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[1] We present a method to analyze the observations of relative distance change between
two low Earth orbiting satellites of the Gravity Recovery And Climate Experiment
(GRACE) mission after removing the effects caused by the mean gravity field and
better-known temporal mass redistribution. The gravitational acceleration exerted by
the block mean mass within a region on the Earth surface is formulated by point mass
approximation and by spherical harmonic expansion. In addition to the regional mass
parameters, the arc-dependent parameters (initial relative state vectors) is simultaneously
modeled to remove the signals not associated with the mass variation within the focus
area. While a certain level of approximation, that is committed when locally formulating
the gravitational acceleration vector for numerical integration, causes model error, we
benefit from regionally estimating time-variable mass with improved spatial and temporal
resolutions. In addition, various temporal parameterizations depending on geographical
areas and expected signals can be applied for the regional analysis in a straightforward
manner and it helps to retrieve even sub-daily time-variable signals such as tides from
many years of GRACE data. We present the results of hydrology and ocean tide recovery
in South America, Africa, North America, and Antarctica from the analysis of 3.5 years of
GRACE tracking data and compare them with the traditional global harmonic approach.
The algorithm development thoroughly described here will be helpful for the science
community to exploit fundamental data (range rate) of the GRACE mission in addition to
monthly gravity products.
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1. Introduction

[2] The mass fluxes, transports, and adjustments within
the Earth system are manifested in the temporal changes
of the Earth’s gravity field. The large-scale mass varia-
tions, which the Gravity Recovery and Climate Experi-
ment (GRACE) satellites have been observing since their
launch in 2002, show spatially and temporally distinctive
patterns in every region because they originate from
dissimilar physical sources. The largest variability is
being observed from GRACE over the continents due
to the terrestrial water storage variations with dominantly
seasonal periodicity [Tapley et al., 2004a]. It is due to the
fact that the mass variations caused by the atmosphere,
tides (solid Earth, ocean, and pole), and barotropic ocean
usually have been modeled a priori and removed from the
GRACE observations [Bettadpur, 2004] to construct a

monthly mean gravity field, and consequently most of
the signals comprise the ‘‘full’’ effect of terrestrial water
storage on the continents [Tapley et al., 2004a]. How-
ever, it is expected that these signals also contain
‘‘residuals’’ with respect to the applied models for the
ocean tides (especially over the polar regions) and the
atmosphere and ocean mass, but with magnitudes smaller
than the primary hydrology signal and at various tempo-
ral frequencies. Each of the time-variable signals appears
only associated with its own particular geographical area
and usually has characteristic temporal behavior and
intensity.
[3] The global spherical harmonic analysis of the

GRACE satellite-to-satellite tracking (SST) data has been
the principal approach to generate monthly mean geopoten-
tial fields. The temporal variations of the geophysical and
climate signals are typically derived from the time series of
spherical harmonic coefficients representing the monthly
mean gravity field. Some various spatial smoothing techni-
ques developed to optimally mitigate the ill-determined
higher degree and order coefficients such as Wahr et al.
[1998], Davis et al. [2004], Han et al. [2005a] and Swenson
and Wahr [2006] are applied to study hydrological mass
fluxes in large river basins [Tapley et al., 2004a], ice sheet
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mean mass fluxes [Velicogna and Wahr, 2006], and ocean
mass variations [Chambers et al., 2004; Zlotnicki et al.,
2007]. However, the distinct regional characteristic of each
temporal mass variation due to various physical reasons is a
natural motivation to seek better methods to quantify such
regional variations. Moreover, the systematic (correlated)
error associated with the incomplete modeling of relatively
well-known mass variations (tides, non-tidal atmosphere
and ocean mass, etc) has been reported to be problematic
especially in the resonant orders in the monthly mean
spherical harmonics [Han et al., 2004]. Significant deg-
radation of the monthly gravity harmonic solutions has
been reported by Wagner et al. [2006], due to sparse
repeat tracks of 61/4 (rev/day) of the GRACE orbits in
deep resonance. Instead of solving individual harmonic
coefficient, Rowlands et al. [2005] tried to estimate the
linear-combined (lumped) coefficients (called mascon).
This method inherently uses constraints among the coef-
ficients that are dependent on geographic locations. Han
et al. [2005b] used downward-continuation of the in situ
geopotential difference that is pre-determined from the
satellite tracking data analysis. Both methods demonstrated
enhancement of the solutions (temporally and spatially)
for recovering the time-variable (regional) gravity fields.
Rowlands et al. [2002] and Mayer-Gürr et al. [2006] also
present the global gravity field analysis using short-arc
length (such as 15 min) of the low-low satellite tracking
data (which are only available from GRACE mission
currently).
[4] In this study, we present an end-to-end algorithm

developed to mitigate inefficacy in global spherical harmonic
analysis and to optimally process the GRACE K-Band
Range Rate (KBRR) data for estimation of regionally
characterized mass variation, on the basis of the orbital
state vector integration from the local formulation of the
gravitational acceleration. The KBR instrument measures
the mean gravity field and time-variable mass distribution
through the effect of these parameters on the satellite orbits.
Minute changes in KBRR data (±2 mm/s) due to temporal
mass variation are being measured by the onboard instru-
ment with an accuracy of 0.2–0.3 mm/s (inferred from the
post-fit residuals). Our approach first removes the mean
gravity effect from the KBRR measurements (±2 m/s, which
is mostly due to the Earth’s oblateness). From years of
GRACE data, the spherical harmonic representation has
been used successfully to model the mean geopotential field
with a 100-fold improvement (over limited spectral bands)
[Tapley et al., 2004b]. Using such a reference gravity model
(in the form of spherical harmonic coefficients), we deter-
mine the precise satellite orbits and calculate range-rates
which are then removed from the raw range-rate measure-
ments. The orbits we need should account for the steady
state gravity field, instantaneous mass variation caused by
some of the better-known gravitational forces such as tides,
and non-conservative forces like air drag. We do not want to
have the orbits affected by the instantaneous gravity forces
we are seeking for such as terrestrial water mass, ice mass,
earthquake, and so on. We describe the details of orbit
processing algorithm satisfying this condition in section 3.
After reducing the measurements based on the aforemen-
tioned orbital trajectory, the remaining residual range-rate

(that is highly non-stationary over the globe) is our primary
observation to model the temporal mass variation over the
region. In section 2, we discuss the detailed algorithm on
how to process the residual range-rate data and the basis
function used for modeling the mass variation on the
surface. In section 3, we present some examples such as
hydrology and tide recovery in the various regions includ-
ing South America, Africa, North America and Antarctica.
Finally we summarize the current work and present per-
spectives about future opportunities in section 4.

2. Method

[5] We start this section by developing the observational
equation relating the range-rate measurement, which is a
non-linear function of the orbital state vector, and the source
parameter, which is the time-variable mass on the Earth’s
surface. All vectors used in the derivations are parameterized
in a non-rotating inertial coordinate system. We examine
approximation error associated with mass parameterization
and discuss analytic formulation of the temporal variations,
especially designed for estimating high-frequency (sub-daily
and daily) mass variation such as tides. Finally we show how
we handle the effect caused by surface mass load.

