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[1] We present a technique for estimating ring current ion distributions and electric
potential in the inner magnetosphere by incorporating data from the High-Energy Neutral
Atom (HENA) imager on the IMAGE satellite into a kinetic ring current model in the
context of data assimilation. Data assimilation is an approach which adjusts a physics-
based model according to differences with observations. We perform the data assimilation
using the particle filter (PF) which is applicable to high-dimensional systems and
observations with relatively low computational cost. In the present technique, the
magnetospheric electric potential distribution is represented by the sum of a Volland-Stern
field and a deviation, and the deviation is improved in the assimilation process. The ring
current ion distribution is then determined from the electric potential distribution. The
method is tested by assimilating artificial data generated by another simulation. The results
demonstrate that the ring current ion distribution is successfully reconstructed by the
proposed algorithm and that the distorted structures of the electric potential distribution are
also well reproduced. An example to illustrate how the present technique could be applied
for assimilating a real IMAGE/HENA data set is also demonstrated. This technique
provides a useful tool for investigating the global dynamic structure of ring current and
electric potential.
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1. Introduction

[2] The magnetospheric ring current during magnetic
storms has been simulated by many approaches, providing
a wide variety of qualitative overviews of its development
and decay [e.g., Chen et al., 1993; Ebihara and Ejiri, 2000;
Fok et al., 1995, 2001; Jordanova et al., 1996]. However, as
knowledge on the inner magnetosphere remains limited, such
models contain many uncertain assumptions. For example,
owing to the sparsity of available data on electric fields in the
magnetosphere, most ring current simulations utilize an
electric potential distribution model such as the Volland-
Stern model [e.g., Ebihara and Ejiri, 2000; Fok et al., 1995],
the model by McIlwain [1986] [e.g., Liemohn et al., 2001a],

which are not guaranteed to be always accurate. In this way,
inputs to simulation models of storm-time ring current
contain inherent uncertainties in the structure of electric
fields, the initial and boundary conditions, and so on, result-
ing in uncertainties or inaccuracies in the simulation output.
[3] One method to reduce the uncertainties or inaccura-

cies of the simulation is to incorporate observed data into a
model, a procedure referred to as data assimilation. There
have been several studies which used in situ plasma
observations for improving magnetospheric models [e.g.,
Kistler et al., 1989; Liemohn et al., 2001]. Recent develop-
ment of observation systems allows us to obtain more
detailed information on the magnetosphere with better
spatial coverage and temporal resolution, which offers the
possibility to comprehensively reduce uncertainties in sim-
ulation models. In particular, the IMAGE satellite provides
global imaging data for energetic neutral atoms (ENAs),
which gives spatially wide-ranging information to improve
a ring current model. In this paper, we propose a technique
for modeling the temporal evolution of the ring current ion
distribution by assimilating a time sequence of the data of
the high-energy neutral atom (HENA) imager [Mitchell et
al., 2000] on board the IMAGE satellite.
[4] The present data assimilation technique is designed to

apply to a simplified version of the comprehensive ring
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current model (CRCM) [Fok et al., 2001] in which the
electric field is expressed in a rather simple manner. By
assimilating ENA data, initial settings of this ring current
model are improved so as to be consistent to observations.
While the IMAGE/HENA data can be used to deduce
snapshots of the global distribution of ring current ions at
each observation time independently [Brandt et al., 2002b;
DeMajistre et al., 2004; Vallat et al., 2004; Perez et al.,
2004], data assimilation allows static estimates of the ring
current distribution from the IMAGE/HENA data to be
evolved into a dynamic model that considers the physical
consistencies described by this ring current model.
[5] In order to incorporate the IMAGE/HENA data into

the simplified CRCM, one consideration is the high-
dimensionality of the simulation model and the observation.
The algorithms which were used in the past several attempts
to assimilate observed data into magnetospheric simulation
models do not work for the present ENA data assimilation.
For example, several studies have directly inserted in situ
particle flux data observed by geosynchronous satellites into
simulation models of the inner magnetosphere [e.g., Garner
et al., 1999; Liemohn et al., 2001]. However, direct insertion
of a large number of data, which contain observational errors,
might destroy continuity and physical consistency in the
model. Moreover, such approaches are valid only when some
of the variables in the simulation models can be measured or
directly derived from measured data. Thus, these approaches
cannot be used for the assimilation of ENA data, which
reflect an integral of ion density along a line of sight and do
not directly indicate the ion density at any point. Naehr and
Toffoletto [2005] have proposed amethod to assimilate in situ
flux data into a simple radiation belt model using an extended
Kalman filter. However, for models with high nonlinearity,
the extended Kalman filter causes errors to diverge [e.g.,
Evensen, 1992]. In addition, when the system model for
data assimilation contains a large number of variables, use
of the extended Kalman filter is not realistic due to the
prohibitive computational cost. The extended Kalman filter
is thus impractical for data assimilation in the ring current
model, which contains more than 2,000,000 variables. In
meteorology and physical oceanography, some data assim-
ilation algorithms which allow us to incorporate a high-
dimensional observation into a high-dimensional model
with relatively low computational cost are proposed and
used for various applications. The particle filter (PF) algo-
rithm [Gordon et al., 1993; Kitagawa, 1993, 1996] (see
Kitagawa and Gersch [1996] for details) is one of such
algorithms. The proposed technique uses the PF to accom-
plish the data assimilation of the ENA data set. In the
following, the data assimilation technique of the IMAGE/
HENA data into the CRCM is introduced. In order to
evaluate the technique, a data assimilation experiment is
also performed using artificial data generated by another
simulation run with a different electric field model.

