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[1] The salar de Uyuni is a massive dry salt lake that lies at the lowest point of an internal
drainage basin in the Bolivian Altiplano. A kinematic GPS survey of the salar in
September 2002 found a topographic range of only 80 cm over a 54 � 45 km area and
subtle surface features that appeared to correlate with mapped gravity. In order to confirm
the correlation between topography and gravity/geopotential, we use local gravity
measurements and the EGM96 global geopotential model to construct a centimeter-level
equipotential surface corresponding to the elevation of the salar. Our comparison of GPS
survey elevations with the equipotential surface estimate shows that 63% of the variance
of the GPS elevations can be explained by equipotential surface undulations (and
long-wavelength error) in the EGM96 model alone, with an additional 30% explained by
the shorter-wavelength equipotential surface derived from local gravity. In order to
establish a physical connection between topography and the geopotential, we also develop
and test a simple surface process model that redistributes salt via the dissolution, transport,
and redeposition of salt by precipitated water. Forcing within the model pushes the system
to evolve toward constant water depth, with the salt surface approximating the shape
of the local equipotential surface. Since the model removes almost all topographic relief
with respect to the equipotential surface within a matter of decades, it appears that
observed (�5 cm amplitude, �5 km wavelength) residual topography is actively
maintained by a process independent of gravity-driven fluid flow.
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1. Introduction

[2] Geomorphological studies of salt flats have typically
focused on the submeter-scale response of the salt surface to
rainwater associated with the annual hydrological cycle
[e.g., Lowenstein and Hardie, 1985; Sonnenfeld, 1984].
Although this body of work carefully considers how the
local crystalline structure of the salt changes in response to
inundation and evaporation, it does not examine how small-
scale processes might impact the shape of the overall
surface. Also unaddressed is the more fundamental question
of why salt flats are topographically flat over large areas,
despite the fact that they often occur in tectonically active
environments with considerable geomorphic forcing evident
in the surrounding topography.
[3] The most rigorous published description of salt flat

topography appears to be that given by Warren [1989],
which describes a salt flat as ‘‘an equilibrium geomorphic

surface whose level is dictated by the local water table.’’
Since the near-surface water table beneath most salt flats is a
level surface of Earth’s geopotential field, this statement
implies that a salt flat is such a surface as well. Warren,
however, does not discuss how the water table enforces the
leveling of the surface or just how level we should expect
the surface to be. These questions are relevant to the
scientific understanding of salt flat geomorphology as well
as to the use of salt flats as reference surfaces for satellite
altimeter calibration and validation [Fricker et al., 2005],
both of which require knowledge about the shape of the
surface and the approximate timescale over which that
shape might be expected to change.
[4] The salar de Uyuni is a 9000 km2 salt flat located high

in the Bolivian Altiplano (Figure 1) whose halite surface
was mapped by kinematic GPS in 2002 [Borsa et al., 2008].
The 2002 survey showed the salar to be remarkably flat,
with 80 cm total relief over an area of 54 � 45 km, even
though it occurs in an environment with active forcing due
to tectonics and isostatic rebound [e.g., Bills et al., 1994;
McGeary et al., 2003]. Furthermore, the subtle long-wave-
length topography that does exist on the salar appears to be
spatially correlated with the local gravity field. Since the
salar has a near-surface water table and is regularly inun-
dated by a shallow wet-season lake, one possibility is that
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its surface resembles the equipotential surface to which the
water table conforms, an outcome that would explain both
the overall flatness of the surface and its correlation with
mapped gravity.
[5] We test this hypothesis about the shape of salar

topography by constructing a centimeter-level estimate of
the local equipotential surface from gravity observations
and comparing it to the GPS-derived digital elevation
model (DEM) of the salar. Although it is unusual for an
equipotential surface other than the geoid to be used as a
geodetic reference, the difficulty of reducing gravity
observations to the geoid through 4000 m of topography
warrant this step.
[6] We also address the question of how water might

control salar topography. Unlike typical sediments, salt moves
almost entirely in aqueous solution. Dissolved salt is trans-
ported in overland and groundwater flows until it is precip-
itated by evaporation, with complicating effects due to
changes in dissolution rates, saturation state, evaporation rate,
and wind and Coriolis forcing. While rainwater, groundwater,
and surface water all play a role on the salar, we focus on
direct precipitation because it is a regular phenomenon and is
clearly involved in halite dissolution and redeposition across
the breadth of the salar. Our coupled overland flow/salt

transport model illustrates how rain might shape the surface
over decadal periods.

2. Data

2.1. DEM of the Salar de Uyuni

[7] The best existing topographic data for the salar de
Uyuni is the DEM generated from a 2002 kinematic GPS
survey for the purpose of establishing a reference surface for
satellite altimeter calibration and validation [Borsa et al.,
2008]. This GPS DEM is a 54 � 45 km uniform grid
(Figure 2) whose coordinates are vertically referenced to the
World Geodetic System 1984 (WGS84) ellipsoid and have
an estimated vertical error of 2 cm root mean square (RMS)
with respect to the true physical surface. DEM elevations
range over 78 cm, from a low of 3696.87 m in the south to
3697.65 m in the northeast, with the general trend between
these two extremes mimicking the slope of the long-
wavelength geoid.

2.2. Gravity Measurements at the Salar de Uyuni

[8] We obtained detailed gravity data for the salar de
Uyuni from a compilation of regional observations de-
scribed by Cady and Wise [1992]. The gravity measure-
ments we use are from stations in the Yacimientos
Petroliferos Fiscales Bolivianos (YPFB) portion of the data
set. From the YPFB data, we selected a subset of 10,894
points located within a 140 � 140 km bounding box

Figure 1. True-color Moderate-Resolution Imaging Spec-
troradiometer image of the salar de Uyuni and environs in
the Central Andes. The salar is approximately 100 km
across and sits at the low point of an internal drainage basin
that covers most of the image area within the borders of
Bolivia. Its surface is almost pure halite (sodium chloride)
and appears bright white during the dry season.

Figure 2. Landsat scene of the salar de Uyuni and
surrounding region (200 � 200 km). Station locations from
the Yacimientos Petroliferos Fiscales Bolivianos gravity
survey are plotted as plus symbols, with those in orange
marking the 10,873 stations used in this study. The 45 �
54 km region covered by the GPS digital elevation model
(DEM) is shaded in black. All figures in this paper, unless
otherwise indicated, are oriented north-south.
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centered on the salar (Figure 2), manually deleting 21 points
whose free-air corrected gravity values varied, more than
3 standard deviations from the mean of neighboring
points.
[9] The YPFB, which made these gravity measurements

4 decades ago as part of an oil and gas resources survey, is
Bolivia’s national oil company. Although it made the raw
gravity data from this survey available, the YPFB did not
release metadata or information about the methods used to
obtain the measurements. Each record consists only of
geographic latitude, longitude, and elevation in an unspec-
ified datum, and raw gravity reported to 0.01 mGal. While
plotting gravity station locations onto a WGS84-referenced
Landsat image, we noticed several hundred meters of
horizontal offset with respect to physical features such as
roads that the gravity survey appears to follow. The direc-
tion and magnitude of this offset is consistent with a datum
shift between WGS84 and the Provisional South American
Datum 1956 for Bolivia (PRP-A) [NIMA, 1997]. We trans-
formed gravity station latitude and longitude to WGS84
coordinates assuming the original data were in the PRP-A
datum and observed that the offset with respect to Landsat
features disappeared.
[10] Mean gravity station elevation within the salar GPS

survey area is 3653.55 m. This is 0.77 m lower than the
mean WGS84/EGM96 geoidal height of the GPS DEM,
which we obtained by adding to the DEM elevations the
geoidal undulation (vertically referenced to the WGS84
ellipsoid) from Earth Gravitational Model 1996 [Lemoine
et al., 1998].

