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[1] We construct a database from ACE spacecraft measurements of solar wind magnetic
field fluctuations at 1 AU which resolves ~2 decades in frequency at the high end of the
inertial range. Using magnetic field measurements outside of magnetic clouds in

combination with plasma measurements, we evaluate expressions for the Kolmogorov and
Kraichnan cascade rates at 0.01 Hz from magnetic field power spectra and consider both

isotropic and cross-field rates. We examine these rates as functions of proton
temperature and solar wind speed, comparing them to the expected rate based on the
heating of protons at 1 AU. The average Kolmogorov rate is consistently more than a
factor of 10 greater than expected. We conclude that the cascade rate cannot be
estimated using the Kolmogorov prescription and power spectra. The Kraichnan rate is
close to the expected rate and is potentially a good way to estimate the cascade rate. No
distinction is found between the isotropic and cross-field rates at 1 AU. However,
consideration of the likely dependence of cascade rates with distance from the Sun shows
that a distinction should exist at distances closer than 1 AU but not outside 1 AU.
Moreover, we find that inside 1 AU, the cross-field Kraichnan prediction can maintain
agreement with the expected heating rate whereas the isotropic prediction cannot.
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1. Introduction

[2] The solar corona is a hot ~10° K plasma where
significant heat addition occurs. The additional heat is of
such a large amount that the corona cannot be static and
bounded by the gravitational potential of the Sun and is
instead accelerated to supersonic and super-Alfvénic speeds
away from the Sun (see review by Velli [2001] and
references therein). The resulting solar wind can be classi-
fied as either fast (>500 km/s) or slow (<500 km/s) [e.g.,
Neugebauer and Snyder, 1966; McComas et al., 2000].

[3] With weaker intensity, heating and acceleration con-
tinues away from the Sun. The proton temperature has been
measured as close as 0.3 AU from the Sun by Helios
spacecraft [e.g., Marsch et al., 1982, 1983; Schwenn,
1983; Freeman, 1988] and as far away as 100 AU or more
by Pioneer and Voyager spacecraft [e.g., Gazis, 1984; Gazis
et al., 1994; Richardson et al., 1995]. The combined
database of measurements shows that the radial component
of the proton temperature 7,,. as a function of heliocentric
distance 7 is not in accord with adiabatic cooling due to
spherical expansion of the solar wind wherein 7}, o 3
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Instead, proton heating is found where 7, o %9 [e.g.,
Schwenn, 1983; Totten et al., 1995] between 0.3 and 1 AU
and eventually flattens further to 7). o< 7~ 7 near 10 AU
[e.g., Gazis et al., 1994] where pickup ions contribute
significantly and even increases with » beyond 30 AU
[e.g., Richardson et al., 1995; Zank et al., 1996; Smith et
al., 2001a]. Heating near the Sun can be modeled by using a
polytropic equation of state with a specific heat ratio of
nearly unity [e.g., Totten et al., 1995]. In MHD numerical
simulations, polytropic approximations can well mimic the
steady fast wind but do not capture the time-dependent
character of slow wind. Such modeling also does not
explain the source of the heating.

[4] Helios measurements from 0.3 to 1 AU contribute
especially to detailing the nonthermal nature of solar wind
protons and the addition of heat as they convect from 0.3 to
1 AU. Nearly radial alignment of the two Helios spacecraft
allowed comparison of energy balance in particular streams
as a function of distance [e.g., Schwartz and Marsch, 1983].
However, alignment occurred infrequently, and the average
properties of many streams could not be obtained. Alterna-
tively, a large amount of observations of 7}, are available at
various distances from the Sun which can be combined into
a statistically significant investigation. Schwenn [1983]
made the first significant study to find the dependence of
T,. on r as a function of Vg as it would occur in a
spherically symmetric expanding solar wind. The proximity
of slow and fast winds leads to compression where the fast
wind overtakes the slow wind from behind and to expansion
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where the fast wind is ahead of the slow wind. This
contributes about 15% of the net solar wind heating at
1 AU [e.g., Burlaga and Ogilvie, 1973; Pizzo et al., 1973]
averaged over a few solar rotations. This component can be
removed by excluding intervals with stream interactions.
The amount of heating then found can be more usefully
compared to turbulent energy cascades. Data points are
binned for average speeds between 300 and 800 km/s with
each bin having a width of 100 km/s. The results show that
fast winds tend to be heated significantly but the slowest
winds at 300—400 km/s are almost adiabatic.

[5] Lopez and Freeman [1986] use similar methods to
project Helios measurements between 0.3 and 1 AU to their
values at 1 AU. The resulting distribution of T, as a
function of Vg is quite broad but shows two main pop-
ulations separated at 500 km/s into slow and fast wind sets.
With increasing speed, slow wind temperatures rise from
~10* to ~10° K with increasing Vgy: In fast wind the rate
of increase in T, with Vg is distinctly less than in slow
wind and 7, ~ 10> K.

[6] Protons in fast winds show increases in the magnetic
moment where perpendicular proton temperature increases
relative to adiabatic expectations [Marsch et al., 1983] and
specific entropy increases with » [Marsch and Richter,
1987]. However, these results, to a lesser degree, are also
determined to be true for slow winds and so contradict the
results of Schwenn [1983]. The heating of the slow wind
finally becomes evident when corrections are made to the
original Schwenn analysis by Arya and Freeman [1991],
Freeman et al. [1992], and Totten et al. [1995]. Arya and
Freeman [1991] find that slow winds experience a signif-
icant amount of acceleration between 0.3 to 1 AU relative to
fast winds. The amount affects the process of sorting data
points into solar wind speed bins. For example, winds of
300—400 km/s at I AU cannot be compared to winds of the
same speed range at 0.3 AU but rather should be compared
to slower ones. Additionally, a smaller correction due to the
varying spacecraft orbital speed at various » means that
locations especially near 0.3 AU are undersampled relative
to 1 AU. This correction simply amounts to equalizing the
weight given to all measurements in 0.1 AU bins over the
interval between 0.3 and 1 AU. Once these corrections are
made, slow and fast winds are found to be heated and have
T, varying as p 00 =01 [Freeman et al., 1992; Totten et al.,
1995].

[7] The processes governing the heating are potentially a
mix of continued sources and mechanisms active in the
corona and new ones active only further away from the Sun.
Within a few AU of the Sun, the primary source of energy
for in situ heating is believed to be the turbulent cascade
among Alfvénic fluctuations [e.g., Coleman, 1968;
Matthaeus and Goldstein, 1982; Tu et al., 1984; Hollweg,
1986; Tu, 1988; Zhou and Matthaeus, 1990; Smith et al.,
2006c]. This is a view which will be pursued in this paper.
The turbulence could be driven by the solar wind velocity
shears and compressions observed at large scales, which are
especially prevalent in the ecliptic plane. The stirring at
these large scales can cause an energy cascade via nonlinear
forces. Ultimately, the energy is dissipated at small scales
where the plasma is heated. Only a small fraction of the
total energy in solar wind speed gradients is needed to cause
all the proton heating found in the solar wind between 0.3
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and 1 AU. However, the required energy does exceed the
amount of fluctuation power observed at the high end of the
wave spectrum which could be damped when swept into
cyclotron resonance with protons under the assumption that
an energy cascade is not active [Schwartz et al., 1981].
Presuming that some of the perpendicular proton heating
requires waves to resonate with proton cyclotron frequen-
cies or attain scales or frequencies to which protons no
longer act adiabatically, then one can infer further that an
active energy cascade is necessary to explain solar wind
heating.

[8] In this paper we undertake an evaluation of turbulent
cascade rates estimated from power spectra and determine
their merit based on how their average values compare with
expected heating rates. Section 2 explains the cascade rate
predictions based on Kolmogorov and Kraichnan which are
evaluated in this paper and gives new predictions for cross-
field cascades. Section 3 discusses the expected heating
rates for protons, alphas, and electrons, and outlines the
method that we use to find the uncertainty from the equation
of state in determining heating rates. Section 4 presents
prior work on evaluations of the cascade rates. Section 5
describes our database and its properties. Section 6 gives
our results for cascade rates. In section 7 we consider the
likely behavior of cascade rates with distance from the Sun.
Section 8 summarizes the results and conclusions.