2. Strategy of Assimilation

[6] The CRCM is a kinetic model that solves the bounce-
averaged Boltzmann equation given by
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where �f is the average phase-space density on the field line
between the mirror points, lis and fis indicate the magnetic
latitude and longitude at the ionospheric altitude, s is the
cross section for charge exchange with neutrals, and n
denotes the density of neutral atoms (see Fok et al. [2003]
for details). In this study, only protons are considered. The
CRCM, which provides the pitch angle distribution, allows
us to predict the ENA flux observed by the HENA imager
on board the IMAGE satellite [Fok et al., 2003; Ebihara
and Fok, 2004]. However, the predicted ENA flux could
contain discrepancy with the observation due to errors or
inaccuracies in assumptions underlying the model. The data
assimilation reduces the discrepancy and provide a solution
which is consistent with the observation.
[7] One of the critical factors controlling the global

distribution of ring current ions is the electric field distri-
bution in the inner magnetosphere, and accordingly the
features of ENA images observed by the IMAGE satellite
are also controlled by the electric field distribution [Brandt
et al., 2002a; Fok et al., 2003]. Therefore, to accurately
model the ring current distribution, it is important to obtain
a realistic electric field distribution. However, there is no
single established model for the electric field distribution in
the inner magnetosphere, particularly during magnetic
storms. It is thus presumed that the electrostatic potential
distribution is uncertain, and the potential distribution is
improved in the course of the data assimilation process. The
approach for estimation of electric potential distribution in
the present assimilation method is similar to that taken by
McIlwain [1986] and Kistler et al. [1989], who also
obtained information on the electric potential structure in
the inner magnetosphere through the use of in situ ion
spectra data and ion tracing. As electric potential distribu-
tion is estimated, the temporal evolution of the ring current
ion distribution is determined in parallel.
[8] In the original CRCM by Fok et al. [2001], the

electric potential distribution can be calculated by assuming
self-consistency of the electric field and the electric current
in the both magnetosphere and ionosphere on the basis of
the Rice Convection Model (RCM). For simplicity, the
ionospheric processes are not considered in the present
assimilation method, although the result from a calculation
of the electric potential distribution is used for a check of
the assimilation scheme later. The magnetospheric electric
field potential distribution at the equatorial plane is
expressed as:

F ¼ F0
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where r is the radial distance from the Earth’s center, f is
the magnetic local time in radians, R0 is the equatorial
radius of the outer boundary of the simulation domain, J i is
the ith order Bessel function, and xij are the positive roots of
J i(xij) = 0 such that 0 < xi1 < x i2 < 
 
 
. By assuming
equipotentiality along a magnetic field line, electric
potential at any point in the inner magnetosphere is given
by that at the equatorial plane represented by equation (2).
The parameter F0 is set at the potential drop calculated from
the model by Weimer [2001] with solar wind data obtained
by the ACE as an input. The first term in the brackets on the
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right-hand side of equation (2) is the Volland-Stern-type
electric field with a shielding factor of 2, and the deviation
from the Volland-Stern-type electric field is represented by
the second and third terms. At the outer boundary of
the simulation domain, where r = R0, the second and third
terms become zero. The outer boundary condition of the
electric potential is thus determined by the Volland-
Stern-type electric field model. The coefficients aij and bij
are uncertain, and optimal values of these coefficients are
sought in order that the ENA flux estimated from the
assimilation result fits the observed flux. The search for
probable values of aij and bij is detailed in the appendix. For
simplicity, it is assumed that aij and bij are constant over the
simulated period. Therefore, temporal variations of the
electric field are fully attributed to F0. The ring current
protons at the outer boundary are given by an isotropic
Maxwellian with a temperature of 5 keV. The outer
boundary of the simulation domain R0 is set at 10RE. The
proton density at the outer boundary is assumed to be
unknown and an estimate of the proton density are obtained
through data assimilation. The variation of the proton
density at the outer boundary is assumed to follow a linear
trend which is updated every hour. Conditions other than the
magnetospheric electric potential and the ring current
protons at the outer boundary are assumed to be given.
The terrestrial magnetic main field is assumed to be a dipole
field, and the magnetic fields due to magnetospheric
currents are calculated by the models by Tsyganenko
[1995] and Tsyganenko and Stern [1996] with the assump-
tion that the tilt angle is zero.
[9] The differential flux of ENA JENA is obtained by a

line-of-sight integral as

JENA ¼
Z

sHnH þ sOnOð ÞJprotonds ð3Þ

where Jproton is the differential proton flux toward the
IMAGE satellite and s is the distance along the line of sight.
Assuming conservation of the first invariant, the proton

differential flux Jproton at any point on the field line can be
related to the equatorial differential flux, which can be
readily derived from the phase-space density �f . The
densities of neutral hydrogen and neutral oxygen are
denoted by nH and nO, and sH and sO are the cross
sections of charge exchange of ring current protons with
neutral hydrogen and neutral oxygen. The neutral density
distribution around the Earth is given by the model of
Rairden et al. [1986] for hydrogen, and the neutral oxygen
density distribution is given by the NRLMSISE-00 model
[Picone et al., 2002]. However, it is difficult to model the
ENA flux properly from the optically thick region near the
Earth. In the assimilation, ENA data containing ENA
emissions near the Earth below and altitude of 1500 km are
not included.