2.3. Low-Resolution DEM of the Bolivian Altiplano

[11] For the purpose of modeling terrain effects on
gravity, we obtained the 90 m resolution Shuttle Radar
Topography Mission (SRTM) DEM for the region encom-
passing the salar de Uyuni. SRTM coordinates are also in
the WGS84 datum, vertically referenced to the WGS84/
EGM96 geoid. The SRTM DEM has a quoted horizontal
accuracy of ±20 m and a vertical accuracy of ±10 m at the
90% confidence level over distances of 200 km [Rabus et
al., 2003]. Over the salar GPS survey area, the SRTM DEM
gives a mean height of 3659.10 m, compared to 3654.32 m
for the mean WGS84/EGM96 geoidal height of the GPS
DEM. This indicates that the SRTM DEM is high by about
5 m in the region, which is within the stated accuracy of the
data set.

2.4. Coregistering the Data Sets

[12] On the basis of the comparisons above, we shifted all
SRTM elevations downward by a uniform 4.78 m and all
gravity station elevations upward by 0.77 m to remove
biases with respect to the GPS DEM. We then added
WGS84/EGM96 geoidal heights (calculated at the full
degree-360 model resolution) to the SRTM and gravity
station elevations so that all elevations (GPS, SRTM, and
gravity) would be vertically referenced to the WGS84
ellipsoid. The only caveat is that gravity station elevations
were likely obtained by spirit leveling, which would intro-
duce a relative error between station elevations and the GPS
DEM on the order of local undulations of the geoid. On the

salar, the geoid is flat to within decimeters, so the resulting
errors are negligible.

3. Obtaining the Equipotential Surface at the
Salar de Uyuni From Gravity Observations

3.1. Defining the Salar Reference Ellipsoid
and Equipotential Surface

[13] The study of Earth’s equipotential surfaces has
historically focused on determining the shape of the geoid,
loosely defined as the equipotential surface of Earth’s
gravity field corresponding to mean sea level. The problem
is traditionally posed in terms of defining the undulations of
the geoid about the surface of a standard mean Earth
reference ellipsoid that closely approximates Earth’s mean
shape and mass. Our aim is to describe an equipotential
surface almost 4 km above the geoid, an alternative problem
whose theoretical development is similar to the canonical
approach for the geoid as described by Heiskanen and
Moritz [1967].
[14] We follow convention by defining our equipotential

surface of interest as the set of points in Earth-centered
Cartesian space that satisfy the relationship W(x, y, z) = W0,
where W is the scalar geopotential field and W0 is an
appropriate constant geopotential value. Since we are trying
to determine whether the topographic surface of the salar de
Uyuni is an equipotential surface, a reasonable choice for
W0 is the approximate geopotential value associated with
the center of the salar DEM. We use the EGM96 model to
obtain W0 = 62601127.53 m2/s2 at WGS84 ellipsoidal
coordinates 20.21189S, 67.42253W, 3697.30 m. Although
there is an infinite family of nearby equipotential surfaces
that could be used for this comparison, differences in shape
between closely spaced equipotential surfaces are negligible
and can be ignored.
[15] The reference ellipsoid is similarly defined as the

level ellipsoid satisfying U(x, y, z) = U0, where the gravity
potential field U (the normal potential field) is considered to
be generated by a homogenous interior mass distribution. In
theory, any of the standard mean Earth ellipsoids could be
used for the calculation of an equipotential surface at the
elevation of the salar de Uyuni, but choosing an ellipsoid
many kilometers below surface gravity observations com-
plicates estimation of the Helmert gravity anomaly and can
introduce large errors in the gravity reduction. We circum-
vent this problem by choosing a new reference ellipsoid that
has the same Earth gravitational constant GM, rotation rate
w, and flattening f as the WGS84 mean Earth ellipsoid, but a
semimajor axis (a = 6381835.7776 m) that causes the
surface of the ellipsoid to pass through the coordinates used
to calculate W0 above. From Stokes’ Theorem, the location
of an axisymmetrically distributed mass within an ellipsoid
does not change the potential field at the ellipsoid boundary.
This implies that the standard equations for normal potential
and gravity on this new ‘‘salar ellipsoid’’ correspond to the
upward continued harmonic fields generated by the WGS84
ellipsoid, ensuring that the new reference potential approx-
imates the geopotential at the salar elevation. Using WGS84
ellipsoid parameter values with the new semimajor axis
from above, we calculate the normal potential U0 in
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closed form [Heiskanen and Moritz, 1967, p.67] as
62600674.16 m2/s2.

3.2. Stokes’ Formula

[16] Our generalized approach takes the usual route of
relating the equipotential surface undulations N to the
gravity anomaly Dg via Stokes’ formula. To incorporate
our choice of an arbitrary reference ellipsoid and equipo-
tential surface, we make two slight modifications to the
standard calculation. First, we calculate the gravity anomaly
Dg by subtracting normal gravity g on the salar ellipsoid
(rather than on the WGS84 ellipsoid) from observed gravity.
Second, we use the generalized Bruns’ formula [Heiskanen
and Moritz, 1967, p. 100] to define the equipotential surface
undulation, which includes a term to account for the fact
that the geopotential value W0 on our chosen equipotential
surface is not the same as the normal potential U0. The
solution of Bruns’ formula (in planar coordinates because of
the limited extent of our gravity data) is Stokes’ formula
[Schwarz et al., 1990]

N xP; yPð Þ ¼ 1

2pg

Z
E

Z
Dg x; yð ÞS x� xP; y� yPð Þdxdyþ U0 �W0

g

ð1Þ

where g is normal gravity averaged over the local domain E,
and the Stokes’ kernel S is given by

S x� xP; y� yPð Þ ¼ x� xPð Þ2 þ y� yPð Þ2
h i�1=2

: ð2Þ

When written in terms of the Fourier transform of (1)
[Sideris and Li, 1993], Stokes’ formula becomes

N x; yð Þ ¼ F�1 1

2pg kj jF Dg x; yð Þ½ 

� �

þ U0 �W0

g
ð3Þ

where k is the wave vector < kx, ky > of coordinate wave
numbers corresponding to each Fourier component of
F[Dg]. The division of F[Dg] by the wave vector
magnitude jkj attenuates the shortest wavelengths in the
gravity field the most, which means that the equipotential
surface N resembles a smoothed version of the gravity
anomaly.

3.3. Calculating the Helmert Gravity Anomaly

[17] While the Stokes’ calculations in (1) and (3) assume
that the gravity anomaly Dg is measured directly on the
equipotential surface being estimated and that there is no
mass above this surface, this is rarely the case for actual
gravity observations. Following recent convention, we em-
ploy Helmert’s second condensation method [Heiskanen
and Moritz, 1967, p. 145] to reduce observed gravity
measurements to their corresponding values on the equipo-
tential surface and to compensate for topographic mass,
ignoring atmospheric mass because of the proximity of our
measurements in distance and elevation. Using the Moritz-
Pellinen (MP) approach [Jekeli and Serpas, 2003], the
(Helmert) gravity anomaly is

Dg ¼ gobserved þ dgdirect þ dgindirect þ dgFA � g ð4Þ

where adjustments to observed gravity (gobserved) are made
to compensate for the direct topographic effect (dgdirect) of
redistributing topographic mass to an infinitesimal layer on
the equipotential surface, the secondary indirect effect
(dgindirect) to correct for the effect of the mass redistribution
on potential, and the free-air reduction (dgFA) to move the
observation point from the topographic surface to the
equipotential surface. Normal gravity g from the salar
reference ellipsoid is evaluated using the Somigliana
formula [Heiskanen and Moritz, 1967, p. 70] at the location
of each gravity measurement. For these calculations we
project the latitude/longitude of the YPFB stations and
SRTM data into Universal Transverse Mercator (UTM)
coordinates and transform all elevations from heights above
the WGS84 ellipsoid to heights above the salar ellipsoid.
[18] We numerically evaluate the direct topographic effect

at the location of each gravity measurement with topogra-
phy from the SRTM DEM, using the standard formula

dgdirect xP; yPð Þ ¼ Gr
2

Z
E

Z
h x; yð Þ � hPð Þ2S x� xP; y� yPð Þ3dxdy

ð5Þ

where the subscript P indicates the coordinates of gravity
observations, h is topographic elevation, G is the gravita-
tional constant, r is rock density at the canonical value of
2670 kg/m3 [Hinze, 2003], and S(x, y) is the Stokes’ kernel.
Figure 3 shows the direct effect calculated for the entire
salar de Uyuni region, with values ranging from 0.016 to
39 mGal and a mean of 1.4 mGal. As expected, higher

