vector x, given the set
of observations y0, is the expected value

xa ¼
Z Z

. . .

Z
x exp �0:5 y0 � ys xð Þ½ �T

n

� Oþ Sð Þ�1
y0 � ys xð Þ½ �

o
Pa x ¼ xtrueð Þ=Adx ð9Þ

where A is a normalization factor,

A ¼
Z Z

. . .

Z
exp �0:5 y0 � ys½ �T Oþ Sð Þ�1

y0 � ys xð Þ½ �
n o

� Pa x ¼ xtrueð Þdx: ð10Þ

Here, the errors in simulated observations are correlated
with one another just not with the observations themselves.
ys(x) are simulated Tbs and Pa is the a priori probability that
x is the true state profile of the atmosphere. The O and S are
the observed and simulated Tb error covariance matrices,
respectively.
[34] The inherent uncertainty is given by the integration

of departures of the best estimate state vector xa from those
contained in the database:

E xð Þ ¼
Z Z

. . .

Z
x� xað Þ2 exp �0:5 y0 � ys xð Þ½ �T

n

� Oþ Sð Þ�1
y0 � ys xð Þ½ �

o
Pa x ¼ xtrueð Þ=Adx ð11Þ

4.2. Evaluation of Uncertainties

[35] When generating the a priori database, the evaluation
of the associated modeling uncertainties is difficult but
important for both retrievals and error estimation. Tb
uncertainties were included in the error covariance matrix
representing the intrinsic variability of the generated a priori
database. Tassa et al. [2006] proposed a methodology for
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taking into account cloud-radiation database related model-
ing uncertainties for precipitation retrieval from the TRMM
Microwave Imager (TMI). In their study, the modeling
errors were obtained from systematic Tb sensitivity tests,
based upon the assumed uncertainties in PSD, atmospheric
temperature, ice content, sea surface wind speed, viewing
angle, melting phase, and particle shape.
[36] Following Cooper et al. [2003, 2006] and Tassa et

al. [2006], modeling uncertainties associated with the gen-
eration of a priori database were calculated in this study for
snowfall retrievals using AMSU-B measurements. The
uncertainties were computed through sensitivity analyses
aimed at evaluating the impact of various bulk cloud/
radiative parameters on the resulting simulated radiance
distributions. We assume there are four fundamental sources
of error: errors in calculating surface emissivity, errors in
calculating scattering parameters, errors in water vapor
profiles, and errors in radiative transfer. We address these
sources of error as follows:
[37] 1. Regarding surface emissivity, we add Gaussian-

distributed errors to our computed emissivity for each
emissivity calculation we make in generating the database.
The standard deviation of emissivity errors assumed in this
study is 0.05.
[38] 2. Even though we consider the Bayesian estimates

for each particle habit separately, there still could be errors
in each calculation of the single scattering parameters and
the size spectra of the hydrometeors that can have a very
large impact on snow radiative properties [Panegrossi et al.,
1998; Viltard et al., 2000]. In this study, we added Gaussian-
distributed errors to the mass median diameter of the PSDs
described by equation (4). The standard deviation for the
percentage error was assumed to be 50% on the basis of
Houze et al. [1979, Figure 6].
[39] 3. Since AMSU-B brightness temperatures are sen-

sitive to water vapor profiles, we added Gaussian-distribut-
ed errors to the MM5 generated water vapor content
profiles. The standard deviation of the percentage error
was assumed to be 10% and the error was assumed to be
same for all levels.

[40] 4. Because we did not use rigorous a Monte Carlo
radiative transfer model because of increased computation
time required for these calculations, there will be some
uncertainty in radiance calculations that increases in pro-
portion to the effective scattering in the vertical column.
Therefore, we calculate a ‘‘cloud-free’’ background Tb and
then calculated the difference between the background and
cloudy atmosphere Tb. This Tb difference represents the
effective scattering by snow in the vertical column. We
added a Gaussian-distributed percentage error to the cloudy
atmosphere Tb in proportion to a Tb difference. The
standard deviation of the percentage error was assumed as
8% on the basis of Kim et al. [2004] and O’Dell et al.
[2006]. For example, if the original Tb was 100 K below the
background value, then typically we would add or subtract
8 K to the Tb. Since the Tb depressions at 89 GHz and
150 GHz relative to the background can be affected by the
low surface emissivity of snow on the ground, errors from
source 4 were calculated by assuming surface snow fraction
was zero and isolating the Tb depression due to scattering in
the atmospheric column.
[41] It should be noted that there are two other important