3. Evaluation With Artificial Data Set

3.1. Artificial Data for the Experiment

[10] The validity of the assimilation technique is evalu-
ated by a data assimilation experiment using artificial ENA
data generated by a different simulation run rather than real
data obtained by the IMAGE satellite. As the result of
assimilation of the artificial data can be checked by com-
paring with the simulation run which generated the artificial
data, we can confirm whether the present scheme provides
adequate estimations. The simulation for generation of
artificial data is the same as that for the assimilation model
except that the electric field distribution is calculated by the
RCM as done by Fok et al. [2001] and that the proton
density at the outer boundary is given by N = 0.025Nsw +
0.395 (cm�3) according to Ebihara and Ejiri [2000], where
Nsw is the solar wind density. The position of the IMAGE
satellite is assumed to be the same as the actual position.
The HENA imager produces ENA images every 2 min
covering an energy range of 10–200 keV. However, only
ENA data for a single energy value (44.0 keV) at 12 min
intervals are used in order to reduce the computational cost

Figure 1. (top) Dst index for the period 0000–1200 UT, 12 August 2000. (bottom) Northward
component of IMF in GSM coordinates, and Bz observed by the ACE spacecraft. IMF is plotted
accounting for time delay from ACE to Earth (50 min). Model for assimilation is initialized at 0600 UT.
HENA data are assumed to be available during the hatched period (0900 UT to 1200 UT).
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here. The field of view of the HENA imager is 120�, and the
angular resolution is 6� in elevation. The ENA data are
obtained every 6� of spin. ENA data over a range of 120�
centered at the earthward direction are used in the test,
corresponding to a total of 20 � 20 data in each assimilation
step. Considering that ENA count data contains Poisson

Figure 2. (top) Simulated ENA flux at 1000 UT assuming
Volland-Stern model with a shielding factor of 2. (middle)
ENA flux obtained by data assimilation of artificial HENA
data. (bottom) Artificial HENA data. Figure 3. (top) Simulated proton flux distribution at 1000

UT assuming Volland-Stern model. (middle) Proton flux
distribution obtained by data assimilation of artificial data.
(bottom) Proton flux distribution in the model for genera-
tion of the artificial data. The contours of electric potential
including the corotation electric field are also superimposed
with contour interval 10 kV.
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noises, an ENA datum for each pixel is artificially generated
as follows. First, the ENA flux flowing into each pixel of
the instrument is calculated from the run with the RCM.
Second, the ENA flux is converted into an expectation of
the detected ENA count during 1 spin for each pixel.
Finally, assuming that an observed ENA count for
each pixel obeys each Poisson distribution with the expec-
tation, each count datum is generated by drawing from the
distribution.

[11] The magnetic storm on 12 August 2000 was adopted
for evaluation of the assimilation model. The disturbance
field (Dst) index and the interplanetary magnetic field (IMF)
observed by the ACE from 0000 UT to 1200 UT on this day
are shown in Figure 1. The IMF Bz is plotted taking into
account the time delay from the ACE to the Earth (assumed
to be 50 min). The HENA data are assumed to be available
during the period from 0900 UT to 1200 UT when the
IMAGE satellite was near the apogee altitude (shaded
period in Figure 1). The simulation run to generate the
artificial data was started at 0200 UT, before the Dst index
decreases. The initial distribution of ring current ions is
given by the proton flux measured by AMPTE/CCE during
quiescent times [Sheldon and Hamilton, 1993].

3.2. Result of the Experiment and Discussion

[12] The bottom panel of Figure 2 shows the reference
ENA data at 1000 UT, which were artificially generated by
the CRCM with the RCM, and the top panel shows the
simulated ENA flux at 1000 UT assuming the Volland-Stern
model of the magnetospheric electric field with a shielding
factor of 2 (i.e., aij = 0 and bij = 0 for all i and j). The top
panel represents the ENA flux estimated without data
assimilation, because we can only assume that all the
coefficients aij and bij are zero without using the informa-
tion of the ENA observation. The two sets of results clearly
differ in terms of both the intensity and the position of the
peaks. The middle panel shows the ENA flux at 1000 UT
derived from the results of data assimilation. The flux is
improved markedly from that in the top panel. The peak of
ENA emission in the postmidnight [Brandt et al., 2002a;
Fok et al., 2003; Ebihara and Fok, 2004], which is not seen
in the top panel, is also reproduced.
[13] Figure 3 shows the ring current proton distributions

from which the ENA images shown in Figure 2 were
generated. The ring current distributions are indicated in
proton flux averaged over pitch angle at the equatorial

Figure 4. Uncertainty of the estimate of the ring current
proton flux superimposed on the estimate of the flux which
is also shown in the middle panel in Figure 3.

Figure 5. The proton density at the outer boundary of the simulation domain estimated using data
assimilation of artificial data (solid line) and plasma sheet ion density given by the equation of Ebihara
and Ejiri [2000], which was used in the reference simulation (dotted line).
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plane. It is demonstrated that the ion distribution was
successfully reproduced by the data assimilation. When
the Volland-Stern type electric field is imposed in the
magnetosphere, the ring current ion flux peaks around dusk
and the ion flux becomes low in the postmidnight period.
On the other hand, the assimilation result in the middle
panel indicates that the ring current ion flux remains high

throughout the night, consistent with the reference simula-
tion model. Figure 4 shows uncertainty of the estimate of
the ring current proton flux for reference. Here, the uncer-
tainty is indicated by 2s of the estimate which can be
derived from the smoothed distribution (see Appendix A).
Although the uncertainty is about 5% of the peak around the

Figure 6. (left) Proton flux distribution obtained by data assimilation of artificial ENA data and ENA
image derived from the result for every hour from 0900 UT to 1200 UT. (right) Proton flux distribution in
the model for generation of the artificial data and the artificial ENA data for every hour from 0900 UT to
1200 UT.
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eastward edge of the ring current region, proton flux in
other region is determined with rather small uncertainty.
[14] The contours of electric potential including the

corotation electric field are also shown in Figure 3 with
white lines. The contour interval is 10 kV. The general
features of the potential pattern in the assimilation results
are similar to those in the reference model. It is notable that
a distorted structure in the potential pattern and a westward
electric field around the dawn are well reproduced in the
assimilation results, but not in the Volland-Stern model.
This westward electric field has been suggested to be one of
the probable causes of the postmidnight enhancement of
ENA emission [Ebihara and Fok, 2004]. The assimilation
of ENA data is effective to improve the reproduction of the
westward electric field, to which the ENA flux is sensitive.
The westward electric field enhances ENA emission by
energizing ions due to conservation of the first two adiabatic
invariants and transporting the ions toward the geocoronal
region nearer the Earth.
[15] Beyond 6RE, where ENA emission becomes weak,