2. Turbulent Cascade Rates

[v] Across a large intermediate range between the energy
containing and dissipation scales in the solar wind, power in
fluctuations is organized into an inertial range. At 1 AU, this
inertial range extends from spacecraft frequencies of about
10~ to 0.2 Hz. Observed magnetic field component power
spectra are most often found to obey a dependence with
frequency v according to power laws which range mostly
from v, as predicted by Kraichnan [1965], to ones
steeper than v—>3, as predicted by the extension of the
Kolmogorov [1941] model to magnetohydrodynamics
(MHD). On average, indices are closer to Kolmogorov
values than Kraichnan [e.g., Matthaeus and Goldstein,
1982]. Structure functions [e.g., Horbury et al., 1996;
Forman and Burlaga, 2003; MacBride et al., 2005] of the
fluctuations have been examined and are most consistent
with the Kolmogorov prediction. In the Kolmogorov pre-
diction the third-order structure function is linear in lag,
whereas in the Kraichnan the fourth-order structure function
is linear. However, a recent work has shown that the
magnetic field spectra may be steepened by the presence
of abrupt magnetic field rotations, called directional dis-
continuities. Borovsky [2006] has found that magnetic field
data taken between directional discontinuities with large
spread angles give v’ spectra. Podesta et al. [2006] have
determined the fluctuation velocity power spectrum to
relatively high frequencies. They found that it is flatter than
the magnetic field spectrum and closer to v~>". There is
then a possibility that the Kraichnan prediction could be
valid for the solar wind turbulence.

[10] The rate of energy dissipation in hydrodynamic
turbulence theory [Kolmogorov, 1941] is equal to the rate
of energy cascade through the inertial range. The cascade is
governed by the nonlinear turn-over time 7, = I/6V of
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Table 1. Effect of Cross-Helicity on Cascade Rate®
O¢ (€51 €xol. c/eKo/ €&, c'/eKr‘

0.00 1.0000 1.0000 1.0000
0.05 0.9048 0.9984 0.9975
0.10 0.8182 0.9937 0.9900
0.15 0.7391 0.9859 0.9775
0.20 0.6667 0.9748 0.9600
0.25 0.6000 0.9605 0.9375
0.30 0.5385 0.9429 0.9100
0.35 0.4815 0.9218 0.8775
0.40 0.4286 0.8972 0.8400
0.45 0.3793 0.8688 0.7975
0.50 0.3334 0.8365 0.7500
0.55 0.2903 0.8000 0.6975
0.60 0.2500 0.7589 0.6400
0.65 0.2121 0.7129 0.5775
0.70 0.1765 0.6611 0.5100
0.75 0.1429 0.6029 0.4375
0.80 0.1111 0.5367 0.3600
0.85 0.0811 0.4603 0.2775
0.90 0.0526 0.3693 0.1900
0.95 0.0264 0.2529 0.0975
1.00 0.0000 0.0000 0.0000

For the Kraichnan cascade, €, is calculated for Ry = 0 where it
formally agrees with €, when o, = 0.

fluctuations where / is the length scale and 6V is velocity
amplitude of the fluctuation. Under the assumption of
isotropic hydrodynamic turbulence, Kolmogorov used di-
mensional analysis to predict that the inertial range of the
three-dimensional (3-D) omnidirectional spectrum of turbu-
lent velocity fluctuations, E{(k), has the form:

Ey(k) = Cxe*k™>/3 (1)
where e(ox 6773/l is the energy cascade rate per unit mass,
k(=2 7/l) is wave number, and C is an order unity quantity
for which Cx =~ 1.6 [e.g., Sreenivasan, 1995; Yeung and
Zhou, 1997] as determined by hydrodynamic experiments.
However, Ey,(k) is not what we measure with a single
spacecraft. We measure Ej(k,) = E{k - Vgw) which is the
reduced spectrum using the frozen-in-flux assumption
recorded along the solar wind velocity. Assuming an
isotropic spectrum of magnetic fluctuations, a consistent
ratio of energy is associated with the velocity and magnetic
fluctuations R, = E}/Ep in the inertial range, a wind speed
Vsw, and adopting Pg(v) to be the measured magnetic
spectrum as a function of frequency, we can write the 3-D
omnidirectional cascade rate for kinetic and magnetic
energy as [Leamon et al., 1999]:

exor = 27/ Ve )2 [(1+ R)(5/3) (Po(v) /gmypn, ) / Ck]
2)

where m,, is the proton mass and n, is the proton number
density. This is the prediction which will be tested in this
paper with an assumed value of Ry = 1/2 (see section 6)
because velocity measurements are not available at the high
frequencies. Additionally, the value of Cx = 1.6 is taken to
be the one from hydrodynamic experiments. This is an
assumption which is often used in analyses [e.g., Matthaeus
and Zhou, 1989] and in comparable observational studies
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[e.g., Leamon et al., 1999]. As discussed in more detail
below, MHD turbulence is expected to cascade energy
across the magnetic field where Alfvén waves do not
propagate. In such circumstances the turbulent eddies might
be more closely associated with hydrodynamic ones than
with waves. The estimated interaction time to cascade the
energy between hydrodynamic eddies is CK Ty, Wherein
We express € as an energy per unit mass 8V? divided by the
interaction time. Thereby, Cx = 1.6 yields an interaction
time near 27,;. Values of Cx for MHD are expected to be of
order unity so that the interaction time is near the value of
2751 as is found for hydrodynamics. However, the true
value of Cyg for MHD has not been definitively established.
Verma et al. [1996] give the only published study of the
value of Cg in 3-D MHD simulations, and they find the
larger value Cx = 3.6.

[11] In MHD the nonlinear generalized Reynolds stresses
that can drive turbulence require that the velocity and
magnetic field fluctuations are not at 0 or 180° in phase,
as it is for Alfvén waves with group velocity in one
direction. This requirement can be assessed using the
absolute value of the normalized cross-helicity o, where
o. = |6V - 6B|/(6V6B). A particular prediction which
depends on o, is derived by Zhou and Matthaeus [1990]
and is glven in terms of Elsdsser varlables z° =6V = 6B/
(,uompn,,) % and pseudoenerg}ws E*=7"-7°/2. Cascade rates
can be expressed ase = 2IE* (k)] [E"(k)]"? £ and the
total rate is the average (e +€)/2. The expression for the
total rate can be related to (2) by

€Kol,c =

3/2

SR <1 2 ) - (3)

+ o
where oy = min(E~, E)/max(E~, EN) =1 — o )/(1 + 0,) is
an Elsdsser ratio which is restricted to the range 0 to 1. The
ratio €x,,; /€x, 1S tabulated in Table 1 as a function of oy
and o, for convenient conversion between ex,; and €x,/ .
Table 1 shows that for o, < 0.8, €k, > €xo/2. In our data
and at the low-frequency end of the inertial range, o. ~ 0.4,
so that the two predictions on average would be expected to
be similar.

[12] The Kraichnan (or Iroshnikov-Kraichnan) cascade is
based on a cascade time [V,/(6V - 6V), where V, is the
Alfvén speed, from a large number of uncorrelated inter-
actions between oppositely propagating Alfvén waves
[froshnikov, 1964; Kraichnan, 1965]. Fluctuation kinetic
and magnetic energy are assumed to be equipartitioned
(R4=1). Here the power spectrum has a —3/2 spectral index.
The 3-D omnidirectional cascade rate can be expressed in
terms of the magnetic spectrum as [Leamon et al., 1999]

ekr = 21/ Vi)V [(3/2) (Pa(v) [ 1gmpmy) /4] (4)

In the Kraichnan prediction the cascade rate is not
dependent on the sum of the kinetic and magnetic energy
but rather on either one of them individually, presuming
energy equipartition. The value of 4 can be any order of
unity constant and mdependent of Ck. However, in our
work, we take 4 = C¥* so that 4= 1.42 when Cx = 1.6. This
relationship is found in the theory developed by Matthaeus
and Zhou [1989]. In that work they assumed that the inverse
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timescale for the decay of triple correlations is a sum of 7y,
and the inverse Alfvén crossing time //V,. The resulting
cascade is found to be a composite of both Kolmogorov and
Kraichnan. In the weak magnetic field limit (V; — 0), a
Kolmogorov cascade is recovered whereas for the strong
field limit (V; — o0), a Kraichnan cascade is found. In this
paper we only consider the extremes of this prediction. In
section 6 we will find that our data corresponds to the strong
field limit so that the Kraichnan prediction should
correspond closely to the value of € found using the more
general expression in the work of Matthaeus and Zhou
[1989].

[13] From (2) and (4) the formal relationship between e,
and eg,; can be expressed as

Ve v Py
€K = 0.457 (ﬁ) TAEKU” (5)

where constants are evaluated as discussed earlier. Because
€xr X €12, whatever functional dependence ¢, has with
temperature or solar wind speed, e, will tend to show a
stronger dependence. The Kraichnan cascade rate for |6V|/
V4 < 1 is smaller than the corresponding Kolmogorov rate
because nonlinear interactions based on propagation effects
are relatively slow.