sources of uncertainty overlooked in this study because of
the difficulty: the possible presence of supercooled water
droplets that are often present in coastal snow systems and
the potential variations in the dielectric properties of snow-
flakes due to the presence of water on their surface.
[42] Errors only from source 1 first, and then source 2

only, and then source 3 only, and then source 4 only, and
then all four error sources together were calculated. The
error covariances due to errors from sources 1, 2, 3, and 4
are shown in Tables 1–4, respectively. The error covarian-
ces calculated with error sources 1–3 considered together
are shown in Table 5. Finally, each component of Table 4
and Table 5 are summed for the total error covariance
(Table 6) which was applied in equation (9) for snow
retrievals.
[43] Noh et al. [2006] neglected the error correlations

between different channels by assuming the off-diagonal
terms of error covariance matrix to be zero. However, this

Table 1. Computed Error Covariances (K2) Due to Error Source

1: Surface Emissivity

89 GHz 150 GHz
183.3 ±
7 GHz

183.3 ±
3 GHz

183.3 ±
1 GHz

89 GHz 39.32 16.82 0.33 0.00 0.00
150 GHz 16.82 7.78 0.17 0.00 0.00
183.3 ± 7GHz 0.33 0.17 0.005 0.00 0.00
183.3 ± 3GHz 0.00 0.00 0.00 0.00 0.00
183.3 ± 1GHz 0.00 0.00 0.00 0.00 0.00

Table 2. Computed Error Covariances (K2) Due to Error Source

2: Snow Particle Size

89 GHz 150 GHz
183.3 ±
7 GHz

183.3 ±
3 GHz

183.3 ±
1 GHz

89 GHz 19.45 38.43 6.74 �2.37 �1.15
150 GHz 38.43 89.71 23.57 �0.28 �1.09
183.3 ± 7GHz 6.74 23.57 15.58 6.59 1.67
183.3 ± 3GHz �2.37 �0.29 1.77 5.57 6.59
183.3 ± 1GHz �1.15 �1.09 1.67 1.77 0.61

Table 3. Computed Error Covariances (K2) Due to Error Source

3: Water Vapor Amount

89 GHz 150 GHz
183.3 ±
7 GHz

183.3 ±
3 GHz

183.3 ±
1 GHz

89 GHz 8.82 11.72 0.92 �3.16 �4.71
150 GHz 11.72 16.42 1.82 �4.31 �6.60
183.3 ± 7GHz 0.92 1.82 1.29 0.09 �0.41
183.3 ± 3GHz �3.16 �4.31 0.09 1.58 2.07
183.3 ± 1GHz �4.71 �6.60 �0.41 2.07 3.00

Table 4. Computed Error Covariances (K2) Due to Error Source

4: Radiance Computation

89 GHz 150 GHz
183.3 ±
7 GHz

183.3 ±
3 GHz

183.3 ±
1 GHz

89 GHz 0.86 1.62 0.84 0.57 0.89
150 GHz 1.62 3.15 1.61 1.04 1.56
183.3 ± 7GHz 0.84 1.61 0.88 0.59 0.89
183.3 ± 3GHz 0.57 1.04 0.59 0.47 0.75
183.3 ± 1GHz 0.89 1.56 0.89 0.75 1.25
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study demonstrates that the modeling error correlations are
significantly large between different channels of AMSU-B
and emphasizes that they should not be neglected in
precipitation retrievals. It is noted that error covariances
due to the uncertainty inherent in surface emissivity calcu-
lation affect 89 GHz and 150 GHz channels significantly
(Table 1). This is consistent with the Uncertainties inherent
in snow particle size assumptions affect 150GHz channel
most significantly (Table 2).
[44] Table 6 shows that modeling errors are strongly

correlated between 89 GHz and 150 GHz channels and
between 183.3 ± 3 and 183.3 ± 1 GHz channels and
correlations coefficients are 0.80 and 0.83, respectively. It
is noted that water vapor uncertainties result in Tb errors
that are significantly anticorrelated at the lower and higher
channel frequencies. That is, more water vapor increases the
Tb at 89 GHz but decreases the Tb at 183.3 ± 1 GHz.
Table 5 shows that the largest Tb error covariances are
associated with the 89 and 150 GHz channels, primarily
because of assumed uncertainties in modeled surface emis-
sivities and PSDs.