the electric potential pattern given by data assimilation is
more similar to the Volland-Stern model than to the refer-
ence simulation, especially on the duskside. Actually, the
uncertainty of the electric potential around the dusk was
about two times larger than other local time. This indicates
that the electric potential structure beyond 6RE on the
duskside was little effect on the ENA images observed by
the IMAGE satellite. The parts of the electric fields that
have a small influence on the ENA flux tend to be estimated
by the Volland-Stern model that forms the base of the
method. The model of the electric field in the entire inner
magnetosphere could be further improved by including
other data sets as constraints. For example, the use of in
situ particle data could be used for improving the electric
potential distribution as done by McIlwain [1986] and
Kistler et al. [1989]. More accurate results could also be
obtained by employing a more realistic model than the
Volland-Stern model. For example, in practical cases that
real data are assimilated into the model, the assimilation
might provide better estimates by starting with an electric

field distribution derived using the CRCM with the RCM,
which was used in the present study to generate the artificial
data.
[16] Figure 5 compares the proton density at the outer

boundary of the simulation domain between the estimate
using data assimilation (solid line) and the prediction
derived from the equation of Ebihara and Ejiri [2000]
(dotted line), which was used in the reference simulation
for generation of the artificial data. Data assimilation
successfully estimated the proton density at the outer
boundary for the period after 0700 UT. Before 0700 UT,
the estimate of the outer boundary proton density rather
deviates from the density variation used in the reference
simulation. This would suggest that the outer boundary
condition before 0700 UT make little effects on the ENA
observation after 0900 UT and that it takes about 2 h for
protons to convect from 10RE to the geocoronal region.
[17] The present data assimilation scheme provides a

dynamic solution of the ring current variation. The left side
of Figure 6 indicates the snapshots of the ring current proton
distribution extracted from the dynamic solution for every
hour from 0900 UT to 1200 UT. The ring current proton
distribution obtained from the CRCM with the RCM, which
generated the artificial data set, and the corresponding ENA
flux are also shown in the right side of this figure for
reference. Data assimilation appropriately reproduced the
variation of the ring current ion flux.
[18] The proposed technique is designed to be robust to

noises in the observed ENA data. As the kinetic ring current
model is fitted to the ENA observations, the simulation
model constrains the estimation so as to satisfy spatial and
temporal continuity, which ensures the robustness of the
estimation. As described above, the artificial ENA count
data are assumed to obey a Poisson distribution in order to
consider Poisson noises superimposed on the ENA data. To
check the robustness to such Poisson noises, several data
assimilation experiments are performed using artificial data
with different seeds of random numbers (i.e., different
Poisson noises). It was confirmed through these experi-
ments that the change in the electric potential due to the

Figure 7. Comparison between the prediction of the ENA image by the CRCM and the observed ENA
image. (left) Simulated proton flux distribution obtained using the orginal CRCM. (middle) ENA image
derived from the proton distribution simulated by the original CRCM in the left panel. (right) ENA image
observed by IMAGE/HENA at 1000 UT on 12 August 2000. The original CRCM clearly overestimates
observed ENA flux.
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Figure 8. (left) Proton flux distribution obtained by data assimilation of real data for every hour from
0900 UT to 1200 UT. (middle) ENA images derived from the result of data assimilation. (right) ENA
images observed by IMAGE/HENA. Note that the color scale is different from that in Figures 6 and 7.

A05208 NAKANO ET AL.: DATA ASSIMILATION OF GLOBAL ENA DATA

8 of 14

A05208



noise is approximately 1% of the polar cap potential drop.
The effect of noise on the ring current ion flux was found to
be negligible. However, it should be noted that the assim-
ilation results contains errors due to residuals in represent-
ing an electric field by the function of equation (2). In the
case of the experiment performed in this study, the root-
mean-square of the residuals in fitting the function of
equation (2) to an electric field calculated by the RCM
(Rice Convection Model) was approximately 5% of the
polar cap potential drop. The root-mean-square of errors in
ring current ion flux due to the fitting residuals were also
estimated to be approximately 5% of the peak. Thus, we
should think that total errors of the assimilation results is
larger than errors due to observation noises.

4. An Application

[19] On the basis of the above data assimilation tech-
nique, we assimilate the real IMAGE/HENA data set into
the simplified CRCM in this section. As well as the above
experiment, we address the magnetic storm on 12 August
2000. Although the original CRCM, in which the electric
potential is calculated with the RCM and the boundary
condition is given by an empirical model, reproduces
features of the ENA images observed by IMAGE/HENA
for this storm in general [Ebihara and Fok, 2004], it tends
to overestimate the ENA flux as shown in Figure 7, which
compares an actual ENA image from IMAGE/HENA and
an estimation of an ENA image by the original CRCM at
1000 UT on 12 August 2000. Thus, the main purpose to
apply data assimilation for this storm here is to obtain a ring
current model consistent with the level of ENA flux
observed by IMAGE/HENA. We used 12-min averaged
HENA data during the period from 0900 UT to 1200 UT
when the IMAGE satellite was near the apogee altitude (see
Figure 1 again), and assimilated them into the simplified
version of the CRCM.