2.1. Observation Equation

[6] The orbital state vectors including the position r(t)
and velocity v(t) of a satellite at time t can be calculated by
integrating the velocity and acceleration vectors over time
period t– t0 as follows:

r tð Þ ¼ r t0ð Þ þ
Z t

t0

v t0ð Þdt0; ð1Þ

v tð Þ ¼ v t0ð Þ þ
Z t

t0

a t0ð Þdt0; ð2Þ

where the initial state is r(t0) and v(t0). The introduced
acceleration vector a(t) is decomposed into two components
as follows:

a tð Þ ¼ ~a tð Þ þ da tð Þ; ð3Þ

where ~a(t) is the calculated acceleration vector (i.e., from a
priori gravitational potential model and other force models)
and da(t) represents the acceleration caused by the mis-
modeled and un-modeled temporal changes (e.g., surface
mass variation including hydrology, ice mass change, solid-
Earth deformation, remaining ocean tide and atmosphere,
etc). Certainly the time variable gravitational acceleration
da(t) attracting the satellites would be regionally intense due
to non-stationary distribution of the surface mass variation
on the globe with peculiar frequencies (from seasonal for
hydrology to once and twice per day for ocean tide). By
putting (3) into (1) and (2), we express the position and
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velocity vectors in terms of un-modeled surface mass
attraction as follows:

r tð Þ ¼ ~r tð Þ þ dr0 þ
Z t

t0

Zt0
t0

da t00ð Þdt00dt0; ð4Þ

v tð Þ ¼ ~v tð Þ þ dv0 þ
Z t

t0

da t0ð Þdt0; ð5Þ

where ~r(t) and ~v(t) are the calculated position and velocity
vectors obtained by integrating ~a(t). dr0 and dv0 are
‘‘incremental’’ initial state vector indicating deviation of
the true position and velocity vectors from the calculated
ones, respectively, at the initial epoch t0.
[7] The inter-satellite tracking measurements such as the

range r(t) and range-rate _r(t) between two satellites are
formulated in terms of inter-satellite state vectors as follows:

r tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 tð ÞTr12 tð Þ

q
; ð6Þ

_r tð Þ ¼ v12 tð ÞTr12 tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 tð ÞTr12 tð Þ

q
; ð7Þ

where the inter-satellite position and velocity vectors are
given as follows:

r12 tð Þ ¼ r1 tð Þ � r2 tð Þ ¼ ~r12 tð Þ þ dr012 þ
Z t

t0

Zt0
t0

da12 t00ð Þdt00dt0;

ð8aÞ

v12 tð Þ ¼ v1 tð Þ � v2 tð Þ ¼ ~v12 tð Þ þ dv012 þ
Z t

t0

da12 t0ð Þdt0; ð8bÞ

da12 tð Þ ¼ da1 tð Þ � da2 tð Þ: ð8cÞ

Note that the range-rate is expressed in terms of the
differential accelerations caused by temporal mass variation
anomalies exerting on the two satellites, da1(t)–da2(t), and
also the incremental initial state difference (or incremental
inter-satellite initial state) dr12

0 and dv12
0 . Furthermore,

considering the calculated range-rate ~_r(t), the residual range-
rate is defined as d _r(t) = _r(t) - ~_r(t), where ~_r(t) = ~v12(t)

T ~r12(t)/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r12 tð ÞT~r12 tð Þ

q
.

[8] Now we express da1(t) and da2(t) using the parame-
ters associated with the surface mass anomalies. The grav-
itational acceleration exerted by the i-th surface mass
anomaly dmi(t) on the satellite j, can be expressed by
approximating the point mass anomaly as follows:

daj;i tð Þ ¼
Gdmi tð Þ
pj;i tð Þ
�� ��2 pj;i tð Þ

pj;i tð Þ
�� �� ¼ G

qi tð Þ � rj tð Þ
� �
qi tð Þ � rj tð Þ
�� ��3 dmi tð Þ; ð9Þ

where G is the gravitational constant and the vectors p, q,
and r are defined as in Figure 1. Note that the surface mass
element dmi(t), expressed with a point mass approximation
in (9), can be represented in terms of water height
equivalent by taking the following expression:

dmi tð Þ ¼ kwsidhi tð Þ; ð10Þ

where kw is a volumetric density of the water, si is the
surface area, and dhi(t) is the water height equivalent
distributed uniformly within the area si. The total accelera-
tion being exerted on the satellite is computed by simply
adding the contributions from all possible mass anomalies
on the surface:

daj tð Þ ¼
XN
i¼1

daj;i tð Þ ¼ G
XN
i¼1

f j;i tð Þdmi tð Þ; ð11Þ

where N is total number of mass anomalies within the region

of consideration and fj,i (t) =
qiðtÞ�rjðtÞ
qiðtÞ�rjðtÞj j3

. The acceleration

vector difference between the satellites is given by

da12 tð Þ ¼ G
XN
i¼1

f1;i tð Þ � f2;i tð Þ
� �

dmi tð Þ ¼ G F1 tð Þ � F2 tð Þð Þdm tð Þ;

ð12Þ

where F1 and F2 are 3-by-N matrices containing the vector
elements of f1,i(t) and f2,i(t).
[9] We assume dm(t) = dm for a finite interval, i.e., t– t0,

which is roughly some hundred seconds for GRACE
satellites passing over the region to cover some tens degrees

Figure 1. A schematic diagram highlighting the vectors
defined in the section 2.1.
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in latitude, and compute the integrals associated with inter-
satellite state vectors as follows:

Z t

t0

da12 t0ð Þdt0 ¼ G

Z t

t0

F1 t0ð Þ � F2 t0ð Þð Þdt0dm ¼ H tð Þdm; ð13Þ

Z t

t0

Zt0
t0

da12 t00ð Þdt00dt0 ¼ G

Z t

t0

Zt0
t0

F1 t00ð Þ � F2 t00ð Þð Þdt00dt0dm

¼ S tð Þdm; ð14Þ

where the numerical integration following the trapezoidal
rule (approximating a straight line) is implemented for
computing the matrices H(t) and S(t) in this study.
Subsequently, we obtain the following expression for the
inter-satellite state vectors:

r12 tð Þ ¼ ~r12 tð Þ þ dr012 þ S tð Þdm; ð15Þ

v12 tð Þ ¼ ~v12 tð Þ þ dv012 þH tð Þdm: ð16Þ

Note that the matrices F1 and F2 are determined entirely
based on the geometric information (i.e., satellite trajectory)
of each satellite and point mass anomalies. The nominal
position vectors ~r1 (t) and ~r2(t) can be used to calculate
those matrices without significant model error. Note that we
do not adjust the individual (absolute) orbits from the inter-
satellite measurements, but adjust the relative orbits.
[10] Since the range-rate observation is a non-linear

combination of the position and velocity vectors as defined
in (7), we expect the parameters we are interested in such as
dm (also dr12

0 and dv12
0 ) are non-linearly related with

the range-rate through equations (15) and (16). In order to
obtain a linearized observation equation, we first consider
the inner-product between inter-satellite velocity and posi-
tion vectors and the norm of inter-satellite position vector
and then take their derivatives with respect to the mass
anomaly vector and with respect to the incremental initial
state vector difference. Those derivatives are explicitly
given in Appendix. Using those, we derive the partial
derivatives of the range-rate as follows:

@ _r tð Þ
@dm

¼ r12 tð ÞTr12 tð Þ
� 	�1=2@v12 tð ÞTr12 tð Þ

@dm

þ v12 tð ÞTr12 tð Þ
� 	

� 1

2


 �
r12 tð ÞTr12 tð Þ

� 	�3=2

� @r12 tð ÞTr12 tð Þ
@dm

; ð17Þ

@ _r tð Þ
@dr012

¼ r12 tð ÞTr12 tð Þ
� 	�1=2@v12 tð ÞTr12 tð Þ

@dr012

þ v12 tð ÞTr12 tð Þ
� 	

� 1

2


 �
r12 tð ÞTr12 tð Þ

� 	�3=2

� @r12 tð ÞTr12 tð Þ
@dr012

; ð18Þ

@ _r tð Þ
@dv012

¼ r12 tð ÞTr12 tð Þ
� 	�1=2@v12 tð ÞTr12 tð Þ

@dv012

þ v12 tð ÞTr12 tð Þ
� 	

� 1

2


 �
r12 tð ÞTr12 tð Þ

� 	�3=2

� @r12 tð ÞTr12 tð Þ
@dv012

: ð19Þ

Finally the range-rate observation equation (after the first
order linearization) can be written as follows:

d _r tð Þ ¼ _r t; dm; dr012; dv
0
12

� �
� ~_r tð Þ

	
@ _r tð Þ
@dm

@ _r tð Þ
@dr012

@ _r tð Þ
@dv012

� 
 dm

dr012
dv012

2
64

3
75þ e; ð20Þ

where e is measurement error associated with the observa-
tion _r(t). The range-rate observation is parameterized with
the mass anomaly on the surface and with the incremental
relative initial state vector. The sensitivity or partial
derivative matrix in (20) explicitly consists of two matrices
(See also Appendix), H(t) and S(t), and the inter-satellite
position and velocity vectors, r12(t) and v12(t). The absolute
position vectors locating each of the orbiting satellites are
required for computing H(t) and S(t). We fix those absolute
position vectors using the a priori calculated orbits on the
basis of a reference gravity and force models. On the other
hand, the relative orbits sensitive to the range-rate
observations are iteratively updated using equation (15)
and (16) and used in (17) through (20).
[11] The number of point mass anomalies depends on

how one chooses the size of area and grid, however one will
have 6 additional parameters (incremental relative initial
state vector) per each overpass (short arc over the region) no
matter how many the regional mass anomalies are. The
latter arc-dependent parameters are necessary primarily due
to temporal mass anomalies outside of the focus region and
also caused by un-modeled and mis-modeled a priori forces
(including the accelerometer measurement error). As we
will see in the later section, these arc-dependent parameters
are useful to reduce long wavelength error and signal in the
range-rate data not associated with the temporal mass
variation over the local area. The surface mass variations
are the parameters common to all short arcs while each
incremental initial state parameter is sensitive only to the
data in individual short arc. For example, if we have N mass
points, M short arcs over the region of interest, and L
samples per each arc, we have L 
 M observations and
N + 6M parameters. With M greater than N, the redundancy
asymptotically approaches the constant L/6 that depends
only on the number of range-rate observations in each
overpass.

2.2. Representation of Mass Anomaly on the Surface

[12] In the previous section, we have developed the
range-rate observation equation by approximating the sur-
face mass anomaly as point mass when formulating the
gravitational acceleration in equation (9). The error in this
approximation certainly will depend on the size of the
surface area si introduced in equation (10). Ideally we want
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to have a representation for the acceleration vector caused
by mass anomaly in a block on the Earth’s surface. The
expression of the gravitational attraction caused by a finite-
size surface mass anomaly can be done by expanding it on
the basis of the spherical harmonic series. However, if we
truncate the spherical harmonic series for practical purpose,
it will essentially result in just another (global) approxima-
tion of the (local) surface mass block with spherical har-
monics. In this section we will quantify the truncation error
of the spherical harmonic series and the error introduced by
using a point mass formulas, equations (9) and (10), for
computation of the acceleration vector.
[13] The following shows how we derive the spherical

harmonic expression of the finite size mass anomaly on the
Earth surface. First, we consider an infinitesimal mass
anomaly dm on the Earth’s surface exerting gravitational
potential dV on a distant location above the Earth’s surface
as follow:

dV r; q;lð Þ ¼ G
dm r0; q0;l0ð Þ

l r; q;l; r0; r0; q0;l0ð Þ
ð21Þ

1

l r; q;l; r0; q0;l0ð Þ
¼

X1
n¼0

Xn
m¼0

1

2nþ 1
b
�Rnm q;lð Þ
rnþ1

r0n�Rnm q0;l0ð Þ

þ
�Snm q;lð Þ
rnþ1

r0n�Snm q0;l0ð Þc; ð22Þ

where l is the linear distance between the two points, (r, q, l)
and (r0, q0, l0), i.e., the location of satellite and surface mass,
in spherical coordinates (radius, co-latitude, longitude).
Equation (22) can be derived by using the decomposition
formula as shown by Heiskanen and Moritz [1967]. �Rnm and
�Snm are the 4p-normalized surface harmonic functions, i.e.,
multiplication of the normalized associated Legendre
function and either cosine or since functions, respectively.
If the mass anomaly dm(r0, q0, l0) is distributed homo-
geneously only within a finite area of q1 � q0 � q2 and l1

0 �
l0 � l2

0 on the surface of the spherical Earth with the radius
r0, we can get the following expression:

dV r; q;lð Þ ¼ Grwhr
02
Zl2
l1

Zq2
q1

sin q0dq0dl0

l r; q;l; r0; q0;l0ð Þ
; ð23Þ

since dm(r0, q0, l0) = rwhr
02 sin q0dq0dl0 with the volumetric

density of the water rw and the water height h resulting the
surface density rwh. Putting (22) into (23), we get

dV r; q;lð Þ ¼ Grwhr
02
X1
n¼0

Xn
m¼0

1

2nþ 1

�
�Rnm q;lð Þ
rnþ1

r0n
Zl2
l1

Zq2
q1

�Rnm q0;l0ð Þ sin q0dq0dl0

2
64

þ
�Snm q;lð Þ
rnþ1

r0n
Zl2
l1

Zq2
q1

�Snm q0l0ð Þ sin q0dq0dl0

3
75 ð24Þ

Accounting for the elastic loading effect of the solid Earth
and adding together the contribution of all the grid cells, we
obtain

dV r; q;lð Þ ¼ Grwr
0
X1
n¼0

Xn
m¼0

r0

r


 �nþ1 XI

i¼1

ð1þ knÞdhi
2nþ 1

ZliþDl

li

ZqiþDq

qi

�Rnm q0;l0ð Þ sin q0dq0dl0

8><
>:

9>=
>;�Rnm q;lð Þ

2
64

þ
XI

i¼1

1þ knð Þdhi
2nþ 1

ZliþDl

li

ZqiþDq

qi

�Snm q0;l0ð Þ sin q0dq0dl0

8><
>:

9>=
>;�Snm q;lð Þ

#
; ð25Þ

Figure 2. The mass anomaly on the Earth’s surface in
terms of water height equivalent is depicted. 1 m of water
mass is distributed uniformly in a 3� 
 3� block area. The
plot shows the water height represented by spherical
harmonic expansion with the maximum degree of 180. An
actual GRACE ascending track (450 km in altitude) nearby
the mass anomaly is also shown.
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where kn is the load Love number [Han and Wahr, 1995].
We now compare (25) with the following expression:

dV r; q;lð Þ ¼ GM

r0

X1
n¼0

Xn
m¼0

r0

r


 �nþ1

� d�Anm
�Rnm q;lð Þ þ d�Bnm

�Snm q;lð Þ½ �; ð26Þ

where M is the mean mass of the Earth. Therefore we obtain
the spherical harmonic coefficient of the gravitational
potential in terms of water height equivalent, dhi, distributed
uniformly within each block defined by qi � q0 � qi + Dq
and li � l0 � li + Dli as follows:

d�Anm ¼ 1þ knð Þ r0ð Þ2rw
2nþ 1ð ÞM

�
XI

i¼1

ZliþDl

li

ZqiþDq

qi

�Rnm q0;l0ð Þ sin q0dq0dl0

8><
>:

9>=
>;dhi; ð27Þ

d�Bnm ¼ 1þ knð Þ r0ð Þ2rw
2nþ 1ð ÞM

�
XI

i¼1

ZliþDl

li

ZqiþDq

qi

�Snm q0;l0ð Þ sin q0dq0dl0

8><
>:

9>=
>;dhi; ð28Þ

where
RliþDl

li

RqiþDq

qi

�Rnm (q’, l0)sin q0dq0dl0 =
RqiþDq

qi

�Pnm

(q0)sin q0dq0
RliþDl

li

cos(ml0)dl0,
RliþDl

li

RqiþDq

qi

�Snm (q’,

l0)sin q0dq0dl0 =
RqiþDq

qi

�Pnm (q’)sin q0dq0
RliþDl

li

sin(ml0)dl0, and

�Pnm (q’) is the associated Legendre function. While the
integration of the sine and cosine functions is trivial, the
integration of the normalized associated Legendre function
can be computed recursively following the algorithm given
byPaul [1978], for example. Equations (27) and (28) indicate
that each spherical harmonic coefficient can be calculated by
summing each of the mass anomalies distributed on the
surface. They are also derived by several other authors in
various ways (for example, Chao et al. [1987]).
[14] Finally, the gravitational acceleration vector exerting

on the satellites in the Earth-centered and fixed (ECF) frame
can be derived by taking derivatives of (26) with (27) and
(28) in radial, north (co-latitude) and east (longitude)
directions and by rotating the vector in the local north-
east-down triad to the ECF frame. Later, the numerical
integration will be done in the inertial frame after rotating
the acceleration vector in the ECF frame to the inertial
frame. Consequently, we can derive the linear relationship
between the acceleration vector in the inertial frame and the
equivalent water height on the Earth surface in the same
way as a point mass representation but via spherical
harmonic expression. Note that, in both cases, the acceler-
ation vector is parameterized in terms of the water height
equivalent, which is a constant in each block. The only error

associated with the spherical harmonic representation is the
truncation of the harmonic series.
[15] Now we numerically calculate the truncation error

that is dependent on the maximum degree of expansion and
the approximation error that is committed by assuming that
all the mass within the block is concentrated on a center
point. For the time-variable gravity from the GRACE
satellite tracking data, we typically consider a block of a
few hundred km in each direction. We test how the
surface mass anomaly uniformly distributed within a block
of 3302 km2 (or 3� 
 3� at the equator) perturbs the satellite-
to-satellite range-rate when the satellites overpass the mass
block. Figure 2 shows 1 m of water mass equally distributed
in a 3� 
 3� block centered at 0�N and 97.5�E and an actual
ascending GRACE ground track. In the Figure, the mass
anomaly has been calculated by using spherical harmonic
expansion up to degree and order 180. There are tiny but
global oscillations outside the block due to truncation. We
integrated the gravitational acceleration vector exerted on
the satellites to calculate the relative orbits and the range-
rate perturbation along the nominal orbits using the ap-
proach shown in the previous section (See equations (7) and
(8)). We also forced the incremental inter-satellite initial
state to be zero at the South pole for the ascending orbit. To
calculate the acceleration vector, we used three approaches
including the spherical harmonic expansion of the surface
mass anomaly truncated to the maximum degree of 180 and
60 and the point mass formulation. Figure 3 presents range-
rate perturbation along the ascending orbit. We initiated
numerical integration of the acceleration vectors from the
South pole by fixing the initial state (position and velocity
vector) with the nominal state that yields zero range-rate
perturbation at the starting point. The dot-dashed line
indicates the perturbation calculated on the basis of spher-
ical harmonic expansion up to degree and order 180. The
dashed line is its deviation from the one calculated by point
mass formula given in equations (9) and (10) and the solid
line shows the difference caused by truncating the maximum
degree to 60 as opposed to 180. Assuming the spherical
harmonic expansion up to degree and order 180 represents
the actual mass anomaly within the block with negligible
truncation error (beyond 180), we identify the maximum
error committed by assuming the mass is concentrated on a
central point is an order of magnitude smaller (±0.03 mm/s)
than the currently operating GRACE range-rate error (0.2–
0.3 mm/s in RMS sense). In this simulation, we assumed a
very large amount of mass such as 1 m of water height
equivalent implying the dashed line would be the bound of
the algorithmic error we make by using the point mass
formulation. The maximum error committed by truncating
the spherical harmonic series to degree 60 is confined within
±0.01 mm/s. Certainly both the truncation error and point
mass approximation error will depend on the size of the
block we consider. The smaller the size of the block, the
larger the truncation error (if we fix the maximum expansion
degree) but the smaller the point mass approximation error,
since the smaller size is getting closer to a point mass. If we
consider a future mission like GRACE follow-on, we should
reduce the size of the block, however, for the current
GRACE data processing, we use �3302 km2 equal area
block and a point mass attraction for computing acceleration
since it drastically reduces the computational time.
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2.3. Parameterization of Temporal Variability

[16] Previously, we established a linear relationship be-
tween the gravitational acceleration exerted between the
satellites and the mass anomaly (or water height equivalent)
on the surface by a point mass formula and by spherical
harmonic representation of a block mean mass. Further, we
developed a non-linear observation equation between the
instantaneous inter-satellite tracking data and the mean mass
variation expressed in terms of water height equivalent.
Here we refine the observation equation by parameterizing
the temporal variation of the mass anomaly in each block. A
typical duration of each short overpass arc is 600 s if our
focus region covers 40� in latitude because the along-track
speed of the orbiting GRACE satellites is about 7–8 km/s.
Within this period (duration of each overpass arc) we can
reasonably assume constant mass anomaly, i.e., dm(t) = dm
(or dh(t) = dh). However, for the tracking data along the
next overpass after one revolution (1.5 h later), the mass
anomaly in the region may no longer be the same constant
as before, especially around the area under the influence of
large (remaining) ocean tides. We may use many days of
tracking data to solve for the time-averaged mass variation
disregarding any temporal variability within the period and
its aliasing effect to the mean mass estimates. On the other
hand, we can extend the observation equation by parame-

terizing the mass variation with some analytic functions. For
example, we parameterize the surface mass anomalies as
follows:

dhi tð Þ ¼ C0
i þ S0i t � t0ð Þ þ C1

i cos w1tð Þ þ S1i cos w1tð Þ þ . . . ;