5. Retrieval Results

5.1. Falling Snow Retrievals

[45] Using the algorithm previously described, retrievals
were performed for the March 2001 blizzard case shown in
Figure 1. Each retrieved profile contains vertical distribu-
tions of temperature, relative humidity, and snow water
content. The lowest altitude snow water content (at
20.0 m) is converted to a melted precipitation rate using
the procedure described in section 3.5 (Falling Velocity of
Snow Particles), as shown in Figure 4a. Since the retrieval
method was designed for applications over land, the oceanic
regions are masked. The snowflake shape employed in the
retrievals shown in Figure 4a is HC (Figure 2). Retrieval
results from different snow particle models are compared
later in this section. As seen in Figure 4a, the spatial
distribution of retrieved snowfall rates is similar to the radar
reflectivity observations displayed in Figure 1a. Retrieved
water equivalent snowfall rates reach a maximum of

�4.3 mm/h, which helps to explain the heavy snowfall
accumulations (up to �75 cm) reported during this storm.
[46] In order to understand the retrievals on a Tb basis,

the spatial distributions of differences between the Bayesian
retrieved Tbs and the AMSU-B observations at all five
frequencies of the storm region are shown in Figure 5.
Results show that the computed Tbs agree with the obser-

Table 5. Computed Error Covariances (K2) Due to Error Sources

1–3

89 GHz 150 GHz
183.3 ±
7 GHz

183.3 ±
3 GHz

183.3 ±
1 GHz

89 GHz 67.59 66.97 7.99 �5.53 �5.86
150 GHz 66.97 113.91 25.56 �3.55 �6.13
183.3 ± 7GHz 7.99 25.56 16.88 6.68 1.26
183.3 ± 3GHz �5.53 �3.55 6.68 7.15 8.66
183.3 ± 1GHz �5.86 �6.13 1.26 8.66 3.61

Table 6. Error Covariances (K2) Employed in the Retrievals in

This Study

89 GHz 150 GHz
183.3 ±
7 GHz

183.3 ±
3 GHz

183.3 ±
1 GHz

89 GHz 68.45 68.59 8.83 �4.96 �4.97
150 GHz 68.59 117.06 27.17 �2.51 �4.57
183.3 ± 7GHz 8.83 27.17 17.76 7.27 2.15
183.3 ± 3GHz �4.96 �2.51 7.27 7.62 9.41
183.3 ± 1GHz �4.97 �4.57 2.15 9.41 4.86

Figure 4. Retrieved (a) water equivalent snowfall rate
(mm/h) and (b) uncertainty estimate (mm/h) at 0.02 km
altitude. Since the retrievals are applied to precipitation over
land, the oceanic regions are masked.
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vations within ±5 K over most of the storm region at all of
the AMSU-B frequencies.
[47] Using equation (11), the inherent uncertainty of

retrievals is calculated by integrating departures of profiles
contained in the a priori database from the retrieved profile.
The distribution of error standard deviations related to the

retrieved snowfall rates is shown in Figure 4b. It may be
inferred that the uncertainty of the retrieved snowfall rates
in this study range between 0.01 and 2 mm/h at 0.02 km
altitude. As shown in Figure 4c, the error standard devia-
tions increase with the retrieved snowfall rates.