[14] Dobrowolny et al. [1980] derived a prediction which
depends on the cross-helicity and can be expressed as

2\ 2
re — 1 R e 6
€Kr, O41(1_*_6“) (14 R4)" ek (6)

Equation (6) agrees formally with (4) in the limit of zero
cross-helicity (i.e., @y = 1) and zero kinetic energy (R, = 0).
In reality the two predictions are different since this
agreement should have occurred when R, = 1, which is the
assumption in the Kraichnan prediction. The Dobrowolny
et al. prediction depends on the sum of the kinetic and
magnetic energy, as does the MHD extended Kolmogorov
prediction, whereas the Kraichnan prediction does not. For
R, =0, Table 1 shows that for 0. < 0.7, €x,.. > €k, /2. If
R, = 1/2, as is assumed for evaluating the Kolmogorov
prediction, then the factors in Table 1 for e, /ex; should be
multiplied by 2.25. Again, in our data and at the low end of
the inertial range, o. =~ 0.4, so that the two predictions on
average would be expected to be similar for R, = 0 but differ
by a factor of about 2 for R, = 1/2.

[15] Analysis and simulations based on MHD equations
also show that the turbulent cascades are mostly in the
direction perpendicular to the background magnetic field
and produce smaller perpendicular scales [e.g., Shebalin et
al.,, 1983; Oughton et al., 1994; Matthaeus et al., 1996;
Ghosh et al., 1998a, 1998b; Kinney and MacWilliams,
1998; Cho and Vishniac, 2000; Galtier et al., 2000, 2002;
Bhattacharjee and Ng, 2001; Dmitruk et al., 2002; Cho et
al., 2002; Lithwick and Goldreich, 2003; Ng et al., 2003;
Oughton et al., 2003; Beresnyak and Lazarian, 2006].
Where fluctuations have wave vectors predominately across
the magnetic field, the Alfvén time 7,(= [/V where /| is the
length scale of a fluctuation parallel to background
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magnetic field) can be small compared to 7,;. In weak
turbulence, where perturbation theory is valid, this can
modify the isotropic Kraichnan cascade to form a
perpendicular one where spectra obey k72 in the inertial
range [e.g., Bhattacharjee and Ng, 2001]. However, in
strong turbulence, which is expected for the solar wind, a
Kolmogorov prediction k1 is found [e.g., Goldreich and
Sridhar, 1995], assuming 7y, ~ 7,4 and isotropy of scales in
the perpendicular direction. Some 3-D simulation studies
[e.g, Matthaeus et al., 1996; Verma et al., 1996; Miiller and
Biskamp, 2000; Biskamp and Miiller, 2000; Cho and
Vishniac, 2000; Cho et al., 2002; Cho and Lazarian,
2003; Haugen et al., 2004] find Kolmogorov cascades in
the perpendicular direction. However, 2-D simulations [e.g.,
Biskamp and Welter, 1989; Biskamp and Schwarz, 2001;
Hyesook et al., 2003; Ng et al, 2003] and other 3-D
simulations [e.g., Maron and Goldreich, 2001; Miiller et al.,
2003; Miiller and Grappin, 2005] show that the turbulent
cascade in the perpendicular direction can have k7> and
Kraichnan cascade rates in the strong limit of turbulence.
Miiller et al. [2003] and Miiller and Grappin [2005]
conclude that the difference between 3-D simulation results
is due to the moderating effect of the external and uniform
background magnetic intensity By, relative to fluctuations.
When B,/|6B] < 1, a Kolmogorov cascade is found
whereas when By /|0B| = 5 and 10, a Kraichnan cascade is
found. The influence of By, then produces a composite of
Kolmogorov and Kraichnan cascades, which reminds one of
the Matthaeus and Zhou [1989] model for the isotropic
case. Boldyrev [2005, 2006] explains the simulation results
of Kraichnan cascades as arising in driven turbulence where
the generation of current sheets results in a reduction of the
nonlinearity by nearly aligning velocity and magnetic field
fluctuations. The sheets are proposed to develop a localized
anisotropy in the perpendicular direction where the smallest
perpendicular length scale is across the current sheet and the
other perpendicular scale is considerably larger due to
significant advection. With such local scales, analysis of the
cascade rate shows that the alignment possesses a nonzero
minimum from which the Kraichnan prediction is obtained.
[16] With wave vector anisotropy, there is a projection
effect between the inferred wave vector in the solar wind,
which is in the radial direction, and corresponding wave
vectors perpendicular to the background magnetic field. To
find the amount of this effect, we first rewrite Pg(r) in (2) as
6BV where 6B is the magnetic fluctuation ampli-
tude squared at frequency v. Then, eg,; can be shown to be
proportional to the radial wave number 271o/Vsy. The
corresponding projection of wave vectors from the 2-D
spectrum has a wave number which is larger by the factor
1/|sin ¢| where v is the angle between the background
magnetic field and radial direction. Finally, there is a
different constant in converting from a power spectrum
which is confined in the two-dimensional (2-D) plane
perpendicular to the background magnetic field into the
observed reduced power spectrum. The formula for the 2-D
Kolmogorov cascade rate ex,;, 2p is derived in Appendix A
and can be shown to be related to the isotropic form by

0.772
ol, i ol 7
€Kol 2D |sm¢| €Kol ( )
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As with the Kolmogorov rate, the 2-D Kraichnan cascade
rate ex,op (see Appendix A) can similarly be shown to be

0.764
|sin ) K

(3)

€Kr2D =

We believe that this is the first time that this form of the
cascade rate in terms of the observed reduced spectrum has
been derived and considered in a publication. A prediction
dependent upon o could also be made in (7) and (8) by
replacing ex,; With ex,;. and eg, with e, ., respectively.
Because 1) is mostly greater than 45° at 1 AU, the difference
between the isotropic and 2-D forms will often be small.
We thereby anticipate that no distinction between these
forms will be identified at 1 AU in our data set. However,
(7) and (8) should give a distinct prediction if applied to
data well inside of 1 AU (see section 7).

3. Heating and Dissipation Rates

[17] In a steady state the cascade rate will equal the rate of
dissipation and heat addition to the background plasma.
Spherical expansion of the solar wind provides a means of
cooling the plasma. Verma et al. [1995] derive an expres-
sion that combines in situ heating and adiabatic cooling in a
spherical symmetric solar wind which we rewrite as:

dT,. 4T, m,
- — Y, €
3 r (3/2) ngkg

dr ®)
where 7, is the radial component of the proton temperature,
€ is a cascade rate, m,, is the proton mass, and kg is the
Boltzmann constant. All heating is assumed to go to the
protons and the plasma mass per unit mole is approximated
as that of protons alone. Since 7. = T),.o (ro/r)g, we can
solve (9) for € at » = ry so that

(4 ) 3 VSW kBTpr,O
€= - — .

- — 10
2 rg  my (10)

3

Substituting the stream average value £ = 0.9 into (10) and
evaluating constants for 1 AU, we can express the expected
heating rate €., which accounts for proton heating, as

€heat =3.6 X 1O_STIWVSW [J/(kgs)L (11)
where T}, has units K, and Vg in km/s. The value of €.,
will form an important part of our study to compare
with rates obtained from power spectra. For typical solar
wind values at 1 AU, the expected heating rate ranges
from 102 J/(kg s) in cold wind to 10* J/(kg s) in hot wind.
For a fixed 7, €p0q varies only by a factor of 3 based on
the observed range of V. Cascade rates estimated from
the energy-containing scale of turbulence at 1 AU by
evaluating the triple-products of fluctuation magnetic fields
and velocities and the correlation length scale of the
turbulence also give values in this range [e.g., Smith et al.,
2001a, 2006c¢; Isenberg, 2005].

[18] In (9), proton pressure has been taken to be isotropic,
so that 7}, has been assumed to correspond to the average
temperature of parallel and perpendicular components in the
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studies of Schwenn [1983] and follow-on investigations.
The preferential heating of protons is in the perpendicular
direction and could be associated with the damping of
proton cyclotron resonant waves [e.g., Goldstein et al.,
1994; Leamon et al., 1998a, 1998b]. Marsch et al. [1983]
used Helios data between 0.3 and 1 AU to show that the
magnetic moment increases by 100% on average for both
slow and fast solar wind streams. From here, we find that the
rate of added thermal energy is 0.55 Vg Bodp/dr in J/(kg s),
where By is the background magnetic field strength in units
of nT, Vg is in units of km/s, and du/dr is the change of
magnetic moment 7| /By with 7 in units of 10* K/(AU - nT).
For typical values at 1 AU, the rate of perpendicular heating
falls into the same range as reported above from (11).