[20] Figure 8 displays the result of data assimilation of the
real IMAGE/HENA data for the magnetic storm on
12 August 2000. The left panel of each row shows the ring
current proton flux distribution estimated using data assim-
ilation. For reference, in the middle panel and the right
panel of each row, the ENA image derived from each data
assimilation result and the observed ENA image are respec-
tively shown. The result shows that the ring current proton
flux was about a fifth of the estimates from the original
CRCM shown in the right side of Figure 6. (Note that the
color scale in Figure 8 is different from that in Figure 6.)
Besides the intensity level, general features of the spatial
distribution of ring current protons are consistent with the
original CRCM. The ring current intensity is higher on the
nightside than on the dayside. On the dayside, the ring
current is stronger in the afternoon than in the morning. This
feature of spatial distribution of the ring current is also
consistent with other statistical analysis of in situ mag-
netic observations [e.g., Iijima et al., 1990; Terada et al.,
1998; Le et al., 2004] and in situ plasma observations
[e.g., De Michelis et al., 1997, 1999].
[21] The white lines in each panel of Figure 8 indicate the

contours of estimated electric potential including the coro-
tation electric field as well as in Figures 3 and 6. Again
the contour interval is 10 kV. The general features of the
potential pattern are similar to those in the result from the
original CRCM. As well as in the original CRCM, a
westward electric field appears around the dawn. This result
is deduced apart from the RCM, and it would offer an
evidence supporting the result of the original CRCM which
used the RCM for considering self-consistency of the
electric field and the electric current in both the magneto-
sphere and the ionosphere from another perspective. Kistler
et al. [1989] suggests that the ion energy spectrum observed
on the dayside could be explained a Volland-Stern type field
with a rotation by 2 h local time. Their result can be
interpreted to indicate that positions of the entry and the

Figure 9. The proton density at the outer boundary of the simulation domain estimated using data
assimilation of real data (solid line), plasma sheet ion density given by the equation of Ebihara and Ejiri
[2000] (dotted line), and plasma sheet ion density given by the model by Tsyganenko and Mukai [2003]
(dashed line).
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drainage of ions into the ring current region are not located
symmetrically about the dawn-dusk meridian but that these
positions are skewed eastward. Figure 8 suggests that the
contours of the electric field on the nightside are skewed
eastward as approaching from the tail toward the Earth as
suggested by Brandt et al. [2002b], and thus ions are mainly
fed into the ring current region around the postmidnight.
This figure also suggests a westward electric field in the
afternoon sector, which corresponds to the drainage of ring
current ions. Therefore, the result of the present data
assimilation would be related with the result by Kistler et
al. [1989].
[22] Figure 9 shows the proton density at the outer

boundary estimated using data assimilation with a solid
line. Plasma sheet ion density given by the equation of
Ebihara and Ejiri [2000] and that given by the model by
Tsyganenko and Mukai [2003] are also indicated with a
dotted line and a dashed line, respectively, for reference.
The estimated proton density is much lower than the
empirical models. In the original simulation shown in
the right side of Figures 6 and 7, the proton density at
the outer boundary was given by the equation of Ebihara
and Ejiri [2000]. Therefore, the overestimation of the ENA
flux in the original model would be attributed to the
overestimation of the amount of protons fed from the outer
boundary. The large discrepancy between the estimate of
data assimilation and the empirical models is acceptable.
Various observations suggests that the ring current is
dominated by oxygen ions during strong magnetic storms
[e.g., Daglis, 1997]. Thus it is probable that the plasma
sheet plasma contains a high percentage of oxygen ions. If
oxygen ions dominate the plasma sheet plasma, it would
not be valid to estimate the amount of plasma sheet protons
by a model of plasma sheet ions which does not distinguish
among different ion species, and thus the amount of plasma
sheet protons should be overestimated. Otherwise, even if
the model by Tsyganenko and Mukai [2003] predicts that
plasma sheet ion density is about 0.5/cc, actual ion density
is often below 0.2/cc (see Figure 6 in the paper by
Tsyganenko and Mukai [2003]). Therefore an empirical
model may sometimes overestimate the amount of plasma
sheet protons. Anyhow, since it is basically difficult to
predict the plasma sheet proton density by using an empir-
ical model for each event, it would be meaningful to
improve a guess about plasma sheet proton density by
using data assimilation.

5. Summary

[23] A data assimilation method that combines IMAGE/
HENA data with a simplified version of the comprehensive
ring current model (CRCM) was proposed. Data assimila-
tion is an approach which combines a physics-based model
and observations to produce optimal estimates of states of a
time-varying system. In this method, the magnetospheric
electric potential distribution is represented by the sum of
the Volland-Stern type field and a deviation from it, and the
deviation is estimated simultaneously with the ring current
ion distribution so as to be consistent with the ENA
observations from the IMAGE satellite. The data assimila-
tion is performed using the particle filter (PF) algorithm
which allows us to treat high-dimensional systems and

observations with relatively low computational cost. The
method was tested using artificial data generated by the
original CRCM in which the electric potential is calculated
with the Rice convection model (RCM). It was demonstrated
that the assimilation method can successfully reproduces the
ring current ion distribution in the inner magnetosphere. The
features of the electric field structures in the original CRCM
are also well reconstructed including the distortion in the
electric potential pattern and a westward electric field
around the dawn which would cause the postmidnight
enhancement of ENA emission. Although the estimation
was less accurate for the region with weaker ENA emission,
the accuracy in this region could be improved by incorpo-
rating other data sets and by starting with a more realistic
model than the Volland-Stern model. An example of data
assimilation of real ENA data from IMAGE/HENA into the
ring current model was also illustrated, and the usefulness of
the present data assimilation technique has been shown.
Although averaged features of the ring current distribution
have been examined in many literatures [e.g., Terada et al.,
1998; De Michelis et al., 1999; Le et al., 2004], it was
difficult to resolve the temporal variations of the ring current
distribution for each magnetic storm with in-situ measure-
ments. The data assimilation of the global ENA observation
offers the possibility to investigate time-varying spatial
structures of the ring current and to resolve differences
among various magnetic storms when ENA observation is
available. Moreover, the features of the electric field distri-
bution which affect the ring current structures could be also
investigated for various magnetic storms.