ð29Þ

where dhi(t) is mass variation (in terms of water height) at
the i-th location at time t. Ci

0 and Si
0 are offset and

coefficient of a linear trend at i-th location. Ci
1 and Si

1 are
coefficients of the first frequency (for example, annual
frequency or tidal frequency) at i-th location and so on. The
parameters to be determined from the data are the respective
coefficients of each analytic function at every location, i.e.,
Ci

0, Si
0, Ci

1, Si
1, etc. The harmonic (temporal) frequency

components to be included depend on the geographical
location and the application. For example, on land, the
annual and semi-annual variations would be included for
estimating seasonal terrestrial water storage change. On
coastal region and polar Seas including the ice shelves,
where the a priori ocean tide model is not performing well,
the tidal frequencies (roughly once or twice per day) can be
included in addition to seasonal frequencies. Instead of
solving the mass variation with a fixed interval, the
respective coefficients of the modeled functions are
estimated. Of course the solution would depend on how
we model the temporal variability in the region. The
temporal parameterization is established simply by applying
the following linear equation to the observation equation,
equation (20):

dh1
dh2
..
.

dhI

2
6664

3
7775 ¼

tT1 dc1
tT2 dc2
..
.

tTI dcI

2
6664

3
7775 ¼ Tdc; ð30Þ

where a vector ti contains the modeled temporal functions
and dci is the respective coefficients at i-th location. The
way to model temporal variations (how many and which
harmonic frequencies to be used) can be varied at every
block. It is not necessary to apply the same temporal
functions uniformly at each location. If we assume L
elements used to describe the temporal variation at each
location and there are I grid points in the region, the matrix
T contains I rows and L 
 I columns and the number of total
unknown parameters (size of the vector dc) to be solved for
is L 
 I. This approach is particularly useful to estimate the
mass variation with known temporal behaviors such as tides
with given frequencies.

2.4. Solid Earth Loading

[17] If we use the point mass formula, the estimates are
not the actual water mass anomaly but the one influenced by
elastic deformation caused by its loading on the solid Earth.
Without considering the loading effect, we underestimate
the actual mass. To obtain the actual mass anomaly from the
estimated mass parameter dhi (apparent water mass) after
the least squares inversion of range-rate observations, we

Figure 3. Perturbation in range-rate caused by the mass
anomaly depicted in Figure 2 is calculated along the actual
GRACE orbit by numerically integrating the acceleration
vector formed by the spherical harmonic series with
maximum degree 180 (dot-dashed). The range-rate pertur-
bation is also calculated by integrating the acceleration
vector computed by a point mass approximation and it gives
the maximum deviation from the 180 spherical harmonic
expression within ±0.03 mm/s (dashed). The truncation to
the maximum degree of 60 yields the deviation within
±0.01 mm/s (solid).
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compute the spherical harmonic spectra as follows (the
same as (27) and (28) except the factor 1 + kn):

d�Anm ¼ r0ð Þ2rw
2nþ 1ð ÞM

XI

i¼1

ZliþDl

li

ZqiþDq

qi

�Rnm q0;l0ð Þ sin q0dq0dl0

8><
>:

9>=
>;dhi;

ð31Þ

d�Bnm ¼ r0ð Þ2rw
2nþ 1ð ÞM

XI

i¼1

ZliþDl

li

ZqiþDq

qi

�Snm q0;l0ð Þ sin q0dq0dl0

8><
>:

9>=
>;dhi;

ð32Þ

Then we evaluate the coefficients to obtain the actual water
mass only within the region we considered by taking into
account for the load Love number, kn as follows [also Wahr
et al., 1998]:

dh q;lð Þ ¼ RrE
3rw

XNmax

n¼0

2nþ 1

1þ kn

Xn
m¼0

d�Anm
�Rnm q;lð Þ þ d�Bnm

�Snm q;lð Þ½ �;

ð33Þ

where R is a mean radius of the Earth and rE and rw are the
mean density of the Earth and water. Note the equation (33)
is valid for evaluation within the region we used for the
estimation because we calculated localized spherical
harmonic coefficients through (31) and (32) only using

the regional signals. The loading effect caused by the
(disregarded) neighboring surface mass is generally as small
as a few mm in water height equivalent.

3. Result and Analysis

[18] We first describe how we determine the nominal
satellite trajectory. The a priori orbits are later used to
register and reduce range-rate observations by removing
the major signals caused by the mean gravity field and some
of better-known mass variations such as planetary pertur-
bation, tides, and atmosphere. We discuss the distinct
contributions of regional mass variation and incremental
inter-satellite initial state to the range-rate observations. The
estimated mass variations over the various regions are
presented and compared with the monthly global analysis
results in the aspects of spatial and temporal resolutions. At
last, the ocean tidal signal recovery after applying (temporal)
harmonic functions of some tidal frequencies is discussed.
[19] Fundamental to the extraction of gravity signal from

the GRACE inter-satellite range-rate observations is the
highly accurate knowledge of the satellite positions, veloc-
ities, orientations and calibrated accelerometer observations
to account for non-gravitational forces. Following the
methodology detailed by Luthcke et al. [2006], a simulta-
neous reduction of the GRACE KBRR and precise orbit
ephemeris data is performed in 24-h arcs estimating accel-
erometer calibration parameters along with GRACE A and
B initial state vectors (see Luthcke et al. [2006] for arc
parameter details). The Goddard Space Flight Center’s
GEODYN precision orbit determination and geodetic pa-
rameter estimation software [Pavlis et al., 2006] is used to
reduce these data within the daily arcs using iterative weight
least squares estimation. The non-gravitational forces are
accounted for by applying the level 1B accelerometer
observations along with the estimation of the accelerometer
calibration parameters as noted above. The orientation of
the GRACE satellites is modeled using the GRACE level
1B quaternion data. The force modeling includes the
GGM02C GRACE gravity model through degree and order
120 [Tapley et al., 2004b]. The ocean tides are modeled
according to GOT00 [Ray, 1999; Ray and Ponte, 2003],
where M2 is modeled to degree and order 70, and other
major constituents are modeled to degree and order 50. The
atmospheric gravity is forward-modeled following Chao
and Au [1991] using potential coefficients to degree and
order 50 at six-hour intervals derived from NCEP pressure
grids [Petrov and Boy, 2004] assuming inverted barometer
effect for the ocean response. The Earth tides are modeled
according to the IERS Standards [IERS, 2003].
[20] The calculated range-rate from the precise orbit,

consequently, reflects the GGM02C gravity model and the
aforementioned force models (GOT00 for ocean tide, for
example). Its deviation from the measured range-rate, i.e.,
range-rate residual (RRR), infers the deviation of the
instantaneous gravity field with respect to the applied
models and is caused mostly by time-variable mass re-
distribution on the Earth’s surface. Figure 4 shows the RRR
data on a particular day. We can see the range-rates
calculated from the relative velocity and position vectors
are in the agreement within ±1.5 mm/s with the KBRR
measurement (as accurate as 0.2 mm/s) and those deviations