[19] In our study, only 7, is available. The better measure
of the overall energization of protons comes from the
average proton temperature 7, = (7)) + 27,)/3. We will
first consider how the average temperature evolves and then
how to relate the radial and average temperature. The
average temperature 7; for any species j is taken from
the trace of the gyrotropic pressure tensor P, = n; (7;,1 +
(Ty — T;.)bb) for species j whose averaged trace is denoted
by P; = n;T;. The second peculiar velocity moment of the
Boltzmann equation for each species gives the equation of
state [e.g., Barakat and Schunk, 1982] which we express as

0 3 5

- (P, —PI): VU, =V -q; +pef; (12)

where U; is the bulk velocity of species j, g is the heat flux
vector parallel to the magnetic field, p = ; n; m; is the total
plasma mass density, f; is the fraction of the total turbulent
cascade energy that heats species j where ), £, = 1. In (12),
the convected rate of change of internal energy is equated to
the sum of adiabatic change and heat addition both from the
divergence of parallel heat flux and from the turbulent
energy cascade defined as pef. Since the trace of P; is
taken, terms dependent on the energy exchanges between
temperature components are eliminated. We have neglected
the perpendicular component of heat flux which in the
particular case of protons tends to be a factor 10 smaller
than the parallel component [e.g., Feldman et al., 1973].
Also, we have neglected Coulomb collisions which often
give little energy rate change in the solar wind, energy
exchange between species, and added heat from decelera-
tion of differential streaming. We will examine the
adequacies of these assumptions later.

[20] We first consider the proton equation of state.
Choosing from a large set of data, we expect to average
away terms dependent on time and on gradients in spherical
polar coordinates ¢ and 6 so that a radial and time-stationary
equation of state remains. The position of ACE is such that
results should average to those for # = 90° and so only
magnetic field and velocities in the r¢ plane are kept.
We further can make use of the equation of continuity
with only the radial dependent gradients to replace density
gradients with those of U,. where 0p,/0r = —2p,/r —
(pp/Up,,)(OU,,/0r). The proton velocity distribution
function can often be characterized as the sum of a beam
(=20% of total protons) and core where the beam streams
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Table 2. Average Relative Uncertainties for Measurements and
Analysis

Quantity Relative Uncertainty
Vsw 2%
T, 27%
€hear €quation (11) 50%

35%
39%
68%

€xo €quation (2)
€k, equation (4)
Whole analysis

faster than the core along the background magnetic field.
However, it is difficult to separate protons into completely
distinct populations and eventually as the beam slows it
becomes incorporated into the core. Therefore we consider
the evolution of the protons without distinction. We then
express the equation of state as a correction to (9)

0T, 2UksT,
2 U A or r
ou, ou,

o (52 (Ve

ou,
+ <cos h—=L + sin’ z/;—

o Upg 3kpT,(1 — A)
_ e Ypo ?
coswsrnw( p ))( 1324 )
_cosy @ 9p| , costp 8(11,“

B Or n, n, Or }; (13)

where A = T, /T is the total proton plasma anisotropy, and
J, is the fraction of the total turbulent cascade energy that
heats protons (see Krall and Trivelpiece [1973, Appendix II]
to obtain tensor components in spherical polar coordinates
for (12)). The first two terms on the left-hand side of (13)
correspond to those in (9). The remaining left-hand terms
are additional ones dependent on acceleration, nonradial
flow, plasma anisotropy, and parallel heat flux.

[21] We do not have all of the measurements which are
needed to evaluate (13). In Appendix B we detail our
method of using statistics for the unavailable quantities in
the solar wind and estimate how much results using (13)
differ from those using (9). We then determine the range of
uncertainty for the cascade rate in (11). The results com-
pared to power spectra derived values of e are reported in
section 6. The upshot of the analysis is the estimates using
(11) are good to within a factor of 1.3 based on this
uncertainty alone. The primary correction is due to the
plasma anisotropy difference because 1 — A multiplies a
comparable term to that in (9). To show this, we can then

reexpress (13) as
oot o L) LA
<1 (cosw 2sm w)l+2A>

pe
@ﬁ" (14)

3 oT,

2VswhksT,
3 Vewhp =L + = 5"B1p

or r

+ other small terms =

The average value of A is 0.7 so that (I — A)/(1 +2A4) =
0.125. However, the trigonometric part of the shown terms
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in (14) changes sign and also vanlshes at ¢ = 54.74°
because this value of 1 satisfies tan® 1) = 2. This value of ¢
is also near the average 1) = 58° of our data. Thereby, we
can see that at 1 AU, conditions are such that all correction
terms are relatively small when we ensemble average the
data.

[22] The radial component of temperature Ty, can be
averaged for 6 = 90° so that 7). = T} cos? ¢ + T | sin® .
Since 7, is measured, we relate this to 7, by

1424
3(cos?1p + Asin* 1)) |

Ty =Ty (15)

where ¢ = 54.74°, T,, = T, for all A. In our data we can
expect that on average T, will be near T,,. However, there is
another important correctron in the upward direction. Using
the methods described in Appendix B, we will find in
section 6 that the change of 7, with » on average is
characterized by a smaller power law index §,,, with a
value of 0.75. The importance of this difference comes not
with respect to & = 0.9 but in the increased differential
between the adiabatic index 4/3 and ., This effect
increases €,.,; by 22%. In section 6 we estimate that the
overall relative uncertainty from the equation of state
amounts to 50%. Additional uncertainties will come from
the € obtained from power spectra which has an average
relative uncertainty of 37% and from matching this value to
the proper value of ¢,.,, because the measured value of 7},
itself has an average relative uncertainty of 27%. The total
relative uncertainty in the whole analysis is about 68%, and
we will be satisfied if the value of € from power spectra is
within a factor of 2 of €., Table 2 summarizes the relative
uncertainties encountered in this study.

[23] When the left-hand side of (13) is evaluated, the
value of f,e which is then found will include the net effect
of all external sources of energization in addition to turbu-
lence. For instance, waves generated from microinstabilities
can then damp on protons. Energy from these waves can
come from other species but also from proton differential
streaming between the beam and core. Daughton and Gary
[1998] have shown that two populations with drifting bi-
Maxwellian velocity distributions are unstable to mostly
oblique waves when the drift exceeds a threshold speed
above V. Kaghashvili et al. [2004] have shown that the
presence of large-amplitude Alfvén waves enhances the
instability. These studies demonstrate that such streaming
instabilities are possible, but in the solar wind, the beam-
core populations are not so distinct and the beam is more in
the form of a plateau. This configuration undoubtedly
reduces the energization of unstable waves compared to
drifting biMaxwellians. The energy input from the damping
of waves in a proton temperature anisotropy microinstability
need not be considered because this case is eliminated by
using the average temperature. Thereby, how well the
estimated value of e corresponds to the rate of turbulent
energy cascade from large scales depends on the magnitude
of other energy sources. The case of other species is detailed
below. First, we examine differential streaming between
beam and core proton populations.

[24] The beam proton population averages at a differential
speed V,, ~ V, and a relative concentration n,/n, = 0.2
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[e.g., Marsch et al., 1982]. To remain near the local value of
V4, the beam must decelerate at nearly the same rate that V
decreases with increasing 7. In fact, deceleration occurs
somewhat faster and even for an azimuthal magnetic field
where V, can be constant. When combined with the core,
much of the beam energy becomes part of the thermal energy
and the speed along the magnetic field is then (ny/n,)V,,,.
We estimate the loss of streaming energy n, m,, S, where S is
the rate per unit mass by

2172
"h) Vo
n,) r

Using typical solar wind values at 1 AU, S will be shown in
section 6 to be mostly 30% or less than the heating rate.
Some of this lost energy could go into increasing the core
speed along the magnetic field and so the estimated value of
S is an upper limit on what could be contributed to the
thermal energy of protons. Some of the lost energy could go
to waves in the dissipation range of wave numbers where
they dissipate on protons, contributing to the heating rate
but not to power spectra estimates of the cascade. Some of
the lost energy could also go to waves in the high end of the
inertial range and even participate in the energy cascade. In
this case the rate of energy cascade at the high end could
differ from the low end due to an input of wave energy at
small scales. In any event, we have estimated that the rate of
this input is small enough so that the majority of energy
heating the protons should come from the turbulent energy
cascade at large scales.

[25] From the right-hand side of (13), there is a certain
amount of energy density pe from the turbulent cascade
which then must be dissipated among species according to
pefi/n;. The contribution of any species f; to dissipating the
turbulent cascade is approximately proportional to its rela-
tive concentration n;/n,. Most ions in the solar wind have
such small relative concentrations that they can be
neglected. The only significant ion species beyond protons
are alphas. The relative concentration of alphas n./n,
averages about 4% [e.g., Neugebauer, 1981], and they have
4 times the mass of the protons. They give the only
significant contribution to p. Alphas also typically stream
faster than protons along the magnetic field. The alpha
temperature 7, is about 2 times greater than 7, in slow
winds and more than 4 times in fast winds. If we assume
that the alpha temperature gradient is the same as the
protons and disregard differential streaming, one can get a
rough estimate of the contribution of alphas by multiplying
(11) by (T./T,) (n./n,). Such estimates show that alphas
on average are limited to a fraction (12—16%) of the
energy dissipated by protons. In fast winds, where the
average n./n, and T, are highest, the energetics of alphas
have been shown by Reisenfeld et al. [2001] to be governed
mostly by the loss of differential streaming energy into its
own thermal energy. Thereby, the estimate discussed above
is only an upper limit in the case of fast winds.