Figure 3. Contour plot of the direct topographic effect on
gravity in the salar de Uyuni region (2 mGal contours in
blue, 10 mGal contours in green). Over this area, the direct
effect ranges from 0.016 mGal to 39 mGal, with the largest
values associated with the stratovolcanos surrounding the
salar. On the salar itself, the direct effect is negligible.
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values occur on or near rough topography, while on the salar
itself the direct effect is close to zero.
[19] The indirect effect is the vertical shift of the equipo-

tential surface due to the geopotential change brought about
by the topographic mass redistribution. Since the Helmert
anomaly is evaluated on the equipotential surface, the effect
of this shift on gravity must be considered. Because our
choice of equipotential surface results in so little redistrib-
uted mass, the secondary indirect effect on gravity does not
exceed 0.002 mGal in magnitude, a value smaller than the
several approximation errors in the overall calculation. We
therefore ignore this effect on the Helmert anomaly, setting
dgindirect in (4) to zero.
[20] The traditional way to downward continue gravity

anomalies from the topographic surface to the equipotential
surface is via the free-air reduction [Heiskanen and Moritz,
1967, p.115], typically expressed as the first term of the
Taylor expansion of normal gravity in height above the
geoid

dgFA � � @g
@h

h: ð6Þ

[21] It is assumed in (6) that the intervening mass has
been removed or redistributed and that the contribution of
gravity from the nonnormal (i.e., disturbing) potential field
is ignored. The latter assumption can be problematic for
high-elevation surveys such as ours, since errors due to
ignoring the disturbing potential field are compounded as
the height of the gravity measurements above the geoid
increases. While it is possible to account for the disturbing
potential by the downward continuation of actual gravity
measurements via Poisson’s integral, this approach requires
dense gravity observations over a large area and magnifies
any errors or gaps in the measurements [Bayoud and Sideris,
2003].
[22] We minimize the risks inherent in downward contin-

uation by using a reference equipotential surface close to the
gravity measurements (rather than the geoid, which is 4 km
below) and estimating the free-air correction from

dgFA � � gEGM96 � gEGM96
ho

� �
ð7Þ

where gEGM96 is EGM96 model gravity at the measurement
height and gho

EGM96 is model gravity at the equipotential
surface height ho corresponding to the potential value W0.
This is more accurate than using the normal gradient for the
correction, since the EGM96 model also includes most of
the long-wavelength curvature present in the actual gravity
field. We note that on the salar, gravity measurements are
made so close to the equipotential surface that the free-air
reduction is effectively zero.
[23] Finally, the redistribution of mass onto the equipo-

tential surface results in an ‘‘indirect effect’’ on the geo-
potential that shifts the equipotential surface at any given
point by some value dN. We calculated the indirect effect
using the gravitational potential equations from the MP
approach and determined that within the boundaries of the
salar GPS survey the indirect effect was uniformly less than
1 mm and could therefore be ignored.

3.4. Remove-Restore Calculation

[24] Calculating the free-air correction as we do in (7)
makes it very easy to implement the standard ‘‘remove-
restore’’ technique for minimizing error due to ignoring the
long-wavelength gravity field in the locally evaluated planar
Stokes’ formula. We remove long-wavelength gravity from
the Helmert anomaly by subtracting tide-free EGM96
gravity values on the equipotential surface (gho

EGM96), ignor-
ing the �2 mm elevation slope over region due to the
permanent solid earth tide. EGM96 is a degree-360 spher-
ical harmonic geopotential model, which means that it
contains wavelengths down to approximately 110 km
(2pRearth/360). In the following discussion, we will use
the term ‘‘long-wavelength’’ for wavelengths 110 km and
longer and ‘‘short-wavelength’’ for wavelengths less than
110 km.
[25] Subtracting gho

EGM96 cancels the corresponding term
in the free-air calculation, resulting in the residual Helmert
gravity anomaly equation

DgR ¼ gobserved þ dgdirect � gEGM96 � g ð8Þ

where the indirect effect term has also been dropped.
Substituting DgR for Dg allows us to generate the residual
equipotential surface NR via (3). The actual equipotential
surface N is obtained from NR by restoring the long-
wavelength undulation from EGM96, as discussed below.

3.5. Fourier Expansion of the Helmert Gravity
Anomaly and the Solution of Stokes’ Formula

[26] To evaluate Stokes’ formula in (3) typically requires
gridded values for the Helmert gravity anomaly, with the
analytical Fourier transform recast as a discrete Fourier
transform (DFT). Since most gravity surveys follow roads
and other navigable terrain, use of the DFT requires
resampling and interpolating gravity data sets that often
contain large areas with no observations. This presents a
considerable challenge for most gridding algorithms, since
the autocorrelation information needed for accurate inter-
polation across large data gaps is difficult to assess from the
survey data itself. In addition, the gravity field is not
necessarily stationary over the survey region and is likely
to be anisotropic, which means that its autocorrelation
statistics may vary with location and azimuth.
[27] To eliminate the need for gridding altogether, we

adopt an alternative approach to the DFTwhereby we model
the short-wavelength gravity field via the least squares
fitting of harmonic basis functions to the residual Helmert
gravity anomaly data. This approach is motivated by the use
of finite harmonic series for trend analysis of potential data
[Bhattacharyya, 1965; Henderson and Cordell, 1971;
James, 1966] and closely follows the formal treatment
given by Duijndam et al. [1999] for application to seismic
signals.
[28] Using the same Fourier expansion that appears in the

DFT, we model the residual Helmert gravity anomalies from
(8) as

DgR xi; yið Þ ¼
XA

a¼�A

XB

b¼�B
c a; bð Þ e2pi xia=Lxþyib=Lyð Þ ð9Þ
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where the exponentials are planar harmonic functions
parameterized by their fundamental wavelengths Lx and
Ly, and the c(a, b) are complex expansion coefficients. Lx
and Ly are the longest wavelengths in the fit, and we set both
to 280 km to create an empty border around the 140� 140 km
data window. This allows all model wavelengths to freely
adjust to their periodic extensions in the plane, mirroring the
practice of tapering and zero padding in the DFT
[Henderson and Cordell, 1971]. The parameters A and B
determine the shortest wavelengths of the fit (i.e., Lx/A and
Ly/B) and are chosen so that the resolution of the basis set is
matched to the smallest significant wavelengths in the data.
Because the spacing between north-south and east-west
survey lines is quite variable, we take the model resolution
to be identical in both coordinate directions, setting A = B.

[29] Since (9) is linear in the coefficients c(a, b), we
represent it as the overdetermined system of equations

DgR ¼ Dc; ð10Þ

where DgR is the N vector of residual gravity anomaly
observations, c is an M vector of unknown coefficients and
D is the N � M design matrix of basis vectors consisting of
the harmonic functions evaluated at each point (xi, yi)

D ¼

e2pi �x1A=Lx�y1B=Lyð Þ :: e2pi x1A=Lxþy1B=Lyð Þ

: : :

e2pi �xNA=Lx�yNB=Lyð Þ :: e2pi xN A=LxþyNB=Lyð Þ

0
BBBB@

1
CCCCA: ð11Þ

Figure 4a. Contour plot of the A = B = 16 harmonic expansion model for the residual Helmert gravity
anomaly data on the salar de Uyuni (2 mGal contours). Data locations are plotted in orange and are
generally confined to the salar and the flatter surrounding terrain, with gaps at the edges of the data
window and in areas of high topographic relief. The model misfit is only 0.96 mGal RMS, but the
extreme amplitudes of the model within the data gaps (up to 109 mGal) indicates that it poorly represents
the underlying gravity anomaly field.
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With L set to 280 km, we obtained normal equation
solutions of (10) for a range of A = B values and examined
the resulting models. While higher values of A and B
inevitably result in better fits to the data, ‘‘dimpling’’
artifacts appear once the model resolution is higher than the
spacing between survey lines. The highest-resolution model
that does not exhibit dimpling between survey lines is
formed by taking A = B = 16. This model has 1088 terms, a
horizontal resolution of 17.5 km, a data misfit of 0.95 mGal
RMS and almost no spatial correlation in its fit residuals.
Unfortunately, it also exhibits large-amplitude fluctuations
off the salar, where there is no data to constrain it
(Figure 4a). This occurs because on an unevenly sampled
domain such as ours, the inner products between the
individual basis vectors comprising D are not necessarily
zero, violating the orthogonality condition necessary for the
stability of the solution. Although a solution is obtained,
some linear combinations of basis vectors have negligible

variance, allowing certain expansion coefficients to take on
large values without impacting the goodness of fit. This is
unacceptable for our application because the wave number
division in Stokes’ formula spreads out long-wavelength
energy in the gravity anomaly, allowing model anomalies
outside the data boundaries to contaminate the calculation
of the equipotential surface inside them.