Figure 4. Difference of the range-rates determined from
the calculated state (position and velocity) vectors of the
two satellites and observed from the onboard satellite-to-
satellite tracking instrument. Note that the range-rate
residual data depicted here contain the effects caused
mostly by temporal variability of the gravity fields. There
are two phase-unlocks during this particular day as
indicated by two gaps in the time series.
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include the effect of instantaneous gravitational perturbation
with respect the applied background models.
[21] Figure 5 shows the RRR observations when the two

GRACE satellites pass through South America including
the Amazon basin along the descending (a) and ascending

tracks (b). The descending and ascending tracks overpass at
the longitudes of 305�E–308�E and 297�E–300�E, respec-
tively. The RRR data show a pulse-like anomaly as well as
high-frequency noise. In addition, we observe long-term
trends in RRR of each overpass arc, which is mostly a linear
in descending arc and a negative bias in ascending arc.
Using 15-days of those RRR data over the region, we
estimated the mass anomalies on the surface and the
incremental inter-satellite initial state in every arc. The
parameters reflecting the mass anomalies are common for
all short arc RRR data and they are fixed as constant within
the 15-day period allowing estimation of the 15-day aver-
aged mass variation. The incremental inter-satellite initial
state parameters independently modeled in each arc reflect
the effect of un-modeled and mis-modeled forces (including
errors in non-gravitational force modeling and accelerome-
ter measurements) in the calculation of a priori orbits and
the mass anomalies outside the region of interest. The initial
epoch could be either at the northern or southern boundary
of the region for descending or ascending arc, respectively.
For the least squares estimation, we adopt a priori spatial
constraints for the mass anomaly on the surface as shown by
Rowlands et al. [2005] and Han et al. [2005b] and a priori
variances for the initial relative state vectors. We do not rule
out various other ways to obtain smoothed or regularized
solutions, for example, as described by Koch and Kusche
[2002].
[22] After the least squares adjustment, we obtained two

sets of parameters, i.e., mass distribution (common esti-
mates) and incremental inter-satellite initial state (arc-de-
pendent estimates) in every overpass. We have calculated
the RRR effects caused by the mass parameter and initial
state parameter separately. In Figure 5, the range-rate
perturbations predicted by the mass variation, by the initial
state, and by both parameters are presented. The systematic
pattern in the observed RRR is interpreted by two distinct
components. For the descending arc in Figure 5a, the
gradually increasing (from the north), long wavelength
feature is suspected to originate not from the mass anoma-
lies in the confined region but possibly from errors in the a
priori orbits, accelerometer, and other forces. Note that
deviation in the range-rate (difference of measured range-
rate and calculated one), i.e., error in the a priori orbit at the
initial epoch may cause long-term trend when integrated
over time. On the other hand, the pulse-like pattern in the
observed RRR is likely to be caused by mass variation in
the region. For the ascending arc in Figure 5b, there is a bias
in the observed RRR not originating from the mass anomaly
in the confined region while the same mass variation (as in
the descending overpass) causes the similar pulse-like
pattern in the RRR data.
[23] Figure 6 shows the same as Figure 5 but includes all

RRR data for 15-days period presenting RRR observations
(a), calculated RRR from the mass anomaly estimates (b),
and calculated RRR from the incremental inter-satellite
initial state estimates (c). In the observations, there are
several profiles including long-term trend such as the one
pointed with the arrow symbol which is also depicted in
Figure 5a. This feature indicating unusually large arc-
dependent long-term pattern is not common in other obser-
vations. The RRR caused by the mass estimates shown in
(b) indicates large perturbation mostly gathered only within

Figure 5. K-Band range-rate residual (RRR) data (Blue)
across South America; (a) descending track crossing at the
longitude of 305�E–308�E and (b) ascending track crossing
at the longitude of 297�E–300�E. After the least squares
adjustment of the mass anomaly on the surface and
incremental relative initial state vectors, the fit to RRR
measurement from the estimates is shown as the red curves.
Each contribution from the mass anomaly and initial state
parameters is depicted as cyan and green, respectively
(consequently, red = cyan + green). The post-fit residual,
difference between the fits (red) and measurements (blue), is
0.23 mm/s in RMS. The ground track of (a) is also depicted in
Figure 6 to highlight the long-term trend (mostly linear) in
RRR not associated with the mass anomaly in the region.
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the Amazon basin. The RRR caused by initial state esti-
mates shown in (c) looks mostly N-S pattern and there
seems to be no correlation between two arcs. The observa-
tion noise after taking out (b) and (c) from (a) is quite
random yielding 0.23 mm/s of variability in a RMS sense.
The RRR observations include the effects of mass variation

confined within a certain region, arc-dependent signal or
error not associated with the mass variation in the region,
and random noise. Figure 7 shows the same as Figure 6 but
6 months later. The sign of the observations has changed
with respect to the equator due to the seasonal climate
change. Most of large variation is confined within the

Figure 7. The same as Figure 6, but 6 months later. The opposite variation (compared to Figure 6) after
a half year indicates the seasonal variation of terrestrial water in the region.

Figure 6. (a) Range-rate residual observations for 15-days period; (b) the fit calculated only using the
mass anomaly estimates; (c) the fit predicted only from the incremental relative initial state estimates.
Note that most of large perturbation in RRR is focused within the Amazon and Orinoco river basins. A
few RRR data contain uncommon and suspicious long-term along-track variations, likely not associated
with the mass variation within the region. The effects of the mass anomaly (common parameter) and
initial state (arc-dependent parameter) to the range-rate are quite distinct as shown in Figures 6b and 6c,
respectively.
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Figure 9. Water storage variation in Africa estimated from the localized analysis of RRR data every 15-
day interval; second half of March (a), first half of April (b), and second half of April (c) in year 2005.
The estimates from the monthly mean global harmonic solutions in April of 2005, (d) and (e), after the
Gaussian smoothing with 500 km and 300 km averaging radius, respectively. (f) through (j) are the same
as (a) through (e) but 6 month later.

Figure 8. Water storage variation in South America estimated from the localized analysis of RRR data
every 15-day interval; first half of March (a), second half of March (b), and first half of April (c) in year
2005. The estimates from the monthly mean global harmonic solutions in March of 2005, (d) and (e),
after the Gaussian smoothing with 500 km and 300 km averaging radius, respectively. (f) through (j) are
the same as (a) through (e) but 6 month later.
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Amazon basin for both seasons. We also see that the RRR
data include mostly temporal variations with little informa-
tion about the update of the mean gravity field from the
comparison of Figures 6 and 7. This is expected because we
used the improved mean gravity field model GGM02C as
opposed to GGM01C [Tapley et al., 2005].
[24] We have processed 3.5 years of GRACE RRR data