Appendix A: Method of Assimilation

[24] The PF is a useful algorithm that is applicable to
general nonlinear problems, and which can be readily
implemented (see Kitagawa and Gersch [1996] and
Higuchi and Kitagawa [2000] for details). The general
algorithm of the PF is described briefly in subsection A1.
In subsections A2 and A3, supplementary information
relating to the effective application of the PF to the ring
current model is provided.

A1. Particle Filter

[25] The following state-space model is considered:

xk ¼ Fk xk�1ð Þ þ vk ðA1aÞ

yk ¼ Hk xkð Þ þ wk ðA1bÞ

where the vectors xk and yk indicate the state of a system
and the observed data at the discrete time T = tk, and the
vectors vk and wk denote system noise and observation
noise. The state vector xk consists of the target variables in
the simulation model. In the present study, xk is composed
of discretized phase-space densities of ring current ions and
the coefficient aij and bij in equation (2). The observation
vector yk corresponds to the differential ENA flux data for
each pixel of the HENA image. The operator Fk represents
the temporal evolution from time tk�1 to time tk according to
the simulation, while Hk projects the state vector xk to the
observation space. In this study, Hk relates the observed
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ENA flux to the proton phase-space density in the
simulation model. The structure of Hk is described in detail
in subsection A3.
[26] In the PF as well as the ensemble Kalman filter, the

probability distribution of the state xk is considered. The
probability distribution is approximated by an ensemble
consisting of a large number of realizations called ‘‘par-
ticles.’’ First, the probability distribution of the initial state of
a system p(x0) is approximated by particles {x0

(1), x0
(2), 
 
 
,

x0
(n)} such that

p x0ð Þ �
Xn
i¼1

w
ið Þ
0 d x0 � x

ið Þ
0

� �
ðA2Þ

where d is Dirac’s delta function and n is the number of
particles. The initial weight w0

(i) is set at 1/n for all i. On the
basis of the particle approximation, the probability distribu-
tion of the state at the first observation time t1, p(x1), is
derived from p(x0) (prediction step). The probability
distribution p(x1) is referred to as a predictive distribution.
By incorporating the information of the observation y1 into
the predictive distribution p(x1), the posterior probability
distribution p(x1jy1) is derived (filtering step). From the
filtered distribution p(x1jy1), the predictive distribution at
the next observation time t2, p(x2jy1) is deduced, and the
next observation y2 is used for the constraint to obtain the
filtered distribution p(x2jy1, y2) from p(x2jy1). By applying
the prediction and filtering steps recursively, the filtered
distribution p(xkjy1, 
 
 
, yk) is obtained for any observation
time tk. The implementation of the prediction step and the
filtering step is as follows.
[27] Suppose that a filtered distribution of the state at time

T = tk�1 has been obtained given the data at times T = t1, 
 
 
,
tk�1 in the form of the particle approximation as

p xk�1jy1:k�1ð Þ �
Xn
i¼1

w
ið Þ
k�1d xk�1 � x

ið Þ
k�1

� �
ðA3Þ

where p(xk�1jy1, 
 
 
 , yk�1) is expressed as p(xk�1jy1:k�1).
The weight wk�1

(i) for each particle is set to satisfySiwk�1
(i) = 1.

From p(xk�1jy1:k�1), a predictive distribution of the state at
the next observation time tk is obtained by

p xk jy1:k�1ð Þ �
Xn
i¼1

w
ið Þ
k�1d xk � x

ið Þ
k

� �
ðA4Þ

where xk
(i) is given by Fk(xk�1

(i) ) + vk
(i) for each i and

Fk(xk�1
(i) ) is obtained by advancing the simulation from

the state xk�1
(i) . Using the predictive distribution p(xkjy1:k�1)

as a prior distribution, the posterior filtered distribution
p(xkjy1:k) (= p(xkjy1, 
 
 
, yk�1, yk)) is obtained using the
data at time T = tk, yk. The particle approximation of the
filtered distribution is calculated using Bayes’ theorem as
follows.

p xk jy1:kð Þ ¼ p xk jy1:k�1ð Þp yk jxkð ÞR
p xk jy1:k�1ð Þp yk jxkð Þdxk

� 1P
j w

jð Þ
k�1p yk jx

jð Þ
k

� �Xn
i¼1

p yk jx
ið Þ
k

� �

w ið Þ

k�1
 d xk � x
ið Þ
k

� �
:

ðA5Þ

Here, p(ykjxk(i)) is the likelihood of xk
(i) given data yk, and is

obtained as described in section A3. The weight is then
updated by

w
ið Þ
k ¼

w
ið Þ
k�1 
 p yk jx

ið Þ
k

� �
P

j w
jð Þ

k�1 
 p yk jx
jð Þ

k

� � ðA6Þ

for each i, and equation (A5) is rewritten as

p xk jy1:kð Þ �
Xn
i¼1

w
ið Þ
k d xk � x

ið Þ
k

� �
: ðA7Þ

[28] This is the same form as equation (A3). In the PF, a
procedure called ‘‘resampling’’ is usually performed as an
alternative to the weight updating as described in equation
(A6). The resampling procedure corresponds to a sort of
approximation of equation (A5) (see Kitagawa and Gersch
[1996] and Higuchi and Kitagawa [2000]) but is not
implemented in this study.
[29] Finally, constraints are imposed on the state in the

past by pursuing the history of each particle contained in the
ensemble xk

(1), 
 
 
, xk(n). The procedure to constrain the state
in the past is called ‘‘particle smoother.’’ As the previous
state xk�1

(i) for each particle in the ensemble is known, the
distribution of xk�1 given the data sequence {y1, 
 
 
, yk}
(smoothed distribution) is obtained by

p xk�1jy1:kð Þ �
Xn
i¼1

w
ið Þ
k d xk�1 � x

ðiÞ
k�1

� �
: ðA8Þ

After the filtered distributions have been obtained to the end
of the data sequence, the smoothed distribution p(xkjy1:end),
that is, the posterior distribution of xk given all of the data
sequence, is obtained for all k. The smoothed distribution
at each observation time provides an optimal estimate of
the state.