3.6. Stabilizing the Gravity Anomaly Expansion

[30] We address the stability issue by constructing an
orthonormal basis set from the basis vectors in D and then
choosing a subset that allows a close fit to the data while
minimizing the norm of the model coefficients, a technique
often referred to as the method of empirical orthogonal
functions. While previous gravity studies have used ortho-
normalized Legendre polynomials to model global gravity
anomaly data [e.g., Albertella et al., 1999; Hwang, 1993;
Pail et al., 2001], we use orthonormalized planar Fourier
polynomials for the purpose of modeling regional gravity

Figure 4b. Harmonic expansion model of salar de Uyuni residual Helmert anomaly, truncated from
1088 to 478 terms (2 mGal contours). Although model misfit increases to 1.85 mGal and some shorter-
wavelength features are lost, the artifacts of the original model outside the data are heavily damped.
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anomaly data. For our problem, we employ truncated
singular value decomposition (TSVD) of the design matrix
D [Hansen et al., 1992; Xu, 1998], beginning with the
standard singular value decomposition

D ¼ ULVT ð12Þ

where the columns of the N � M matrix U form an
orthonormal basis < u1, . . ., uN > for the original basis
vectors < d1, . . ., dN > in D, and L is an N � N diagonal
matrix of singular values li.
[31] Using (12) we rewrite the expansion of the residual

Helmert gravity anomaly data in (10) as

DgR ¼ ULVTc ð13Þ

whose associated least squares problem has the normal
equation solution

c ¼ VL�1UTDgR: ð14Þ

Small singular values indicate orthonormal basis vectors ui
that are very nearly linearly dependent with other members
of the basis set and thus will contribute least to the fit of
DgR. TSVD techniques drop the k smallest-eigenvalue ui by
setting their inverse singular values in L�1 to zero. This
damps model fluctuations without significantly affecting the
fit to the data, giving us the new truncated solution

ck ¼ VL�1
k UTDgR ð15Þ

where Lk
�1 is the zeroed-coefficient version of L�1.

[32] We employ the commonly used ‘‘L curve’’ technique
to choose the cutoff value k simultaneously minimizes
model size and model misfit, plotting the model norm kck
against misfit kDg � Dck for various k and specifying a
truncation level that corresponds to the maximum curvature

point of the graph [Hansen et al., 1992]. Analyzing a
representative plot for our data (Figure 5), we choose a
truncation of k = 610 to minimize overall model variance.
The 478-term truncated model calculated from (15) is much
better behaved outside the data boundaries, at the acceptable
cost of an increase in RMS misfit to 1.85 mGal (Figure 4b).
The artifacts that remain are short-wavelength and therefore
minimally impact the equipotential surface determination
that we describe below.

3.7. Estimating the Equipotential Surface

[33] Rewriting the Fourier Stokes’ formula from (3) in
terms of the harmonic expansion of the residual Helmert
gravity anomaly, we obtain

NR x; yð Þ ¼ 1

2pg

XA

a¼�A

XB

b¼�B
c a; bð Þ e2pi xa=Lxþyb=Lyð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a=Lxð Þ2þ b=Ly
� �2q

þ U0 �W0

g
ð16Þ

where each expansion term has an associated wave number

k a; bð Þ ¼ k a; bð Þj j ¼ a=Lxð Þ2 þ b=Ly
� �2h i�1=2

: ð17Þ

In matrix form the first term in (16) is expressed as

NR x; yð Þ ¼ 1

2pg
D0 x; yð ÞK�1c ð18Þ

where D0 (x, y) is a matrix of harmonic basis functions
evaluated at the points where the equipotential surface
undulation is sought (identical in construction to the design
matrix D but evaluated at different locations), and K is a
diagonal matrix whose elements are the wave numbers k(a,
b). We handle the singularity at k(0, 0) = 0 by subtracting
the mean value from DgR before fitting in (9) and removing
the (0, 0) term from the fit.
[34] Using the truncated model coefficients from (15), we

calculate the short-wavelength equipotential surface model
NR shown in Figure 6. Aside from the scaling provided by
normal gravity, the only difference between this model and
the Helmert anomaly expansion in Figure 4b is smoothing
due to the wave number division. The full equipotential
surface N is obtained from

N ¼ NR þ NEGM96 ð19Þ

where the ‘‘restored’’ long-wavelength undulation NEGM96

is calculated from the EGM96 model using the salar
reference ellipsoid to generate the normal field.

3.8. Error in the Equipotential Surface Estimation

[35] The Stokes calculation for NR specifically deals with
short wavelengths of the gravity field, with longer wave-
lengths accounted for by the remove-restore method. We
divide our discussion of error accordingly, beginning with
the known errors in the EGM96 that impact the accuracy of
the remove-restore components gEGM96 and NEGM96.
EGM96 error is quite low at longer wavelengths but

Figure 5. Plot of singular value decomposition-truncated
model misfit versus the size of the model coefficient vector
ck, with varying truncation level k. An approximate balance
between model size and misfit is obtained at the maximum
curvature point of the plot, which corresponds to the
truncation of the 1088 terms in the original model to 478
terms (i.e., k = 610).
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increases considerably at shorter wavelengths. Cumulative
error grows from 14.5% of the RMS signal strength at
degree 120 (330 km wavelength) to 35.4% at degree 360
(110 km wavelength) [Lemoine et al., 1998]. Since we can
expect the largest errors in the YPFB survey to be at the
longest wavelengths in the data [Heck, 1990], survey errors
will combine with errors in gEGM96 to greatly limit the
accuracy of our Helmert gravity anomaly model at wave-
lengths in the range of 100�200 km. Fortunately, over the
relatively small area of the salar where we compare DEM
topography and the YPFB-derived equipotential surface,
these long-wavelength errors will manifest themselves pri-
marily as a residual planar trend which can easily be
removed. NEGM96 will also contain errors at these wave-
lengths, similarly manifested as a planar trend across the
comparison region.

[36] As for the Stokes’ calculation, choosing an equipo-
tential reference surface near the mean elevation of the
gravity stations in the YPFB survey dramatically reduces
the short-wavelength errors associated with estimating the
Helmert gravity anomaly from the raw gravity data. We
were unable to identify error sources that would contribute
more than about 1 mGal average error in the calculations for
direct/indirect effects or the free-air reduction. Furthermore,
on the salar itself, the lack of topography and the fact that
gravity measurements are made within a few decimeters of
the equipotential surface means that there is minimal gravity
reduction required, with correspondingly negligible errors.
[37] What this means from the standpoint of the error in

NR at different component wavelengths can be determined
directly from (18). For the 17.5 km minimum wavelength
in the model, a 1 mGal error in the gravity anomaly