[26] We can neglect energy exchange between alphas and
protons. Coulomb collisions under solar wind conditions
provide a relatively small rate of energy change between
alphas and protons. Lost streaming energy from alphas
remains mostly with alphas. We conclude that if agreement

S = VSW(O.1+coszw)( (16)
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between proton heating and turbulent cascade rates can only
be estimated to within a factor of 2 using (11), then the
alpha heating and energy exchange with protons can be
neglected.

[27] Electrons have a relative concentration greater than
protons such that n, = n, + 2n, in accord with quasi-
neutrality on scales much greater than the Debye length.
They can potentially compete with protons in dissipating a
turbulent cascade. The relative amount of proton to electron
heating will vary with the particular wave modes and
processes that occur in the dissipation range but at present
these particulars are not well understood. Leamon et al.
[1999] considered the damping of ion-cyclotron waves in an
isotropic wave vector spectrum and found that proton and
electron heating would be roughly equal in this case. If the
modes are mostly confined to perpendicular directions, then
these might be described as kinetic Alfvén waves which can
be damped mostly at the Landau resonance and for electron
greater than proton temperature mostly on electrons.
Leamon et al. [1998b] used observations in the dissipation
range of magnetic field helicity and the assumption of
mostly outward propagation to estimate that 2/3 of the
heating goes to cyclotron resonant damping, which is most
likely heat addition to ions, and the remaining 1/3 to
damping at the Landau resonance which should include
heating of electrons.

[28] Observations of electron velocity distributions and
moments show that their evolution is governed in a much
different way than protons. First, it was noted that at 1 AU
the average electron temperature near 1.4 x 10° K is
independent of Vgy [e.g., Newbury et al., 1998]. On the
other hand, 7, tends to increase with Vgy; is highly variable
within streams, and is typically hotter than electron temper-
ature in the fastest winds. This has been interpreted as an
indication that the turbulent cascade is primarily dissipated
on protons rather than electrons (see Hollweg [1981] for a
review of these ideas). Second, detailed observations of
electrons have been carried out. Electrons have a two
component velocity space distribution in the solar wind
[e.g., Feldman et al., 1975] consisting of a core and halo.
(A third component, a strahl, consists of beamed halo
electrons streaming along the magnetic field, but here we
do not distinguish strahl from the overall halo.) These
components can originate in the solar wind rather than in
the corona [e.g., Lie-Svendsen and Leer, 2000]. The core is
relatively isotropized by Coulomb collisions between other
electrons and especially ions [e.g., Phillips et al., 1989;
Phillips and Gosling, 1990]. Although the angular distribu-
tion of electrons is strongly affected by ions, there is little
exchange of energy between electrons and ions, which
justifies the neglect of this effect in (13). The halo electrons
are relatively collision free at their high velocities and carry
much of the total heat flux in the solar wind which is
directed away from the Sun [e.g., Scime et al., 1994]. This
heat flux is mostly due to the halo streaming on average
faster than the core. In the core the heat flux is about 20% of
the halo and directed toward the Sun. The halo has been
found to account for much of the core heating so that
external heat sources, as from a turbulent cascade, are
relatively small contributors (but see Pilipp et al. [1990]
for an alternative view in the case of fast winds). From all
the above, we conclude that electron heating from a
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turbulent cascade can be neglected in comparison to that of
proton heating to within a factor of 2.

[20] Since we find no other species beyond protons to
dissipate a significant portion of the turbulent cascade
energy, we will always take f, = 1 when evaluating (13)
as we have already done in (11). Of course, the cascade rate
estimated from power spectra will be made in an indepen-
dent way, and so one is free to reconsider whether £, ~ 1 or
considerably smaller.

4. Comparison of Cascade and Heating Rates
Using Power Spectra

[30] Verma et al. [1995] used OMNI-tape from spacecraft
data at 1 AU which has a cadence of 1 hour. By this means,
only the low-frequency end of the inertial range of fluctua-
tions could be examined but both fluctuation magnetic field
and velocity data were available. They distinguished non-
Alfvénic (o =~ 1) from Alfvénic (o = 0.07) streams [e.g.,
Roberts et al., 1987a, 1987b] and chose six streams during
the years 1975—1976 near solar minimum based on uniform
background properties for their investigation. Isotropic
cascade rates with a cross-helicity dependence given by
(3) and (6) were evaluated for each stream. Then a nearly
equivalent expression of (9) was solved using the expected
heating rate with parameters and amplitudes varying with »
as appropriate to the stream studied. They fitted the data
treating Cx and A as free parameters to match the average
trends of proton temperature with ». For non-Alfvénic
streams, they concluded that the Kolmogorov prediction
gives a cascade rate consistent with expected heating for
Ck = 1. For Alfvénic streams the rates were far too high and
required Cx = 8 [see also Tu, 1988]. As such, results from
non-Alfvénic and Alfvénic streams are in conflict with each
other because Alfvénic ones would be expected to have
lower rates of cascade as compared to non-Alfvénic ones.
The Kraichnan rates were evaluated for 4 = 0.5 and 1.0. For
no stream could the Kraichnan rates consistently match 7,
behavior simultaneously both inside and outside of 1 AU
with the same value of 4.

[31] Leamon et al. [1998a, 1998b, 1999] built a database
of 32 one-hour intervals outside of magnetic clouds, re-
ferred to as open field intervals, to examine the high end of
the inertial range and the dissipation range. Data were
obtained from the Wind spacecraft at | AU. Development
at the high end of the inertial range should approach the
statistical equilibrium of the energy cascade faster than at
the lower end and so may be a better place to evaluate
cascade rates. Moreover, if there are sources of energy to the
cascade from small scales, this can only be found by
examining the high end. Leamon et al. [1999] used (2)
and (4) and discussed only one interval. They concluded
that the Kolmogorov rate was comparable to the expected
heating rate but that the Kraichnan rate was too small.

[32] Hamilton et al. [2005] and Smith et al. [2005, 2006a,
2006b] have constructed a much larger database of one to
several hour intervals using the Advanced Composition
Explorer (ACE) spacecraft at 1 AU. Smith et al. [2006a,
2006b] evaluated only eg,; but limited the comparison to
magnetic field variance and dissipation spectral index. In
this paper we use the open field intervals from this database
to evaluate eg,; and eg,. from magnetic field and background
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plasma data and to compare with €., as functions of 7},
and V- The database also includes a large number of cloud
intervals, but since these undergo more than spherical
expansion and do not have known radial temperature trends,
we have chosen to exclude them from this paper. The
chosen data differ from that of Verma et al. [1995] in that
the data (1) are not chosen in particular streams or according
to uniform background conditions, (2) come from a time
around solar maximum, (3) are in the high end of the inertial
range, and (4) provide only fluctuation magnetic field
measurements at this high end. Additionally, data are drawn
from 526 intervals which are far more than in previous
studies.

[33] Our evaluation of the cascade rates will give some
outstanding differences from the conclusions of Verma et al.
[1995]. We will find that the average e,, is systematically
too high by a factor of 10 or more which is the result
reported for the Alfvénic intervals. Although we cannot
ascertain the cross-helicity at the frequencies of measure-
ment, lower frequencies correspond mostly to non-Alfvénic
intervals. The Kraichnan rate will be close to the expected
value. Consideration of the likely behavior of the cascade
rates with 7 will show that the 2-D Kraichnan rate stays near
the expected rate with » and is possibly applicable in the
solar wind.

5. Our Database and Its Properties

[34] We use magnetic field and plasma observations
recorded by the ACE spacecraft [Smith et al., 1998;
McComas et al., 1998] while on orbit at L1 from 1998
through 2002. We have built a database using the spectra of
magnetic fluctuations from 960 intervals of data including
samples from the widest possible range of solar wind
conditions.

[35] We work with samples that are typically 1 to several
hours in length. We include magnetic cloud observations
[Burlaga, 1995] that make up half the database (393 inter-
vals taken from 28 distinct clouds) along with rarefaction
intervals, observations behind shocks, slow and fast wind
conditions, etc., that make up the remainder (567 events).
When employing thermal proton data in this analysis the
database is reduced to 352 (526) intervals for clouds (open
field lines) due to data availability. In this paper we consider
only the open field lines.