Figure 5. Departures of estimated brightness temperatures from measured brightness temperatures:
Tb(estimated) – Tb(measured) (K) at (a) 89 GHz, (b) 150 GHz, (c) 183.3 ± 7 GHz, (d) 183.3 ± 3 GHz,
and (e) 183.3 ± 1 GHz.
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5.2. Consistency Checks

[48] Similar to Figure 4, the retrievals are repeated for
each of the five snow particle shapes shown in Figure 2. To
compare retrieved snowfall rates using the different snow
particle models, a pixel area matching technique similar to
that described by Calheiros and Zawadski [1987] is used to
relate the radar reflectivity Ze (mm6 m�3) observed by NWS
radars over land to the retrieved snowfall rate, R at 0.02 km
altitude above the surface. The procedure selects a number
of pixels that exceed a given snowfall rate and the same
number of pixels that exceeded a particular radar reflectiv-
ity. Threshold values of each of these quantities are tabu-
lated and plotted in Figure 6 with colors. The black lines in
Figure 6 show the Ze-R relationships for falling snow
presented in previous studies such as Sekhon and Srivastava
[1970], Fujiyoshi et al. [1990], Vasiloff et al. [2000],
Boucher and Weiler [1985], and Skofronick-Jackson et al.
[2004].
[49] Comparisons in Figure 6 show that NWS radar

observed Ze versus retrieved R curves of all snow crystal
models considered in this study agree well with previously
published Ze-R relationships. Retrieved snowfall rates as-
suming the C4 snow particle model, yield the smallest
values, while retrieval results based upon HCs yield the
largest snowfall rate for a given radar reflectivity. Results
shown in this study suggest that variations of retrieved
snowfall rates could differ by a factor of 2. Further, the
ranges of uncertainties associated with different particle
shapes enclose all previously published Ze-R relationships
and all snow particle shapes evaluated in this study.
[50] The distribution of fractions of snow cover on the

ground selected by the Bayesian retrieval method are shown
in Figure 7a. Within the AMSU-B field of view the snow
cover fraction ranges between 0.2 and 0.6 over the snow

Figure 7. Retrieved (a) fraction of snow cover on the
ground and (b) its uncertainty estimate.

Figure 6. Measured NWS radar reflectivity Ze versus retrieved snowfall rate (mm/h) using different snow
particle models. Results are compared with previously published Ze-R relationships for falling snow. The
uncertainty values of snowfall rates retrieved different snow particle models are shown as error bars.

D09201 KIM ET AL.: MICROWAVE SNOWFALL RETRIEVAL ALGORITHM

10 of 16

D09201



storm core region. Figure 7b shows that the uncertainties
(standard deviations) of the snow cover fraction are about
0.15 to 0.2 in the storm core. These higher uncertainties are
likely caused by the fact that none of the channels probe to
the surface in the heavily precipitating storm core, and
hence the Bayesian technique can select wide range of
surface snow cover fraction values without affecting the
resultant Tbs.
[51] It is noted that retrieved fractions of snow cover over

the Great Lakes and St. Lawrence River regions (near 73�W
and 46�N) are large. This is a direct result of the 89 GHz
channel sensitivity to surface features. The 89 GHz AMSU-
B image 48 h earlier than the time analyzed for the snowfall
retrievals and prior to the start of our analyzed snow fall
event is shown in Figure 8a. In this image, a cold surface
feature is seen in the same region where the retrieved snow
cover fraction is high. (See the regions identified with solid
circles) Indeed, all the AMSU-B 89 GHz images from 1 to
10 March 2001 exhibit the same cold brightness temper-
atures. This region is a river valley with elevations near sea
level. To validate of retrieved surface snow coverage in this
region, snow water equivalent (SWE) values were derived
with the algorithm given by Foster et al. [2005] using the

Special Sensor Microwave Imager (SSM/I) 19 GHz and
37 GHz vertically polarized channels. The SSM/I retrieved
SWE for 4 March 2001 are shown in Figure 8b, prior to the
blizzard analyzed in this work. The SWE distribution
provides evidence that there was more snow on the ground
near the Great Lakes and St. Lawrence River regions than in
other areas before the 5–6 March 2001 blizzard, suggesting
that the distribution of retrieved surface snow fraction
derived in the current study is valid.
[52] The relative humidity (%) and uncertainties at

0.02 km altitude above the surface in the retrieved profiles
are shown in Figure 9. In Figure 9a, retrieved relative
humidity values are large (above 90%) over the snow storm
core region where the radar reflectivity is greater than
30 dBZ (Figure 1a). The uncertainties range up to 7%.
The uncertainties are lower over the region where the
retrieved relative humidity values are high. It should be
emphasized that the uncertainty here is in reference to the
MM5 produced relative humidity profiles. Therefore, the
accuracy of the retrieved humidities is limited by the range
of humidities in the profiles in the MM5 database.
[53] Compared to the previous retrieval results of

Skofronick-Jackson et al. [2004], the new algorithm

Figure 8. (a) The 89 GHz AMSU-B channel image on 3
March 2001. (b) Distribution of snow water equivalent
(SWE) derived with the algorithm given by Foster et al.
[2005] using the SSM/I 19 GHz and 37 GHz vertically
polarized channels, over the area of interest on 4March 2001.