Figure 6. The equipotential surface corresponding to the Helmert gravity anomaly model in Figure 4b
(2.5 cm contours). The dominant feature is the central plateau, which corresponds to the broad high in the
Helmert model and stretches across the western portion of the GPS survey area. The elongated depression
running SW-NE crosses the southern portion of the GPS survey. Short-wavelength features in the
Helmert model are almost completely erased by the wave number division that yields the equipotential
surface.
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expansion coefficient yields a 2 mm error in NR. At the
280 km maximum wavelength, the error is approximately
3 cm. These two extremes are bounds on the Helmert
anomaly expansion error. The 1.85 mGal RMS misfit
between our truncated expansion model and the Helmert
anomaly data might appear to be a significant error source,
but since it is entirely due to structure in the gravity field at
wavelengths shorter than those in our expansion, the
corresponding omission error in NR is likely to be on the
order of millimeters.
[38] A potential shortcoming of our gravity anomaly

model is that it incorporates no direct measurements of
the gravity field within the data gaps of the YPFB survey.
To estimate the impact of the missing data, we simulated its
effect on the estimation of NR using a synthetic gravity

anomaly field with a band-limited red spectrum (spectral
index of 1, wavelengths between 17.5 km and 280 km) and
a magnitude equivalent to that of the measured anomalies
around the salar. We sampled this anomaly field at the
station locations in the YPFB survey, substituted these
values for our original Helmert anomalies, and calculated
the corresponding equipotential surface using the same
algorithm we used for actual YPFB data. Comparing this
surface with the one calculated from the full synthetic data
set, we find uniform vertical biases of up to 4 cm over the
area of our salar GPS survey. Such biases are due to the
magnification of long-wavelength error through wave num-
ber division, but since they do not affect our comparison of
relative shape of salar topography compared to the equipo-
tential surface, they are not of concern here. More impor-
tantly, our results also show that the gravity data gaps have a
negligible effect on the shape of the equipotential surface
where it overlaps with the salar DEM.

4. Results

[39] To test our hypothesis that topography on the salar de
Uyuni describes an equipotential surface of Earth’s gravity
field, we compare the equipotential surface estimated above
with topography from the GPS-derived DEM of the salar.
Because of long-wavelength error introduced by the
EGM96 model, we cannot do this comparison directly.
Instead, we proceed stepwise with topography from the
salar DEM (Figure 7a). DEM elevations are referenced to
the salar reference ellipsoid and have a 12.9 cm standard
deviation and a range of 70 cm (see Table 1).
[40] Figure 7b shows the EGM96 equipotential surface A

that passes through the centerpoint of the salar DEM. This
long-wavelength equipotential surface correlates well with

Figure 7a. Topography of the salar de Uyuni from GPS
(DEM). The surface has a standard deviation about the
mean of 12.9 cm and a range of 69 cm. Elevations in
Figures 7–10 are identically scaled according to the color
bar shown.

Table 1. Topography Modeling Resultsa

Elevation
Range
(cm)

Standard
Deviation

(s)
Variance
(cm2)

Original
Variance
(%)

GPS-derived DEM 69.6 12.9 cm 166 100
DEM minus A 41.8 9.4 cm 88 53
DEM minus A + B 33.7 7.8 cm 61 37
DEM minus A + B + C 19.0 3.5 cm 12 7

aThe first row shows statistics for the salar de Uyuni digital elevation
model (DEM) described in section 2.1, and subsequent rows show the
changes due to subtracting various components of modeled topography
(where A is EGM96 equipotential surface, B is planar error estimate, and C
is equiptotential surface derived in this paper).

Figure 7b. The EGM96 equipotential surface (A) corre-
sponding to Figure 7a, showing the similarity in the overall
slopes of the topography and the equipotential field.
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the long-wavelength topography: both rise to the northeast
and show similar broad-scale curvature. Subtracting A from
the DEM yields a topographic residual (DEM minus A,
Figure 8a) whose standard deviation is 9.4 cm and range is
42 cm.

[41] DEM minus A contains the cumulative error present
in all degrees of the EGM96 model. As discussed in section
3.8, we assume that this error over the 45 � 54 km domain
of comparison should manifest itself primarily as a residual
planar trend in the data. We estimate this trend by a least
squares planar fit to DEM minus A, obtaining plane B
(Figure 8b). Removing this plane gives us detrended resid-
ual topography (DEM minus A + B, Figure 9a) with a
standard deviation of 7.8 cm, whose dominant feature is a
broad NE-striking ridge flanked by depressions to the NW
and SE.
[42] The short-wavelength equipotential surface calculated

from the YPFB gravity data is also contaminated by long-
wavelength EGM96 error due to the fact that we remove
EGM96 gravity when calculating the residual Helmert
anomaly. We remove the best fitting plane from the portion
of the equipotential surface within the DEM domain to
obtain the detrended equipotential surface C (Figure 9b).
[43] Comparing the detrended residual topography with

the detrended equipotential surface (Figures 9a and 9b)
shows that despite differences in short-wavelength details,
these surfaces are a close match. Differencing the two gives
a residual surface (DEM minus A + B + C, Figure 10a) with
a standard deviation of only 3.4 cm. What is striking about
this representation of salar topography is how little of the
original topographic variance remains. Referencing the DEM
to the salar equipotential surface (which is what the steps
leading to DEM minus A + B + C entails) explains 93% of
topographic variance, a result that one might expect for a
body of water but not for the solid earth.
[44] A potential explanation for the remaining topographic

variance is that it is simply error in the DEM or in the
derived equipotential surface. We are fortunate to have an

Figure 8a. The topographic residual (DEM minus A)
obtained by removing the EGM96 surface in Figure 7b from
the topography in Figure 7a. Its standard deviation is 9.4 cm
and range is 42 cm.

Figure 8b. The best fitting plane (B) to the residual
surface in Figure 8a. This plane is a proxy for error at
wavelengths longer than the distance across the DEM.

Figure 9a. The detrended residual (DEM minus A + B)
obtained by removing the plane in Figure 8b from the
residual topography in Figure 8a. Its standard deviation is
7.8 cm and range is 34 cm.

B10408 BORSA ET AL.: MODELING SALAR DE UYUNI TOPOGRAPHY

11 of 21

B10408



independent estimate of geoid-referenced topography
obtained via optical absorption measurements of the flooded
salar from the Multiangle Imaging Spectroradiometer
(MISR) [Bills et al., 2007] (Figure 10b). Bills et al. [2007] specifically measure water depth, but since the water

surface is also nominally an equipotential surface, their
method gives height with respect to the salar equipotential
surface. Despite possible error in the MISR measurement
due to wind forcing, the two estimates of residual topogra-
phy are remarkably similar. The standard deviation of their
difference is 2.3 cm, due to both the higher MISR resolution
as well as unidentified longer-wavelength errors. Since the
errors in the two estimates should be uncorrelated, 2.3 cm is
an upper bound on their combined error (and thus on their
individual errors as well).
[45] The final product of our gravity modeling is the

composite equipotential surface derived from the sum of
the EGM96 equipotential surface A, the plane B, and the
short-wavelength equipotential surface C (Figure 11). This is
our estimate of the shape to which a body of water in the salar
basin would conform under the influence of gravity alone. In
the next section we introduce a process model that provides a
possible explanation of why this shape closely matches the
topography of the actual salar surface.

5. Discussion

[46] The salar de Uyuni is one of only a few places on
Earth where the surface of a massive halite deposit is in
regular contact with an ephemeral shallow-water lake. In
such an environment, halite forms a hard, cemented crust
which cannot be directly transported by wind and which
remains hard even when the surface is wet. When the salar
floods, salt enters the water column via chemical dissolution
at the salt/water interface rather than by entrainment due to

Figure 9b. The equipotential surface (C) derived in this
paper from local gravity measurements, detrended to
remove long-wavelength error.

Figure 10a. The short-wavelength topography (DEM
minus A + B + C) remaining after removing the local
equipotential surface in Figure 9b from the detrended
residual in Figure 9a. Its standard deviation is 3.5 cm and
range is 19 cm, showing that most of the variance in the
original DEM has been removed.