[36] We follow the same analysis method used by
Leamon et al. [1998a] and Smith et al. [2001b, 2004,
2006a, 2006b]. The inertial range of the parallel and
perpendicular magnetic fluctuation spectra are fit to power
law forms with the fitting interval adjusted to match the
region of the spectrum that is well-described by a power
law. We fit the range from 8 mHz to 0.1 Hz with only minor
adjustment. This typically represents the high-frequency
end of the inertial range at 1 AU. Figure 1 shows a typical
example from the database.

[37] Figure 2 shows the spectral index in the upper
inertial range as a function of 7, and Figure 3 gives a
histogram of the spectral index. The index is mostly found
between —1.5 and —1.8. The distribution is approximately
symmetric about the average, as reported by Smith et al.
[2006a], at —1.63 + 0.14 which is closer to the Kolmogorov
value. Matthaeus and Goldstein [1982] examined a large set
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Figure 1. Example fluctuation magnetic field spectrum

from the data base of 1 AU observations. The inertial range
is well-fit by a —1.57 power law form. The break marking
the onset of the dissipation range is visible. Positions of the
proton cyclotron frequency f,. and spacecraft spin
frequency fy, in the spacecraft frame are indicated with
arrows. The computed values of ex,; and e, are given in the
plot and are fairly typical of open field line observations at
1 AU.

of 1 AU data and showed that the average spectral index
was near the Kolmogorov value. However, we do find a
difference with the database used by Leamon et al. [1998a]
because we see no tendency of the range of indices to
narrow to one about an index between —3/2 and —5/3 at
higher 7,,,. Since our database is much larger, it is likely that
Figure 2 better represents the actual solar wind. No theory

-2.0

-1.9

-1.3 .

10*

Figure 2. Scatterplot of the inertial range index g;,.,; as a
function of the radial component of the proton temperature
T,. Horizontal lines give the Kolmogorov (—1.67) and
Kraichnan (—1.5) index values. At all 7,,, the index does
not narrow around either Kolmogorov or the Kraichnan
value.
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Figure 3. Histogram of ¢;,.,,.. Average index is near the
Kolmogorov value.

—2.02

yet describes this range of indices, but it is in better
agreement with Kolmogorov. However, in this paper we
will consider the approaches of both Kolmogorov and
Kraichnan in evaluating cascade rates. Behavior similar to
Figure 2 is seen for the index as a function of Vgy, 0B, and
OB/By.

[38] The database was not constructed with regards to
occurrence frequency in the solar wind nor was it made to
sample intervals of solar wind speed in 100 km/s bins.
Instead, the database most uniformly covers plasma con-
ditions especially with regards to plasma 3 and so also 7,
and T,,. Before examining cascade rates, we need to assess
how the database comports with overall solar wind behav-
ior. We also highlight correlations with 7,,,. which will prove
useful in our examination of cascade rates.

[39] Figure 4 plots 7, as a function of Vy: Lopez and
Freeman [1986] showed that T, and Vg fall into broad
bands of slower than 500 km/s and greater than 500 km/s.
We find that our data has a preponderance of slow wind data
points. However, most of these points fall into the range of
typical conditions. The break between temperature trends at
500 km/s is seen in the figure. We conclude from this that
the data covers enough range of Vgy and T, so that typical
heating rates should be found from (11).

[40] Figure 5 plots 6B integrated over the 0.008 to 0.1 Hz
spectral range as a function of 7,,,. The fit line is made using
the linear least squares method with unweighted uncertain-
ties, since this will better suit our analysis of cascade rates in
section 6, and has 6B = 3.355%, x 107°T 5% = %% [nT].
Grappin et al. [1990] evaluated daily average magnetic field
fluctuation power and found a correspondingly similar
dependence for total fluctuation energy in approximately
the same frequency band examined here. The correlation
has been interpreted to be of solar origin by Grappin et al.
[1990] and Smith et al. [2006a]. Alternatively, Bhattacharjee
et al. [2006] has suggested that the correlation might possibly
result from pressure-driven interchange instability of
background magnetic flux tubes at larger scales. A similar
correlation is also observed for 0B/, /pym,n, which is
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Figure 4. Scatterplot of 7,,. as a function of Vgy: Winds
below 500 km/s tend to be cooler than winds in the 500—
800 km/s range. Winds above 800 km/s correspond to
intervals of solar ejections.

the amplitude in Alfvén speed units. From this, we antici-
pate that € evaluated with either (2) or (4) correlates with 7,
since € depends on 6B/, /figmyn, through Py(v)/, /figmyn,,.
No correlation with 6B and 6 B/, /jigm,n, is found with n,,
By, By, or Vsy, but a correlation does exist with proton
pressure n,kply,.

6. Measurements of Predicted Cascade and
Expected Rates

[41] The Kolmogorov cascade rate in (2) is evaluated
using Cx = 1.6, R,= 0.5, v=0.01 Hz, and Pz measured at

6B [nT]

10° 10°

Tpr [K]

Figure 5. Scatterplot of power in integrated IMF spectrum
from 0.008 to 0.1 Hz as a function of 7,,. Fit line parameters
are given in text. The plot shows that larger amplitudes
correspond to higher 7,,.
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Figure 6. Scatterplot of the Kolmogorov cascade rate (red
diamonds) and expected heating rate (blue crosses) as a
function of 7),. The Kolmogorov rate exceeds the expected
one by a factor of 10 or more. Fit parameters are given in
Table 3.

0.01 Hz from the fitted spectrum. Plasma parameters used in
(2) are taken from averages over the intervals from which
the spectrum is computed. The chosen value of R, = 0.5
represents the typical value at 1 AU [e.g., Matthaeus and
Goldstein, 1982; Goldstein et al., 1995] found at lower
frequencies and cannot be assessed directly at » = 0.01 Hz
since velocity measurements at this frequency are not
available.

[42] Figure 6 shows eg, as a function of 7, using
diamond-shaped points and plots the least squares fit using
a solid line. The expected heating rate based on (11) as a
function of 7}, is shown with crosses, and the fit is a dashed
line. Data points with T, between 10* and 10° K corre-
spond to ex,, from approximately 10° to 4 x 10% J/(kg s),
while between 10° and 10° K correspond to 4 x 10* to
10° J/(kg s). Observations are considerably scattered about
the fit ex,;= 5.7 x 107°7),7°. The fit is the result of the linear
least squares method used without individual uncertainties.
Parameters of the fit are reported in Table 3. The relative
uncertainties for ex,; average near 0.35 and for 7}, near 0.27,
but these are smaller than the actual spread in the data.
Thereby, there is a true distribution in eg,; values which is
not due to uncertainties and for which the fit gives only the
average trend. When fits are made using the individual
measurement uncertainties, the fits are not good ones judged
by the trend of the data and by very large x> values.
Nonlinear least squares fits have the same difficulties and
do not even find a minimum when individual uncertainties
are used. For all € fits reported in this paper, the linear least
squares method without uncertainties is employed.

[43] The expected values in Figure 6 fall tightly on a
straight line. For constant Vs €jeq, is linear in T),,. The data
points are nonuniformly spread in Vgy and provide the
variation around the fit line which causes the fit to vary
more than linear as €, = 4.84 x 1073T,1,‘,“.

[44] The expected values are a factor of 13 smaller at 10* K
than ex,; and 39 smaller at 10° K. Because individual
evaluations of the cascade rate are known to a relative
accuracy of 40%, the distributions of ex,,; and €, have well
separated averages which are far apart in standard devia-
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Table 3. Fit Function Parameters for € Versus 7,

Fit Function X
Erear = (4842557 % 1077 T, = 0 0.03
€xor = (5.681335 x 1073 T, * 00 1.36
€xoan = (4217755 x 1077, = 009 147
€xr = (5035305 x 10797, = 0 2.26
2.14

Exrap = 3691 x 10797, * 003

tions based on measurement error. The discrepancies remain
large even if we assumed R4 = 0, which is unlikely, reducing
the amounts by 0.54. At lower frequencies, where velocity
measurements are available, our data set has an average o,
of 0.40 £ 0.21. This indicates that ex,;. ~ €, for our data.
Table 1 shows that significant reduction in ek, only occurs
for 0. > 0.95. Moreover, for cascades where o. # 0 in the
lower and middle inertial range, an analysis by Lithwick and
Goldreich [2003] for weak turbulence determined that o,
will approach zero in the high end and vanish at the point
where the dissipation range begins [see also Grappin et al.,
1983], while for strong turbulence Lithwick et al. [2007]
showed that 0. would have the same value in the upper end
as in the low end. Discrepancies are also not significantly
changed by evaluating the spectral amplitude at a different
frequency in the inertial range. If the spectral index is —5/3,
€xo; has the same value at all v in the fitted spectral band.
For a spectrum with —3/2, there is more power relative to a
—5/3 spectrum between the inertial and dissipation ranges
which occurs at higher frequencies than 0.01 Hz. This
would yield larger eg,; values than found at 0.01 Hz.
Toward lower v, a spectrum with —3/2 would show a
reduction in eg,; from that at 0.01 Hz. The amount of
change in either case for ex,, is proportional to (/0.01)"*.
This amount alone only becomes more than a factor of 10
when v is 4 decades away from 0.01 Hz. The discrepancy is
also not resolved by binning data according to spectral
indices. When only data with ¢;,.,, between —1.62 and
—1.72 are considered, no better agreement between ex,,; and
€neqr 18 found.