for estimating the 15-day mass variation in South America
including Amazon basin, Africa including Congo basin, and
North America including Mississippi basin and Hudson
Bay. Figures 8(a)-(c) show gradual migration of the water
storage estimates during the high water season including the
first half of March (a), the second half of March (b), and the
first half of April in 2005 (c) from the localized analysis of
the GRACE data. We can see water storage is being
developed from the southeast toward the central Amazon.
On the other hand, (d) and (e) are the monthly mean water
storage on the month of March in 2005, calculated from the
global spherical harmonic series inferring the monthly mean
geopotential anomaly, after applying the Gaussian smooth-
ing with averaging radius of 500 km and 300 km, respec-
tively. We have used the latest release of the monthly global
gravity solution like CSR RL04 available from the Web site
(http://podaac.jpl.nasa.gov/grace/). The global (spatial)
smoothing approach may reduce much of signals with too
aggressive smoothing (500 km) or yields undesired errors
with too conservative smoothing (300 km). The localized
analysis, however, retrieved stronger signal without much of
error. We also checked the low water season from the
localized analysis; (f) through (h) (the second half of
August, the first half of September, and the second half of
September in 2005). It is clear to identify gradual disap-
pearance of the positive water storage in the north of
Amazon River and gradual development of negative anoma-

lies along the Amazon mainstream. The Amazon particu-
larly suffered extreme dry situation in 2005 as also seen
from our GRACE analysis by comparing the anomaly in
2005 low water season with the ones in other years (not
depicted here). Figures 8i and 8j are from the monthly mean
global analysis with smoothing radius of 500 km and 300
km, respectively. Again, the result from global approach
with spatial smoothing is either too smooth or too noisy
compared to the localized analysis, implying ineffective
modeling of the regional anomaly with global basis function
like spherical harmonics. The monthly global solutions from
the different analysis center like GFZ (not shown here),
which are also available from the aforementioned website,
do not change our conclusion with the CSR solutions.
[25] Figure 9 shows the same as Figure 8 but around the

other tropical region in Africa for the periods of the second
half of March (a), the first half April (b), and the second half
of April (c) in year 2005 and 6 months later depicted in (f)
through (h). The maps shown in (d) and (e) is monthly mean
water storage calculated from the global spherical harmonic
coefficients in the month of April, 2005, with 500 km and
300 km smoothing, respectively. Figures 9i and 9j are the
same as (d) and (e) but in the month of October, 2005. The
dipole anomalies (positives in the southern part and neg-
atives in the northern part) are reversed after 6 months due
to the seasonal climate variability. Notably, the localized
analysis yield stronger and more confined features implying
significantly better spatial resolutions than the global anal-
ysis without leaking out the signals especially in the N-S
direction.
[26] We also looked into North America including the

Hudson Bay and the Mississippi basin. Figures 10a through
(10c) are 15-day mass variation estimates (in terms of water
height equivalent) from the first half of September in 2004

Figure 10. Water storage variation in North America estimated from the localized analysis of RRR data
every 15-day interval; first half of September (a), second half of September (b), and first half of October
(c) in year 2004. The estimates from the monthly mean global harmonic solutions in September of 2004
(d) after the Gaussian smoothing with 500 km averaging radius. (e) through (h) are the same as
(a) through (d) but one year later. Large inter-seasonal variation can be seen.
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to first half of October in 2004. Figure 10d is from the
monthly mean spherical harmonic coefficients on the month
of September in 2004 with the smoothing radius of 500 km
(300 km smoothing is too noisy and not shown here). From
the localized solutions, we can see the positive anomalies
are gradually disappearing in the southwest part of the
Hudson Bay while the negative anomalies are being devel-
oped in the Rocky and Appalachian mountains. Figures 10e
through (10h) are the same as (10a) through (10d) but one
year later. The outstanding feature in the Hudson Bay and
its surrounding area is inter-seasonal change which is as
large as or larger than seasonal change. While the similar
disappearance of the positive anomalies in the northern part
is observed from the 15-day solutions in the year of 2005,
the anomaly in the west of Hudson Bay has been signifi-
cantly increased. Such inter-annual signal is believed to be
partly due to hydrology and post-glacial rebound triggered
by the retreat of the Laurentide ice sheet during the
Pleistocene [Peltier, 2004].
[27] We calculate the power spectra of the localized

solutions using the spherical harmonic coefficients comput-
ed by summing the equivalent water height estimates within
the region up to the maximum spherical harmonic expan-
sion degree of 60. Also see equations (31) and (32). The
calculated coefficients essentially represent the spectra of
the mass distribution on the sphere with zero outside the
region of interest (the same effect as applying a window
function on the global data, e.g., Wieczorek and Simons
[2005]). Figures 11a and 11b show the degree-RMS (square
root of the power spectra) of the monthly mean global
solution in March 2005 and 15-day local solutions, first half
of the month (a) and second half of the month (b), at South
America, at Africa, and at North America. When those three
local solutions are summed, it gives the degree-RMS closely
following the power of the global solution within the
degrees less than 15. The signal in South America is the
strongest and the one in North America is the weakest
among three of them. The power of the global solution is
contaminated by the errors beyond the degrees greater than
15 or so. The growing power in the global solution after
the degree 15 implies that the noise exceeds the signal.
Figure 11c shows the degree-RMS of the summation of the
three regional solutions and the degree-RMS of the global
solutions without smoothing, 300 km smoothing, and
500 km smoothing. The 300 km smoothing seems to be

Figure 11. Degree-RMS (square root of degree-variance)
of the 15-day regional solutions; (a) and (b) are the first and
second half of March in 2005, respectively. The our regional
solutions at South America (Blue), at Africa (Green) and at
North America (Red) show less power than the monthly
mean global harmonic solutions (Magenta), when the three
solutions are summed (Cyan), the power is closer to the
monthly mean solutions within the band less than degree
15. The errors in the global solution rapidly increase beyond
the degree 15. The plot (c) compares the two 15-day
regional solutions (Magenta and Cyan) with the power of
the global spherical harmonic solutions without any
smoothing (Blue) and with the smoothing of 300 km
(Green) and 500 km (Red).
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still contaminated by significant amount of errors. However,
we should note that the global analysis may not indicate the
local variability of Signal-to-Noise Ratio (SNR). For exam-
ple, Figures 8e and 8j with 300 km smoothing show the
outstanding signal near the central Amazon and noise (not
random but N-S elongated). The 500 km smoothing shown
in Figures 8d and 8i actually filtered out the signal too much
as well as noise. On the other hand, over Africa, the signal is
not so outstanding compared to the noise when smoothed
with 300 km (Figures 9e and 9j). It is due to the fact that the
strength of the temporal gravity (mass) signal varies every
region on the Earth. Such local variability of the temporal
gravity signals in the global spherical harmonic coefficients
can be quantified properly only after applying the localiza-
tion before computing the global degree-variance as also
discussed by Han and Ditmar [2007].
[28] The last example demonstrates another advantage

from the local analysis of the satellite tracking data. We
present the estimation of short-term (shorter than a day)
periodic mass variations such as ocean tide anomaly. The
majority of the ocean tide signal in the deep ocean at low
and middle latitudes has been modeled out prior to analyz-
ing the tracking data. However, the imperfect modeling
yields tide anomalies localized mostly in the polar seas, ice
shelves, and coastal areas. Those mass variations are peri-