Figure 10b. An independent estimate of surface height
relative to the local equipotential surface, obtained using
water depth estimates from a single Multiangle Imaging
Spectroradiometer image. The residual difference between
Figures 10a and 10b has a standard deviation of only 2.4 cm.
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the mechanical action of moving water. Water movement is
relevant to the speed of salt dissolution but only because it
impacts the speed of vertical mixing. On the deposition side,
halite is redeposited on the surface when it precipitates due
to evaporation of saturated brine. While there is no rela-
tionship between current velocity and deposition rate as in
the case with sediment transport, precipitated halite crystals
can form ‘‘rafts’’ on the water surface that are susceptible to
wind action.
[47] If transport in solution is indeed the mechanism by

which halite is moved about the surface, then answering the
question of why the salar surface should closely approxi-
mate the shape of the gravitational equipotential ultimately
depends on understanding the chemical interaction between
water and salt and the forces which physically move water
around the surface. This question is not addressed in the
literature on the formation and evolution of shallow-water
halite deposits. Most studies of halite surfaces [e.g.,
Lowenstein and Hardie, 1985; Schreiber and El Tabakh,
2000] focus on interpreting the submeter-scale structure of
the salt crust formed in the basins of ephemeral lakes.
While these studies are relevant to explaining the smooth-
ness of halite crusts under conditions of repeated flooding,
they do not address the overall shape of the surface.
[48] Landsat images from the past 2 decades confirm that

the salar de Uyuni undergoes an annual cycle of flooding
and desiccation, which provides an ideal aqueous environ-
ment for the dissolution, transport, and redeposition of
halite. The depth of inundation is quite variable from year
to year, with the surface remaining nearly dry in some years
and completely flooded for several months in others. What
is not clear from the imagery is the source of the water on
the salar. Water can be delivered to the salar as rain, surface
runoff from the surrounding catchment, or groundwater
flow, each of which has different implications for the
redistribution of salt. We focus here on the effects of rain

because it is easily modeled and because we have the
necessary observational data. Surface runoff and ground-
water flow should generate a similar pattern of salt transport
toward areas that are topographically depressed, with subtle
differences that we will discuss later.

5.1. Salt Transport by Rainwater

[49] Rain dissolves salt over the entire salar and generally
carries salt from high areas to low via gravity-driven
overland flow. We estimate average annual precipitation in
the salar de Uyuni basin to be 24 ± 17 cm from rain gauge
records at Salinas de Garci-Mendoza (just north of the salar)
in the years between 1950 and 1980. Overlapping data from
the still-operating Oruro station located 200 km further
north shows a similar annual rainfall of 28 ± 11 cm. Most
of this precipitation occurs during the summer rainy season
between December and March and appears from recent
daily records at Oruro to be the result of numerous rainfall
events during these months rather than a few intense storms.
Evaporation rates are not available for the salar itself, but
existing studies suggest that evaporation from exposed brine
in semi-arid climates ranges between 2.0 and 2.5 mm/d
when averaged over the entire year [e.g., Menking et al.,
2000; Tyler et al., 1997]. This rate varies temporally due to
changes in wind, temperature, and radiation flux. Where the
evaporating brine layer is deeper than several centimeters
and winds are calm, a floating crust of surface-nucleated
halite ‘‘hoppers’’ can form, with an observed tenfold reduc-
tion in the evaporation rate [Tyler et al., 1997]. Because
sequential Landsat images of the salar often show many cm
of water evaporating over periods of several weeks, we
believe it unlikely that a hopper crust is typically present. A
possible explanation is that floating salt accumulations are
constantly broken up by wave action from persistent winds
blowing across the long fetch of the salar.
[50] Once on the surface, rainwater becomes quickly

saturated due to the high dissolution rate of halite. If we
take the Na+ and Cl– ratio to be parity, which is very close
to the case on the salar [Risacher and Fritz, 2000], then we

Figure 11a. Composite model of the gravitational equi-
potential surface over the salar de Uyuni, formed from the
sum of components A, B, and C from Figures 7b, 8b, and 9b.
The elevation color scale is the same as in Figures 7–10.

Figure 11b. The salar DEM, for comparison with the
model in Figure 11a.
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can express the rate of dissolution r as [Alkattan et al.,
1997]

r ¼ k 1� c=csatð Þ ð20Þ

where c is the bulk solution concentration, csat is the
saturation concentration and k is an empirically determined
rate constant. Simon [1981] finds k to be 5.5 � 10�6 m/s at
20�C and shows a weak linear trend in k with temperature of
about 2% per �C. The corresponding value of csat at 20�C is
5416 mol/m3 [Kaufman, 1960]. We make a rough estimate
of time to saturation for fresh water of a given depth by
integrating (20) (ignoring volumetric changes due to
solution concentration) and applying the appropriate
boundary conditions, assuming that rainfall impact and
wind are sufficient to thoroughly mix the shallow water
column (Appendix A). Our calculation shows that for
depths �2 cm, fresh water becomes 95% saturated in under
4 h (Figure 12). We will show in Appendix B that overland

flow velocity for such depths is no more than about several
hundred meters per day on the salar, which means that
precipitated water is likely to be saturated before it moves
even 100 m downslope.
[51] Because halite dissolution is so quick, it is not a

limiting factor in salt transport due to precipitation. Trans-
port is instead governed by interaction between the flow and
evaporation of saturated rainwater as it moves across the
surface of the salar. To model this rainwater-mediated salt
transport, we developed a simple one-dimensional model
and applied it to a topography transect across the salar
DEM. The key aspects of this model are as follows: (1) Rain
falls uniformly across the salar surface. (2) The entire daily
rainfall total is delivered once per day to mimic the late
afternoon peak in thunderstorm activity that is responsible
for most summer rainfall [Garreaud, 1999]. (3) When
rainfall occurs, salt goes into solution up to the saturation
limit and the height of the salar surface is correspondingly
reduced by a factor of 0.147 of the rainfall depth. We base

Figure 12. Percentage saturation with time of a well-mixed water column of height a over a pure halite
surface (cf. equation (28)). An initially pure water column of 1 cm takes 1.5 h to reach 95% saturation,
while a 2 cm column takes about 3.5 h.

Figure 13. Rainfall recorded at Oruro, Bolivia for the period July 2002 to June 2003. Total precipitation
was 29.5 cm, most of which occurred in the rainy season between December and March.
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this ratio on the 2.16 g/cm3 density of halite, its molecular
weight of 58.4 g/mol and a saturation concentration of
0.00542 mol/cm3 at 20�C. (4) Saturation of precipitated
water with halite is instantaneous. (5) Water flows due to
gravity forcing only, with no effects due to winds or tides.
Since gravity flow is driven by differences in fluid height
about the local equipotential surface, the topographic input
to the model is referenced to the salar equipotential surface
rather than to the WGS84 ellipsoid. (6) Flow on the salar is
considered to be laminar, as it is characterized by Reynolds’
numbers of less than 100 (we assume a nominal water depth
a of 1 cm, water velocity u of 1 cm/s, and kinematic
viscosity of 1.61 � 10�6 m2/s). We model this flow using
a form of the Navier-Stokes equations relevant to a one-
dimensional laminar flow regime (Appendix B). (7) Evapo-
ration is spatially and temporally uniform, with no provisions
for wind, radiation, or other effects on the evaporation rate.
(8) Since surface water is considered to be saturated at all

times, evaporation is accompanied by the redeposition of salt
in accordance with the 0.147 factor cited above.
[52] We use the July 2002 to June 2003 rainfall record

from Oruro to provide the rainfall input to our model
(Figure 13). The precipitation total during this period is
29.5 cm, which is 23% higher than the estimated average
salar de Uyuni rainfall but well within the one-sigma limits
of rainfall variability. The topographic input to our model is
the transect in Figure 14 across DEM minus A + B + C.
Although we could have used simulated topography, we
were interested to see how long it would take to flatten the
observed topographic residual with respect to the salar
equipotential surface.
[53] To illustrate the overland flow produced by our

model with the topographic profile above, we show in
Figure 15 a sequence depicting the flow and evaporation
of surface water from a single 2-cm rainfall event. Surface
water starts off as a uniform layer (Figure 15a), which
immediately begins to move downslope and pond in low-
lying areas (Figure 15b). Evaporation gradually lowers the
level of ponded water (Figure 15c) until the surface is again
dry. Although we do not show salt transport here, salt is
dissolved in the initial rainfall and is carried by the surface
water flow. It preferentially precipitates in the low areas
where most evaporation occurs.
[54] We run the full flow/transport model for 10 years,

using the same rainfall input each year for the purpose of
consistency. Figure 16a shows the successive evolution of
the surface, starting from the ‘‘high-relief’’ original transect
and progressing to the nearly flat profile at the end of year
10. Since the initial topography is referenced to the salar
equipotential surface, the free water surface in our model is
horizontal. The model profiles therefore evolve toward the
equipotential surface under conditions of natural precipita-
tion, which agrees with our observation that the salar
surface very closely approximates the shape of the gravita-
tional equipotential. Surface evolution slows considerably
in later years as the topographic slope drops almost every-
where to less than 1 � 10�6 and flow velocity decreases
accordingly. Slower flow leads to slower salt transport
because the salt is not transported as far before it is
redeposited onto the surface via evaporation.
[55] Higher evaporation rates slow salt transport as well.