Figure 9. Retrieved (a) relative humidity (%) and (b)
uncertainty estimate at 0.02 km altitude. Since the retrievals
are applied to precipitation over land, the oceanic regions
are masked.

D09201 KIM ET AL.: MICROWAVE SNOWFALL RETRIEVAL ALGORITHM

11 of 16

D09201



retrieves snowfall rate distributions that are more consistent
with the NWS radar reflectivity distribution (Figure 6). It
should be noted that the distributions of retrieved parameters
such as snow water content and relative humidity in the work
by Skofronick-Jackson et al. [2004] were noisy, and that the
maximum retrieved snow water content was associated with
physically inconsistent low relative humidity profiles in that
study. In the current study, the improved physical and
statistical assumptions in the retrieval algorithm result in
relative humidity values that are relatively high over the
snowstorm region, which is consistent with moisture con-
vergence and lifting in this intense storm (Figure 9).

6. Summary and Conclusions

[54] In this study, we improved a snowfall retrieval
method by addressing our assumptions described by
Skofronick-Jackson et al. [2004] and estimate snowfall rate
over land using the AMSU-B Tb observations at 89 GHz,

150 GHz, 183.3 ± 1 GHz, 183.3 ± 3GHz, and 183.3 ± 7 GHz.
This improved retrieval model is applied to the blizzard of
5 March 2001 over New England. Major improvements
resulting from this study are following:
[55] 1. The current study employs the discrete-dipole

approximation (DDA) method [Purcell and Pennypacker,
1973; Draine and Flatau, unpublished manuscript, 2003] to
calculate single scattering parameters for various nonspher-
ical snow particles in radiative transfer calculations.
[56] 2. This study incorporates snow particle size distri-

butions based on in situ observations by Houze et al. [1979]
and Lo and Passarelli [1982], and vary with height.
[57] 3. Instead of assuming that the fall velocity is fixed at

1 m/s for all falling snow particles [Skofronick-Jackson et al.,
2004] to convert retrieved snow water content to snowfall
rate, this study employs the relationships between fall
velocity and snow particle sizes described by Rutledge and
Hobbs [1983].

Figure A1. Jacobians for AMSU-B channels with respect to water vapor mixing ratio.

D09201 KIM ET AL.: MICROWAVE SNOWFALL RETRIEVAL ALGORITHM

12 of 16

D09201



[58] 4. The current study uses a Bayesian method for
optimizing the retrievals and correlations between variables
are considered in retrievals. Unlike previous Bayesian
retrievals of Noh et al. [2006], the present study accounts
for the error covariance of Tbs in retrievals. This reduces the
noise that was present in the spatial distributions of re-
trieved parameters of Skofronick-Jackson et al. [2004].
[59] 5. This study demonstrates that modeling errors are

strongly correlated especially between 89 GHz and 150 GHz
channels and between 183.3 ± 3 and 183.3 ± 1 GHz
channels. Water vapor uncertainties result in Tb errors that
are significantly anticorrelated at the lower and higher
channel frequencies. The largest Tb error covariances are
associated with the 89 and 150 GHz channels, primarily
because of assumed uncertainties in modeled surface emis-
sivities and PSDs.
[60] Comparisons of the current retrieved snowfall rates

with NWS radar reflectivity measurements indicate better

consistency in relation to those of Skofronick-Jackson et al.
[2004]. This consistency is evaluated in terms of reduced
noise in the retrieved distributions, the use of nonspherical
snowflake shapes, correlations between variables, a Bayes-
ian inversion method with Tb error covariances between
different channels, and the use of realistic surface emissivity
variables. Results suggest that the physical model devel-
oped in this study uses more appropriate and realistic
assumptions and further improves estimates of snowfall
rate over land based upon high-frequency microwave
brightness temperatures.
[61] The results of error analysis using the a priori

database employed in this study suggest that the uncertainty
inherent in the retrievals of snowfall ranges between
0.01 mm/h and 2 mm/h at 0.02 km altitude above the
surface, increasing with snowfall rate. For retrieved relative
humidity, the uncertainty is less than 7% over the whole
retrieval domain, although this uncertainty is more of a