[45] The 2-D Kolmogorov prediction (not shown) gives
nearly the same distribution of values as seen for the
isotropic one. Fit parameters are given in Table 3. The
average value of v is 58° so that from (7) we find that
€xorap = 0.81 ex,. We have far too few data at small ¢ to
show that the two predictions differ by a statistically
significant amount.

[46] Figure 7 repeats the analysis of Figure 6 but using
the Kraichnan cascade rate. Equation (4) is evaluated using
A=1.42, v=0.01 Hz, and Pz measured at 0.01 Hz from the
fitted spectrum. Plasma parameters are again the averages
during the intervals, except for ¥, which is calculated using
By and n,,. Here the value of By is the average total magnetic
intensity over the interval and so includes contributions
from both the background interplanetary magnetic field and
fluctuations. Over all intervals, average By is 7.2 nT. At the
upper end of the inertial range, fluctuations are presumed to
evolve in accord with the local average magnetic field as if
it were the background magnetic field. If fluctuations in the
higher inertial range obey the Alfvén wave dispersion
relation, they then propagate at the higher speed ¥, than
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the one associated with the interplanetary field alone. The
Kraichnan cascade rate is a close match to the expected rate
on average. Values for e, and €., coincide near 7,,, = 10°K
where most of the data occurs but diverge at other 7,,. The
fit function (see Table 3) has eg, = 5.03 x 10°°7 11,;7 which
increases more steeply with 7,,. than does eg,;. (The 2-D
Kraichnan prediction is nearly the same as the isotropic one
and fit parameters are also listed in Table 3.) The steeper fit
is fairly well explained according to (5) where €g,. o e‘}(/s; x
(Tl,l,'r%)‘”3 x T,l,'rgl. The largest discrepancy between
the Kraichnan and expected rates is found at low 7,,. At
T, = 10*, the fitted ek, is smaller than €, by a factor of 4.2.

[47] Matthaeus and Zhou [1989] developed a theory of
the turbulent cascade which is a composite of the Kolmo-
gorov and Kraichnan theories. As discussed in section 3,
this gives us 4 = 1.42 when Cx = 1.6. The controlling
parameter in the theory can be expressed as Z, = (2 wvV3/
(4> Vsw €))'*. We have evaluated Z, for our results and
assumed that € = ¢, We find that the average value of Z,
is 27 and almost all values are above 10. This corresponds
to the limit of a Kraichnan cascade in the theory of
Matthaeus and Zhou and so is consistent with €x, X €400s
However, their theory also predicts that the spectral index
should be nearly —3/2 which is not found in Figure 3 (but
see Borovsky [2006]).

[48] We now turn to a comparison of cascades rates as a
function of solar wind speed. This approach is in accord
with the determination of ¢;,,,. Also it serves as a different
kind of ensemble averaging of the data than with 7,
because streams of nearly the same 7. may come from
both slow and fast winds and so have different origins and
be associated with different governing processes near the
Sun. Figure 8 shows €., as a function of V. Figure 9
shows the same for eg,; and Figure 10 for eg,. Data points
do not cover as wide a range of values as seen for 7, and
are mostly concentrated at speeds between 350 and 500 km/s
because of nonuniform sampling with respect to V-
Table 4 gives average values and standard deviations in
bins of Vgy with the assumption that e values are log-
normally distributed. This assumption is a good one and
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Figure 7. Scatterplot of the Kraichnan cascade rate (red
diamonds) and expected heating rate (blue crosses) as a
function of 7). The average Kraichnan rate is consistent
with the expected rate at moderate and high 7. Fit
parameters are given in Table 3.
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Figure 8. Scatterplot of the expected heating rate as a
function of V. Fit parameters are given in Table 5. Crosses
mark bin averages and standard deviations for the heating
rate per solar wind speed bins are given in Table 4.

follows from the fact that magnetic field fluctuation ampli-
tudes are themselves log-normally distributed in solar wind
data and are a primary factor in the determination of eg,,
and eg,. Large crosses on Figures 8—10 show these
values and ranges. Linear fits have been made to the function
loge = a + bV, without regard to binning and are also shown
in the figures. Solid lines in Figures 9 and 10 correspond to
the fits of ex,; and e, respectively, while the dashed line is
the fit of €., Fit parameters are given in Table 5.

[49] Average values of ey, are larger than €., as a
function of Vg while the average values of e, are in good
agreement with €., For 500 km/s, the ratio of average
values 1S €xo/€hoar = 19.6 and ex,/€j0q; = 0.8. The discrep-
ancy is approximately constant as a function of Vg and
certainly more so than over the range of 7). Thus the data is
consistent with values of Cg and 4 which are the same for
all streams. Adjusting Cx to achieve agreement between
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Figure 9. Scatterplot of the Kolmogorov cascade rate as a
function of Vgy. Solid line corresponds to the fit for the
Kolmogorov rate and the dashed line for the expected rate.
Fit parameters are given in Table 5. Crosses mark bin
averages and standard deviations for the Kolmogorov rate
per solar wind speed bins are given in Table 4. The average
Kolmogorov rate is a factor of 20 too large compared to
what is expected.

Figure 10. Scatterplot of the Kraichnan cascade rate as a
function of Vgy: Solid line corresponds to the fit for the
Kraichnan rate and the dashed line for the expected rate. Fit
parameters are given in Table 5. Crosses mark bin averages
and standard deviations for the Kraichnan rate per solar
wind speed bins are given in Table 4. Kraichnan and
expected rates are consistent with one another.

with €x,; and €., would require Cx = 11.6 which is even
larger than the result of Verma et al. [1995] for Alfvénic
intervals and is inconsistent with Cx being an order of unity
constant. Naturally, if Cy is larger than 1.6 (even if only by
a factor of 2), then following the Matthaeus and Zhou
[1989] prescription, the value of 4 would become larger and
Kraichnan rate would no longer agree with the expected
rate. Only values of 4 ~ 1.4 are in agreement with the
expected rate. The predictions from the 2-D cascade rates
are nearly the same as above, and their corresponding fit
parameters are given in Table 5.

[s0] Values of the Kolmogorov rate resemble the results
of Verma et al. [1995] concerning Alfvénic streams evalu-
ated at much lower v and using velocity and magnetic field
fluctuation data. In fact, if we rescale results in their Table 2
from Cx = 8 to Cx = 1.6 and remove the factor ex,,./ex,; for
ay = 0.07, then we find values that are in the typical range
of our data. However, at low frequencies we find that our
data set corresponds to non-Alfvénic intervals. Consistency
should exist with the non-Alfvénic results of Verma et al.
given in their Table 1. They found four streams ranging
from slow to fast which had values of eg,,; rescaled from
Cg = 1 to Cx = 1.6 which are smaller than ¢,,,. In our data
set this occurs only rarely. Thereby, we find that our results
are not consistent with Verma et al., and we cannot explain
how these differences arise.

[s1] Table 4 also contains averages of V; based only on
protons and the average value of 1. Using these average
values and a value of Vgy at the midpoint of each bin, we
list estimates of the loss differential streaming energy rate
from beam-core protons using (16) with the assumption that
ny/n,=0.2,V,,=1.1V,for Vg <600 km/s and V,,,=1.25 V,
for Vgy > 600 km/s based on results from Marsch et al.
[1982]. We find that these rates range from 10—-30% of the
expected heating rates, except for highest Vgy bin where
37% is found but this bin only contains a few data points.
Considering that S is probably an upper limit, we conclude
that most proton heating comes from an external source. For
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Table 4. Quantities Binned According to Intervals of Vgy; km/s?
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Quantity 300-350 350—400 400—450 450-500 500—600 600—700 700800
Number of data 17 170 133 86 52 34 8
10% €penr 4997348 6337504 6.841537 12.3914%49° 21.49733%9 37.28 4551 59.95719%48
10° €xor 70271512 13.93 3430 12.1173%%° 26.67532% 42.187%327:3° 69.84 12730 337.82 %308
10° €xorop 6.93 1558 13.78 3032 12.2574%3° 27.623178 4535 3%? 72,601 247! 300.38_573%5°
10% €k, 23719% 509283 3.7273%%8 9.963%3 174611858 3101118434 133.93305:32
10% €x,00 2.321748 4991353 3.7223%%! 10.213%37 18.5710%3° 31.90137%3° 117.8553%5°
Exol Enent 14.06 21.98 17.71 21.54 19.63 18.74 56.35
Exoran/Enent 13.89 21.75 17.91 2231 21.10 19.48 50.11
Ex/Enoar 0.47 0.80 0.54 0.80 0.81 0.83 223
€xrap/Enoat 0.46 0.79 0.54 0.82 0.86 0.86 1.97
v, 42 51 62 65 67 77 175
¥ 58° 59° 59° 57° 55° 56° 69°
S 70 111 195 255 348 647 2242
Eave 0.72 0.73 0.74 0.75 0.81 0.85 0.78

“Values of € are averaged in log space. V is the average Alfvén speed in km/s based only on protons. S is the streaming energy loss rate from (16) in

units of J/(kg s).