The direct effect of increased evaporation is to precipitate

Figure 14. Location of the topography transect (A-AA)
used for overland flow modeling. We use topography from
the geoid-referenced DEM of the salar de Uyuni, since
gravity-driven water flow is related to water height above
the geoid rather than above the ellipsoid.

Figure 15a. Initial rainfall of 2 cm, distributed as a uniform surface layer.
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salt higher on the slopes. But there is also an indirect effect
on salt transport due to the decrease in water depth from
evaporation: flow velocity is proportional to the square of
depth, which means that salt transport is slowed consider-
ably as depths get small. We test the impact of a higher
evaporation rate on our model by increasing the evaporation
rate by 25%, to 2.5 mm/d. The result is the set of profiles in
Figure 16b, which show a relative slowdown in the profile
evolution once the high initial slopes disappear. This sug-
gests that in a high-evaporation/low-slope regime, large rain
events do most of the salt transport, since it is only then that
the flow velocity is high enough to overcome the quick
evaporation.

5.2. Salt Transport by Surface Runoff

[56] On the basis of the low level of dissolved salts found
in the inflow from the Rio Grande at the southeast corner of
the salar [Rettig et al., 1980], we believe that surface runoff
onto the salar is mostly fresh water which dissolves salt near
the salar perimeter before flowing out onto the surface. The
surface dissolution of runoff can be seen as shallow water-
filled ‘‘peripheral moats’’ (to use the phrase from Comstock
and Bills [2004]), which are the darker areas around the
edges of the salar in Figure 11. Even if the runoff does not
completely mix with the denser brines in the moats, it

should become saturated quickly as it moves onto the salar.
This provides a mechanism for moving salt from the edges
of the salar toward the center. Assuming that the volume of
water involved is fairly large, runoff events will result in
quick flow across the salar. Evaporation will precipitate a
layer of salt across the salar proportional to water depth.
Deeper areas will be preferentially filled at the expense of
shallower areas, with a qualitative effect similar to that of
salt transport due to rainwater flow.
[57] We do not attempt to model the effects of runoff for

two reasons. First, it is unclear how often significant
amounts of runoff reach the salar, let alone what the volume
of runoff actually is. In most years, the amount of surface
water apparent in satellite images of the salar can be entirely
explained by direct precipitation alone. Second, even when
inundation does occur, we do not know how runoff is
distributed around the salar. It matters from the modeling
standpoint whether water is delivered primarily by the three
or four streams emptying into the salar or whether it just
runs off directly from the surrounding catchment.

5.3. Salt Transport by Groundwater Flow

[58] Groundwater moving into the salar de Uyuni basin
from rainfall in the surrounding drainage area is likely to be
a significant source of fresh water into the salar system.

Figure 15b. After 2 days, overland flow has filled low-lying areas, with continuing downslope water
movement from higher areas.

Figure 15c. After 5 days, sloping surfaces are generally dry and ponded water has begun to evaporate.
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Since there are no comprehensive studies of groundwater
movement in the area, we do not know how groundwater
behaves in the subsurface. Our basic assumption, however,
is that groundwater saturates underground due to contact
with brine and solid halite and therefore does not dissolve
halite at the surface.
[59] On the deposition side of the equation, however,

there is evidence that groundwater is important. Drilling pits
dug into the salar have been observed to fill with salt in a
span of 2 years (B. Bills, personal communication, 2004).
Since the water table remains close to the salar surface

throughout the year, these pits are always filled with brine.
The evaporation rate from these pits is likely to be very
high, both because the vapor-pressure gradient above an
open-water surface is large and because the albedo of brine
is much lower than that of salt. Evaporation will precipitate
halite and drive a steady flow of brine into the pit through
the subsurface. Over time, the pit will fill with salt. This
may be a mechanism by which the salar provides a return
flow of salt to the peripheral moats, since these are observed
to be filled long after the rest of the surface is completely
dry. This mechanism should also serve to fill low-lying

Figure 16a. Modeled evolution of the topography transect A-AA due to salt transport on the salar by
overland flow of rainwater, with evaporation rate set at 2.0 mm/d. Profiles are at 1-year increments from 0
years (lightest gray) to 10 years (black).

Figure 16b. Same as Figure 16a, but with the evaporation rate set to 2.5 mm/d.
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areas of the salar when the water table is near the mean
surface level.

6. Conclusions

[60] Although our discussion and analysis of salt transport
on the salar is incomplete, we provide evidence that water-
mediated salt transport in all of its forms tends to push the
salar surface toward an equilibrium shape that approximates
the mean free surface of standing water on the salar. This
accords with our observation that salar topography closely
approximates the gravitational equipotential surface to which
the free water surface conforms in the absence of tides and
wind. The fact that there remains residual topography on the
salar despite the constant leveling action of water suggests
that topography is being actively maintained. Indeed, ar-
chived satellite images of the flooded salar show that features
on the surface are stable for many decades, indicating a long-
term dynamic equilibrium between generative and erosive
forces on the salar.
[61] We can guess at the nature of this topography-

generating process, but its rigorous identification is an
obvious direction for future work. The kilometer-scale
wavelengths of the residual topography argues against the
direct effect of moving water, simply because the surface
water layer is never thick enough to support wavelengths
longer than about a meter. An emergent property of an
unknown dynamic system that involves water flow cannot
be ruled out, however. Atmospheric waves are approximately
the correct wavelength, but the pressure differential between
peaks and troughs may be too small to affect the surface
without some kind of positive feedback mechanism ampli-
fying the signal. There is also the possibility of some
subsurface force (circulating groundwater, mud diapirism
in deep sedimentary layers, etc.) pushing the surface upward
from below, although we have no evidence for this.
[62] Simple field measurements to narrow the possibilities

would focus on characterizing air and water flow across the
salar. An array of pressure gauges deployed to several
locations across the salar during the winter peak in east-west
winds could determine the length scales of atmospheric
waves in the region and might confirm whether known
surface features correlate with stable or at least recurring
atmospheric features. Arrays of water pressure gauges
deployed for longer periods could help to establish the
correlation between rainfall and surface water depth and
would help determine the speed and variability of wind-
driven currents on the salar. Even if these measurements were
not conclusive by themselves, they could serve as inputs into
a more complicated water flow model that might exhibit
much more complex behavior than we have been able to
simulate. Whatever the nature of this future work, we expect
that it is only the beginning of a long effort toward under-
standing the geomorphology of this very unusual place.

Appendix A: Saturation Time for Well-Mixed
Sodium Chloride Solutions of Varying Depth

[63] To estimate the time to reach a certain level of
saturation for water overlying a smooth halite surface, we
begin with the dissolution rate equation (20):

r ¼ k 1� c=csatð Þ ðA1Þ

where c and csat are the concentrations of NaCl (mol/m3) in
the bulk solution and at saturation, k is the rate constant for
an infinitely dilute solution (m/s), and we assume that the
water column is well-mixed. The units of r indicate a flux of
salt dS per unit area per second, giving us

r ¼ dS

dt
per unit area: ðA2Þ

Since the bulk concentration in a well-mixed column of
water is just total salt content divided by volume, for unit
area and water depth a, we have

c ¼ S

a
ðA3Þ

and

dc

dt
¼ 1

a

dS

dt
: ðA4Þ

Because we are only concerned with a rough estimate of
time to saturation, we ignore the fact that the volume of an
aqueous NaCl solution expands by 13% as its concentration
increases from zero to saturation (namely a 26% NaCl
solution by mass has a density of 1.1972 g/cm [Lide,
2007]). Inserting (A4) into (A1) gives an approximate
equation for the change of concentration with time

dc

dt
¼ k

a
1� c=csatð Þ ðA5Þ

which we can integrate as

Z
1

1� c=csat
dc ¼

Z
k

a
dt ðA6Þ

to get the expression

c ¼ csat � Ce�kt=a: ðA7Þ

Since c = 0 at t = 0, the constant C is evaluated as csat,
giving us the complete equation for the concentration of
NaCl with time for fixed water depth a:

c ¼ csat 1� e�kt=a
� �

: ðA8Þ

We graph percentage saturation (c/csat) for a = 0.01 m,
0.02 m, 0.05 m and 0.10 m in Figure 13.