A2. Notes for Application

[30] As mentioned above, the state vector xk consists of
discretized phase-space densities of ring current ions and the
coefficients aij and bij in equation (2). Thus, the vector xk is
divided into two parts as follows.

xk ¼
f k
u

� �
¼ f k þ uð Þ: ðA9Þ

Here, fk is the discretized phase-space density and u is a
vector consisting of aij and bij for all i and j and a time
sequence of the ion density at the outer boundary. We can
treat u as a time constant.
[31] As the dimension of fk in xk is larger than 2,000,000,

the dimension of xk is extremely large. It is practically
impossible to deal with uncertainties for a vector of such a
size by the PF. Uncertainties are therefore only imposed on
u, that is, only on the coefficients aij and bij, and the
sequence of the parameter of the outer boundary condition.
Then, the values of these uncertain parameters are improved
in the course of the data assimilation. The initial guess of aij
and bij are set to be zero, and the uncertainties of them are
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assumed to obey Gaussian distributions with certain stan-
dard deviations. The initial values of the phase-space
density f0 are given by the proton fluxes measured by
AMPTE/CCE with no uncertainties, as is the case for
the run to generate the artificial data. The model for the
assimilation is initialized at 0600 UT to allow 3 h for the
ion distribution to reach equilibrium, while the simulation
run to generate the artificial data is started at 0200 UT.
System noise vk in equation (A1a) is also neglected. The
dynamical system therefore becomes

xk ¼ F xk�1ð Þ: ðA10Þ

The simulation model is thus assumed to correctly represent
the dynamics of the ring current. The assumption that
uncertainties are entirely due to u reduces the dimension of
the uncertainties considerably, making it possible to
represent the uncertainties by a limited number of particles.
The number of particles n was set at 512 in this study.
[32] A problem that often occurs in the PF is particle

degeneration. In the PF, as the filtering procedure is applied
recursively, the approximation of the filtered distribution is
dominated by only one or two particles of the ensemble, with
the contribution from other particles becoming negligible.
This may spoil the validity of the particle approximation
of the probability distribution. Although this problem can
be avoided by increasing the number of particles in the
ensemble, doing so increases the computational cost and
resource requirements. To avoid particle degeneration with
less computational cost, the ensemble is reset every hour
of simulation time, as described below.
[33] First, with the weights calculated by equation (A6),

a particle approximation of the smoothed distribution
p(x0jy1:k) is obtained as equation (A8). From the smoothed
distribution, the posterior probability distribution of u is
approximated by

p ujy1:kð Þ �
Xn
i¼1

w
ið Þ
k d u� u ið Þ

� �
ðA11Þ

where u(i) = x0
(i) � f0. The sample mean and covariance of u

are given by

m1:k ¼
Xn
i¼1

w
ið Þ
k u ið Þ ðA12aÞ

S1:k ¼
Xn
i¼1

w
ið Þ
k u ið Þ � m1:k

� �
u ið Þ � m1:k

� �T

: ðA12bÞ

Suppose that p(ujy1:k) follows a Gaussian distribution with
mean m1:k and covariance S1:k. A new approximation of
p(ujy1:k) can then be obtained by drawing samples {u1:k

(1), 
 
 
,
u1:k
(n)} from the Gaussian as

p ujy1:kð Þ �
Xn
i¼1

w
ið Þ
0j1:kd u� u

ið Þ
1:k

� �
ðA13Þ

where w0j1:k
(i) is set as 1/n for all i. Deriving x0j1:k

(i) from u1:k
(i)

by adding f0 for each i, the particle approximation of
p(x0jy1:k) is reconstructed, and the approximation of the
filtered distribution p(xkjy1:k) is obtained as

p xk jy1:kð Þ �
Xn
i¼1

w
ið Þ
kj1:kd xk � x

ið Þ
kj1:k

� �
ðA14Þ

with the updated ensemble {xkj1:k
(1) , 
 
 
, xkj1:k(n) }. Here, xkj1:k

(i) is
given by applying the operator F to x0j1:k

(i) recursively, that
is, xkj1:k

(i) is the result of the simulation started with the initial
state of x0j1:k

(i) .
[34] The assimilation process is illustrated in Figure A1.

The model for the assimilation is started at time T = t0,
which corresponds to 0600 UT in the present case. The open
circles denote the times at which referral is made to the
observed data and weights are updated by equation (A6),
while the solid circles denote the times at which the
ensemble is reset and the filtered distribution p(xkjy1:k) is
approximated by equation (A14). Every hour of simulation

Figure A1. Assimilation scheme. ENA data are referred to every 12 min. Open circles denote times of
referral to observed data and update of weights, solid circles denote times at which the probability
distribution of~x0 is reset by updating the ensemble on the basis of comparison with observed data.
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time from T = t1 (0900 UT), the data are referred to five
times, among which the weights are updated four times
and the ensemble is updated once. After referring to the
data at T = tend (1200 UT) and updating the weights
{wend

(1) , 
 
 
, wend
(n) }, the mean of u, m1:end is calculated by

equation (A12a). The optimal initial state is then obtained
as f0 + m1:end, which is the mean of the smoothed
distribution of the initial state p(x0jy1:end). Finally, the
simulation is advanced from the optimal initial state f0 +
m1:end, and the result of the simulation run is adopted as
the result of the assimilation, as shown in the middle
panels of Figures 2 and 3.