odic roughly with once-a-day and twice-a-day frequencies
and significant only in certain regions. Depending on their
original periods and the satellite sampling period, some of
the constituents are largely canceled while some of them
remain in the monthly gravity solutions [Ray and Luthcke,
2006]. The method developed in this study retrieves such
mass variation signals and opens another new opportunity
from the GRACE application. Using 3 years of RRR data,
we estimated some of the constituents like M2, S2, and O1 in
the most problematic regions including the Filchner and
Ross ice shelves (IS), Antarctica. The other major constit-
uent K1 is not estimable due to incomplete sampling of its
phase in 3 years of period. We parameterize temporal
variability on the basis of harmonic (sinusoidal) functions
with seasonal frequency and tidal frequencies (only M2, S2,
and O1) and the functions for linear and offset, as explained
in section 2.3. At this time, we do not solve the local gravity
field at a fixed interval (like 15-days) but solve the respec-
tive coefficients of the modeled temporal functions directly
from entire 3 years of RRR data. Figure 12 shows the
amplitudes of M2, S2, and O1 estimates from GRACE in (a),
(b), and (c), respectively, and the amplitudes of the differ-
ence between two independent tide models, GOT00
[Schrama and Ray, 1994; Ray, 1999] and FES04 [Lyard
et al., 2006] for M2, S2, and O1 in (d), (e), and (f),

Figure 12. (a), (b), and (c) present the amplitudes of the residual M2, S2, and O1 tides, respectively, in
the Weddell Sea and Filchner-Ronne ice shelf, estimated by the localized analysis of 3 years of GRACE
RRR observations. The residual tide indicates the anomaly with respect to the a priori model, GOT00.
Note the various scale bars. (d), (e), and (f) show the amplitude of M2, S2, and O1 tide from the model
difference, GOT00–FES04. Note the GRACE estimates yield larger amplitude where the model
difference is larger (or where the tide modeling is problematic).
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respectively. We applied the same temporal parameteriza-
tion for all the mass points on land and ocean intentionally,
while the point on the land obviously would not cause the
variation at the tidal frequency (except the elastic loading
near the coasts). The GRACE estimates provide the larger
residual tides exactly where the model difference is larger;
around Filchner IS for all three constituents, around Larsen
IS for M2, around Wilkins and Bach IS for S2, and around
Weddell Sea for O1. The largest tidal anomaly is M2 in this
area, approaching 20 cm in amplitude near the grounding
line of Filchner IS. Figure 13 shows the same but at the
place including Ross IS and Ross Sea. In this region,
GRACE predicts remaining M2 tides near the grounding
line of the Ross IS closer to the Rockefeller plateau. The
most interesting anomaly in this region is largest residual O1

tides in Ross Sea, approaching 8 cm in amplitude. Han et al.
[2007] presents the comprehensive assessment of our
GRACE tide estimates against available ground measure-
ments surrounding the Antarctica continent.

4. Conclusion and Remark

[29] We explored a new way to analyze low-low satellite-
to-satellite tracking data by numerically integrating the
gravitational force from the mass anomalies on the surface
within a certain area. The point mass approximation of the
uniformly distributed surface mass within a block facilitates
computation and yields modeling error that is not significant
considering observational error as long as the size of the
block is as reasonably small as 3302 km2. While the mass
variation in the region generates a pulse-like pattern in the

range-rate when integrated along the satellite orbits, the
other signals and errors associated with mis-modeled and
un-modeled forces (both gravitational and non-gravitation-
al) and mass variations outside the region appear to be long-
term trend in the over-flight range-rate residual observa-
tions. The simultaneous estimation of the mass parameter
and incremental inter-satellite initial state is useful to
retrieve the regional mass variation out of the noisy obser-
vations. The results from 3.5 years of GRACE data over
South America, Africa, and North America show strong
seasonal and inter-seasonal variability associated with re-
gional hydrological mass and post-glacial rebound (only for
North America) with greatly enhanced spatial and temporal
resolutions clearly discerning sub-monthly variations. An-
other innovation was introduced by applying analytic func-
tions for describing temporal variability of the gravity fields
instead of estimating the gravity fields at a fixed interval.
This kind of parameterization is demonstrated to be partic-
ularly useful to estimate even sub-daily mass variation such
as tides. Global harmonic solutions cannot accommodate
such characteristics in a dedicated manner, whereas regional
solutions are better able to articulate the spatial and tempo-
ral characteristics and their mutual correlation. The regional
solutions, taking advantage of the enhanced resolution and
the localized mass transport characteristics, are expected to
ultimately achieve an improved global model through a
unified analysis of regional gravity patches in the future.
Finally, the proposed method may help the community to
study various science problems by analyzing the fundamen-
tal (satellite-tracking) data of the GRACE mission as well as
the monthly geopotential products.

Figure 13. The same as Figure 11 but in the Ross Sea and Ross ice shelf. Note O1 estimate is larger than
the other two semi-diurnal tides in the Ross Sea, as also predicted by the model difference.
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Appendix

[30] The inner-product between inter-satellite velocity
and position vectors and the derivatives with respect to
the mass anomaly vector and with respect to the incremental
initial state vector difference are given as follows:

v12 tð ÞTr12 tð Þ ¼ ~v12 tð ÞT~r12 tð Þ þ ~r12 tð ÞTdv012 þ ~r12 tð ÞTH tð Þdm

þ ~v12 tð ÞTdr012 þ dv0
T

12dr
0
12 þ dr0

T

12H tð Þdm

þ ~v12 tð ÞTS tð Þdm;þdv0
T

12S tð Þdm
þ dmTH tð ÞTS tð Þdm ðA1Þ

and the derivatives are

@

@dm
v12 tð ÞTr12 tð Þ ¼ H tð ÞT~r12 tð Þ þH tð ÞTdr012 þH tð ÞTS tð Þdm

þ S tð ÞT~v12 tð Þ þ S tð ÞTdv012 þ S tð ÞTH tð Þdm;

¼ H tð ÞTr12 tð Þ þ S tð ÞTv12 tð Þ ðA2Þ

@

@dr012
v12 tð ÞTr12 tð Þ ¼ ~v12 tð Þ þ dv012 þH tð Þdm ¼ v12 tð Þ; ðA3Þ

@

@dv012
v12 tð ÞTr12 tð Þ ¼ ~r12 tð Þ þ dv012 þ S tð Þdm ¼ r12 tð Þ: ðA4Þ

The following inner-product between the inter-satellite
position vectors and the derivatives with respect to the
mass anomaly vector and with respect to the incremental
initial state vector difference are expressed as follows:

r12 tð ÞTr12 tð Þ ¼ ~r12 tð ÞT~r12 tð Þ þ ~r12 tð ÞTdr012 þ ~r12 tð ÞTS tð Þdm

þ ~r12 tð ÞTdr012 þ dr0
T

12dr
0
12 þ dr0

T

12S tð Þdm

þ ~r12 tð ÞTS tð Þdmþ dr0
T

12S tð Þdm
þ dmTS tð ÞTS tð Þdm; ðA5Þ

and the derivatives are given by

@

@dm
r12 tð ÞTr12 tð Þ ¼ 2S tð ÞTr12 tð Þ; ðA6Þ

@

@dr012
r12 tð ÞTr12 tð Þ ¼ 2r12 tð Þ; ðA7Þ

@

@dv012
r12 tð ÞTr12 tð Þ ¼ 0; ðA8Þ
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