Appendix B: Navier-Stokes Equations
for One-Dimensional Overland Flow

[64] The Navier-Stokes equations for one-dimensional
overland flow are a simplification of the two-dimensional
Navier-Stokes overland flow equations, which in turn are
derived from the full three-dimensional formulation by
assuming a small vertical scale relative to horizontal and
integrating over water depth. We use Vreugdenhil’s [1994,
pp.23–24] derivation of the 2-D mass conservation equation

@a

@t
þ @au

@x
þ @av

@y
¼ q ðB1Þ
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and momentum conservation equations

@au

@t
þ @au2

@x
þ @auv

@y
� favþ ga

@h

@x
þ ga2

r0

@r
@x

þ tbx
r0

� @aTxx
@x

� @aTxy
@y

¼ Fx ðB2Þ

@av

@t
þ @av2

@y
þ @auv

@x
þ fauþ ga

@h

@y
þ ga2

r0

@r
@y

þ tby
r0

� @aTyy
@y

� @aTxy
@x

¼ Fy ðB3Þ

where x and y are the two horizontal coordinate directions, u
and v are depth-averaged x and y velocities, a is water
depth, q is water flux (i.e., rainfall, evaporation), g is the
acceleration of gravity, h is the height of the water surface
above the equipotential surface, r0 is average water density,
r is actual water density, tb is vertical bed stress given a no-
slip bottom boundary condition, T is the sum of lateral
stresses due to friction and advection, F is forcing due to
wind, tides, etc., and f is the Coriolis parameter 2w sinq with
earth rotation rate w and geographic latitude q. We note that
multiplying (B2) and (B3) by the average density r0 restores
their units to that of momentum (kg�m/s).
[65] We simplify the equations for momentum conserva-

tion by using the standard assumptions of constant density
and small lateral shear compared to vertical shear [e.g.,
Esteves et al., 2000; Fiedler and Ramirez, 2000; Zhang and
Cundy, 1989]. We also follow the usual convention of
ignoring the forcing terms F. This gives us

@au

@t
þ @au2

@x
þ @auv

@y
� favþ ga

@h

@x
þ tbx

r0
¼ 0 ðB4Þ

@av

@t
þ @av2

@y
þ @auv

@x
þ fauþ ga

@h

@y
þ tby

r0
¼ 0: ðB5Þ

Coriolis effects cannot be ignored in two-dimensional flow
on the salar. If we calculate the Rossby number (e.g., the
ratio of inertial to Coriolis forces) for average horizontal
flow velocity u = 0.01 m/s, length scale L = 10000 m, and
Coriolis parameter f = 5 � 10�5, we obtain Ro = u/fL =
0.02, which is significantly less than 1 and indicative of
strong Coriolis forcing.
[66] Focusing on flow in the x direction only, we arrive at

the one-dimensional dynamic-wave equations for shallow
overland flow

@a

@t
þ @au

@x
¼ q ðmass conservationÞ ðB6Þ

@au

@t
þ @au2

@x
þ ga

@h

@x
þ tbx

r0
¼ 0 momentum conservationð Þ: ðB7Þ

where we note that the Coriolis term has dropped out. The
first two terms of (B7) are essentially the material derivative
of momentum and represent the change in momentum as

viewed from a fixed point in space. These are usually
referred to as the inertial terms. The third term is the
pressure force due to differential water surface height above
the reference equipotential surface and is the sole driving
force in these equations.
[67] The fourth term in (B7) is the density-normalized

shear stress due to the no-slip condition at the bottom
boundary of the water column. For a laminar flow regime
such as exists on the salar de Uyuni, the appropriate form
for tbx is [Katz et al., 1995; Zhang and Cundy, 1989]

tbx ¼ r0
K0vu

8a
ðB8Þ

where v is now kinematic viscosity and K0 is the Darcy-
Weisbach surface roughness parameter.
[68] Examination of the Froude number (e.g., the ratio of

inertial to pressure terms) indicates that the inertial terms in
(B7) are relatively small. We obtain Fr = u2/(ga) = 0.001
using u = 0.01 m/s and a = 0.01 m. Such a small Froude
number justifies using the diffusive wave approximation,
whereby the inertial terms in the momentum equation are
ignored for the sake of numerical stability [e.g., Di
Giammarco et al., 1996; Ponce et al., 1978]. Using this
approximation and incorporating (B8), we obtain the sim-
plified equations

@a

@t
þ @au

@x
¼ q mass conservationð Þ ðB9Þ

ga
@h

@x
þ K0vu

8a
¼ 0 momentum conservationð Þ: ðB10Þ

Rearranging (B10) gives the flow velocity directly as

u ¼ � 8ga2

K0v

@h

@x
ðB11Þ

where we take g = 9.7864 m/s2, v = 1.61 � 10�6 m2/s and
K0 = 24 for smooth laminar flow [Katz et al., 1995]. For
slopes of �1 � 10�5, which is a good average value for the
salar, (B11) predicts velocities in the range of
0.002�0.008 m/s for water depths of 1�2 cm. This is about
200�700 m/d, which is slow enough to ensure that
precipitated water completely saturates before it has a chance
to flow very far.
[69] We implement closed boundaries in our model by

setting outward velocities at the ends of the topographic
transect to zero, and we take our initial flow and water depth
to be zero. Together with these boundary conditions, (B9) and
(B11) form a system of nonlinear partial differential equa-
tions whose solution must be found numerically. To prevent
the calculation from becoming unstable, we impose a min-
imum depth of 1 mm in every model cell, below which flow
out of the cell is stopped. This negligibly affects the accuracy
of the salt transport for which the flow model is used.
[70] We employ the widely used second-order explicit

MacCormack computational scheme to solve our diffusive-
wave flow system [e.g., Esteves et al., 2000; MacCormack,
1971]. Although this scheme is typically used for the full
dynamic-wave equations, it is excellent at preventing oscil-
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lation in our simpler model as well. As applied to (B9) and
(B11), the MacCormack scheme involves a predictor step

�atþDt
x ¼ atx þ q�

auð ÞtxþDx � auð Þtx
Dx

ðB12Þ

�utþDt
x ¼ �

8g atx
� �2
K0v

aþ zð ÞtxþDx � aþ zð Þtx
Dx

ðB13Þ

and a combined corrector/averaging step which incorporates
the predicted depth and velocity

atþDt
x ¼ atx þ q� Dt

2Dx

� auð ÞtxþDx � auð Þtx
� �

þ a uð ÞtþDt
x � a uð ÞtþDt

x�Dx

� �h i
ðB14Þ

utþDt
x ¼ � 8gDt

K0v2Dx

atx
� �2

aþ zð ÞtxþDx � aþ zð Þtx
� �

þ

�atþDt
x

� �2
�atþDt
x þ ztx

� �
� �atþDt

x�Dx þ ztx�Dx

� �� �
" #

:

ðB15Þ

In these equations, subscripts refer to spatial indexing,
superscripts refer to temporal indexing, and z is height of
the bottom boundary above the reference equipotential
surface. Notice that forward differences are used in the
predictor step and backward differences in the corrector
step. We follow Esteves et al. [2000] in switching to
backward/forward differences every other timestep in order
to remove directional bias in the calculation.
[71] We choose the topographic grid spacing Dx to be

100 m, which gives sufficient spatial resolution for the low-
relief topography on the salar. We do not optimize Dt using
the Courant stability condition as is typically done but
instead choose a timestep of 5 s because it is the largest
time step that empirically proves to yield stable solutions.
With these values of Dx and Dt, one year of model time
requires about 15 min of real-time processing using a fast
workstation.
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