A3. Calculation of Likelihood Function

[35] As described in subsection A1, the PF algorithm
requires the likelihood of xk

(i) given the data yk, p(ykjxk(i)).
Since the likelihood has a significant effect on the results of
assimilation, the algorithm for calculating the likelihood is
important. The likelihood function is calculated here con-
sidering the relationship between yk and xk given by
equation (A1b) as follows.
[36] The operator Hk in equation (A1b) includes the

relationship between ENA flux data and the proton differ-
ential flux given by equation (3), and the conversion from
phase-space density to differential flux. On the basis of a
discrete approximation of the line-of-sight integral in equa-
tion (3), the relationship between an ENA flux datum for
each pixel JENA,k

p
and the equatorial proton differential flux

at each lis-fis grid �J proton, k
q can be modeled as

J
p
ENA;k ¼

X
q

Cpq;k
�Jqproton;k þ dqk

� �
ðA15Þ

where dk
q
is noise superposed on �J proton,k

q . The noise dk
q

includes uncertainty in representing the ring current ion
density by the ring current model, uncertainty in the neutral
density model, and fluctuation in the charge exchange
process. The uncertainty in representing the ion density by
the model is regarded as the dominant contribution to dk

q
,

since the main focus of this approach is to improve the poor
reproduction of ion density based on a poor electric field
model (the Volland-Stern model). The coefficient Cpq,k

contains information on the efficiency of ENA generation
by charge exchange between ring current protons and
neutrals, and the geometric configuration and the line-of-
sight integral of ENA flux. The coefficient is derived using
the neutral density model and the magnetospheric magnetic
field model described in section 2. Equation (A15) is
expressed in vector form as

JENA;k ¼ Ck
�Jproton;k þ dk
� �

: ðA16Þ

The function f is introduced to convert the state vector xk
into �Jproton,k, that is, �Jproton,k = f(xk). Equation (A16) then
becomes

yk ¼ Ck f xkð Þ þ dk½ � ðA17Þ

where JENA,k is replaced by yk according to the notation
used in equation (A1b). The relationship between xk and
�Jproton,k is described as nonlinear because the discretized

phase-space densities fk in xk are converted into discretized
differential fluxes by interpolation on a logarithmic scale.
According to the notation of equation (A1b), the operator
Ckf() denotes H(). Thus, equation (A17) can be rewritten as

yk ¼ Hk xkð Þ þ Ckdk : ðA18Þ

The vector dk is assumed to follow a Gaussian distribution,
and dk is assumed to satisfy E(dk) = 0 and E(dkdkT) = h2I.
Since dk

q
is dominated by uncertainty in representing the

state by the model, h is determined by the uncertainty in
proton flux. If xk is given, yk also follows a Gaussian
distribution, having a mean of Hk(xk). The covariance
matrix of yk given xk thus becomes

Rk ¼ E yk � Hk xkð Þð Þ yk � Hk xkð Þð ÞT jxk
� �

¼ E CkdkdTk C
T
k

� �
¼ h2CkC

T
k :

ðA19Þ

The likelihood is therefore given by

p yk jxkð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞmjRk j

p exp � yk � Hk xkð Þð ÞTR�1
k yk � Hk xkð Þð Þ
2

" #

ðA20Þ

where m denotes the dimension of the vector yk. Substitut-
ing xkjk�1

(i) for xk in equation (A20) leads to p(ykjxkjk�1
(i) ).
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Terada, N., T. Iyemori, M. Nosé, T. Nagai, H. Matsumoto, and T. Goka
(1998), Storm-time magnetic field variations observed by the ETS-VI
satellite, Earth Planets Space, 50, 853.

Tsyganenko, N. A. (1995), Modeling the Earth’s magnetospheric magnetic
field confined within a realistic magnetopause, J. Geophys. Res., 100,
5599.

Tsyganenko, N. A., and T. Mukai (2003), Tail plasma sheet models derived
from Geotail particle data, J. Geophys. Res., 108(A3), 1136, doi:10.1029/
2002JA009707.

Tsyganenko, N. A., and D. P. Stern (1996), A new-generation global mag-
netosphere field model, based on spacecraft magnetometer data, ISTP
Newsl., 6(1), 21.

Vallat, C., et al. (2004), First comparisons of local ion measurements in the
inner magnetosphere with energetic neutral atom magnetospheric image
inversions: Cluster-CIS and IMAGE-HENA observations, J. Geophys.
Res., 109, A04213, doi:10.1029/2003JA010224.

Weimer, D. R. (2001), An improved model of ionospheric electric poten-
tials including substorm perturbations and application to the Geospace
Environment Modeling November 24, 1996 event, J. Geophys. Res., 106,
407.

�����������������������
P. C. Brandt, D. G. Mitchell, and S. Ohtani, Johns Hopkins University

Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD
20723-6099, USA. (pontus.brandt@jhuapl.edu; don.mitchell@jhuapl.edu;
shin.ohtani@jhuapl.edu)
Y. Ebihara, Institute for AdvancedResearch, NagoyaUniversity, Furo-cho,

Chikusa-ku, Nagoya 464-8601, Japan. (ebihara@stelab.nagoya-u.ac.jp)
M.-C. Fok, NASA Goddard Space Flight Center, Code 673, Greenbelt,

MD 20771, USA. (mei-ching.h.fok@nasa.gov)
T. Higuchi, S. Nakano, and G. Ueno, The Institute of Statistical

Mathematics, Research Organization of Information and Systems, 4-6-7
Minami-Azabu, Minato, Tokyo 106-8569, Japan. (higuchi@ism.ac.jp;
shiny@ism.ac.jp; gen@ism.ac.jp)
K. Keika, Space Research Institute, Austrian Academy of Sciences,

Schmiedlstrasse 6, A-8042 Graz, Austria. (kunihiro.keika@oeaw.ac.at)

A05208 NAKANO ET AL.: DATA ASSIMILATION OF GLOBAL ENA DATA

14 of 14

A05208