Figure A2. Jacobians for AMSU-B channels with respect to snow water content (swc).
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measure of the error in the variability of the MM5 relative
humidity profiles. Standard deviations of retrieved surface
snow coverage over most of the storm area range between 0
and 0.2.

Appendix A: Sensitivity

[62] The sensitivities of Tbs to variations of humidity,
hydrometeor profiles, and surface emissivity, represented by
Jacobians, helps to explain the model error covariance
derived in section 4: Greater sensitivity of Tbs to a given
geophysical parameter means that there is greater model
error associated with uncertainties in that parameter. In
addition, the analysis of model Jacobians is standard pro-
cedure in data assimilation schemes because Jacobians
provide crucial information on model sensitivity to input
perturbations as a function of model state. Its application to
cloud and precipitation parameters via radiative transfer

analysis is relatively new [Moreau et al., 2003]. It has also
influenced radiometer optimization studies outside the NWP
community [Bauer and Mugnai, 2003]. Here, Jacobians
associated with relative humidity and hydrometeor profiles,
which are extracted out of the MM5 simulations (section
3.1) over land, are calculated.
[63] Figures A1 and A2 show Jacobians, J, for AMSU-B

channels with respect to humidity and snow water content
profiles, respectively. The J units for humidity and snow
water content profiles are DK/D(g/kg) and DK/D(g/m3),
respectively. In Figures A1 and A2, solid and dashed lines
indicate mean values and standard deviation values, respec-
tively. The sensitivity of the calculated Tbs to the fraction of
snow coverage and snow particle size distributions is
presented in Figure A3. The snow particle model used to
calculate Tbs shown in Figures A1–A3 is HC (Figure 2).
[64] From Figure A1, it may be noted that the 89 GHz

channel is nearly insensitive to water vapor variations, and

Figure A3. Histograms of calculated Tb differences when the fraction of surface snow coverage
increases from f = 0.5 to f = 0.6.
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that the 150 GHz Tbs slightly increase with water vapor
increment (<0.5 K/(g/km)). As we may expect, the water
vapor channels (183.3 ± 1, 183.3 ± 3, and 183.3 ± 7 GHz)
are sensitive to variation in humidity. In particular, the
calculated Tbs are most sensitive to variations of water
vapor amount at altitudes around 7 km–8 km. Considering
the water vapor channels, on average, the most opaque
channel (e.g., 183.3 ± 1 GHz) is more sensitive to water
vapor variations than the least opaque channel (e.g., 183.3 ±
7 GHz).
[65] In Figure A2, the calculated Jacobians show that

both the 183.3 ± 7 GHz and 150 GHz channels are most
sensitive to snow water content. It is also noted that the
water vapor channels are not sensitive to the snow water
content near the surface, where the calculated Jacobians at
89 GHz and 150 GHz show sensitivities of 1 K/(0.1 g/m3)
and 2.5 K/(0.1 g/m3), respectively. The 89 GHz, 150 GHz,
183.3 ± 1 GHz, and 183.3 ± 3 GHz, and 183.3 ± 7 GHz
channels are most sensitive to the snow water content at
3 km, 4 km, 5 km, 6 km, and 7 km altitudes, respectively.
This result suggests a limited snow profiling capability if
these channels are combined in a retrieval algorithm and
the water vapor connection can be determined or specified
independently.
[66] Figure A3 presents histograms of Tb differences

(DTb) when the fraction of surface snow coverage increases
from f = 0.5 to f = 0.6. From Figure A3 it is seen that
the 89 GHz channel is three times more sensitive to the
surface snow coverage than the 150 GHz channel, while
the water vapor channels are nearly insensitive to surface
emissivity changes.
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