Ve < 600 km/s, average e, is less than €,,, by as much as
50% and so some additional source such as from differential
streaming could be needed. However, we need to consider
further the uncertainty in determining values of €),.;.

[52] The equation of state for the protons is a source of
uncertainty because we have neglected terms even in the
radially symmetric limit as discussed in section 3. More-
over, T, does not correspond to the total thermal energy of
protons as would 7}, and so the complete energization of the
protons is not definitively known. We have estimated the
uncertainty from these by using typical values for solar
wind parameters at 1 AU (see Appendix B for details) and
evaluating the more complete equation of state in (13). As
discussed in section 3, we expect average 7, to be nearly
the same as 7, when average 1 is near 54.74°. There is an
important difference between the index &,,, characterizing
T, change with r and ¢ characterizing 7,,. For the case
§ = 0.9, we have found values of {,,, listed in Table 4 with
an average near 0.75. This causes ¢, to be underestimated
by using (11). On average we find that €., should be
1.22 times greater than its value calculated from (11). This
would increase the discrepancy between ey, with €., More
can be said about these uncertainties in terms of an energy
diagram to which we now turn.

[53] For our final analysis of the data, we consider rates as
a function which is proportional to the product of Vy T,,.
This will have values of the expected heating rate following
a straight line from which the significance of the results can
be summarized and quantified. Figure 11 plots cascade and
expected heating rates as a function of €, which is defined
in (11) and corresponds to the case where £ = 0.9. Dashed
lines give the expected heating rate e for different values of
& where € = (4/3 — &) €0a/(4/3 — 0.9) (see equation (10)).
In this log-log plot these expected rates follow straight lines
with slope 1 and are labeled with the value of & where
numbers in parenthesis correspond to negative values. The
thicker black dashed line corresponds to zero temperature
gradient (£ = 0) and divides an upper region where 7),,. rises
with increasing distance from a lower one where 7}, falls.
The thick solid lines correspond to fits of the trend for the
Kolmogorov and Kraichnan predictions. Fit parameters are

given in Table 6. These lines have slopes greater than 1 with
the Kraichnan rate having larger slope. Since 7, has a far
greater range of values than Vgy, these trend lines are
similar to what is found when the cascade rates are plotted
as a function of only 7),.

[s4] The trend line for g, in the plotted range is located
entirely in the upper region. In situ heating at 1 AU would
then be greater than adiabatic cooling. The value of 7,
would be expected to increase with increasing » with £ ~
—8&. Clearly, this prediction is out of bounds with respect to
protons which cool in net with increasing r. For the case £ =
0.9, uncertainty associated with the equation of state about
the average value of € is shown in the figure by the
vertically hatched fill lines. The primary source of uncer-
tainty in (13) is due to plasma anisotropy rather than change
of speed with 7 or heat flux. If the true values of T}, and £,,,
were known, the relative uncertainty in using an expression
like (11) would be 30%. However, in using 7}, and &, the
total relative uncertainty is about 50% and has average
values about 22% higher than the line £ = 0.9 because the
average value of &, is smaller than {. Uncertainty in
temperature from evaluating €., from (11) simply moves
one along the line of slope 1. Thereby, the uncertainty here
is confined to the strip shown.

[s5] The average value of eg,, is far larger than expected
for proton heating and cannot be explained by uncertainties
in the analysis. If protons cannot take up the excess cascade
energy in the Kolmogorov prediction, then the excess would
need to heat other plasma species. However, in section 3,
we have argued that alphas and electrons are heated by a
lesser amount than protons from the turbulent cascade.
Certainly, a factor of more than 10 excess flowing to other

Table 5. Fit Function Parameters for ¢ Versus Vgy, km/s

Fit Function X
In €000 = 420 £ 0.2 + (0.0060 + 0.0004) Vg, 0.60
In €x,y = 6.87 = 0.2 + (0.0066 =+ 0.0004) Vg 2.52
In €xprop = 6.90 £ 0.2 + (0.0066 + 0.0004) Vey 2.49
In €g, = 3.37 £ 0.2 + (0.0070 + 0.0004) Vs 3.93
In €x,.0p = 3.38 £ 0.2 + (0.0070 = 0.0004) Vg 3.90
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Figure 11. Energy cascade rate diagram plots € as a

function of ¢, Dashed lines marked with £ give the
expected heating rate for that temperature gradient. Values
enclosed in parenthesis are negative. The lined pattern fill
about line of £ = 0.9 is the uncertainty range based on the
equation of state. The bold dashed line corresponds to £ = 0
dividing an increasing 7, wind in the upper portion of the
diagram from a decreasing one below. Dashed line spacing
is a factor of 2 except between the line for & = 0.5, which is
included by preference. The solid line in the upper portion
of the diagram is the Kolmogorov rate and lower solid line
is the Kraichnan rate. Fit parameters are given in Table 6.

species has not been reported. Moreover, since we expect
that most proton heating is due to external sources, cascade
rates in the high end of the inertial range should be
comparable to ones estimated in the energy containing
scales. These energy-containing scale rates are in agreement
with values of €., [Smith et al., 2001a, 2006c; Isenberg,
2005]. That these do not match what is found using (2)
shows that ex,, does not properly evaluate the cascade rate
for solar wind turbulence at 1 AU in the high end of the
inertial range.

[s6] The Kraichnan cascade rate does come into the
expected range of agreement when €., > 1000 J/(kg s).
In the plotted range, the Kraichnan prediction is within the
lower portion of the plot where 7, falls with increasing 7.
Thus the prediction gives average values which are at least
possible for a mainly proton heated solar wind. Below €0, =
1000 J/(kg s), the prediction departs below €., With £ =
0.9. As a function of Vgy, ek, was in agreement with €.,
with £ = 0.9 which is essential because this is how the
average value of ¢ was found. However, in this plot, T,
plays a large role, and we do not know if the average value
of £ is a function of T),. If the Kraichnan prediction is a
good estimate of the cascade rate, then its trend line
forecasts that at lower values of €., and so also of 7,
(see Figure 7), that the solar wind heating rate should
correspond to ones with & closer to the adiabatic value of
4/3. We are not aware of a published complete study of £ as
a function of 7, from which to verify this forecast. We
thereby conclude that our results cannot discount the
Kraichnan prediction as a method to evaluate turbulent
cascade rates.

[57] Qualitatively, a good case can be made for a depen-
dence of £ on 7,,. First, Figure 5 shows that wave ampli-
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tudes increase with increasing T, spanning a temperature
range of nearly 100. The proton temperature in the corona is
likely confined to a smaller range near 1-3 x 10° K. The
large spread in T, found at 1 AU could result from the
accumulative effects of turbulent heating wherein strongly
heated solar wind with larger amplitude fluctuations results
in a higher temperature at 1 AU and so a smaller net change
of temperature from the corona. If true, then the temperature
gradient would depend on the energization of protons from
the turbulent energy cascade and show a dependence on 7),.
Second, the dependence of { on T}, could account for why
average €., per solar wind bins below 600 km/s are greater
than eg,. There is a distinct asymmetry below the fit line in
Figure 10, where €, has values even below 20 J/(kg s). This
asymmetry is not so pronounced for €., in Figure 8 and
this could be due to using £ = 0.9 for all data points. If £
does become larger with decreasing 7),,, this would increase
the spread below the shown fit line and most probably lower
the mean value of €., into better agreement with e,.
Finally, some evidence for a temperature trend consistent
with the Kraichnan prediction can be found in the work of
Freeman and Lopez [1985]. They reported that around
solar maximum 3-10% of the solar wind intervals are
characterized by an expectational low T}, defined as values
below 15,000 K. They concluded that these intervals are
consistent with almost adiabatic expansion because with
this assumption 7). at the Sun would match observed
coronal temperatures.

7. Prediction of the Cascade Rate as a Function
of Heliocentric Distance

[s8] The discrepancies for the Kolmogorov rate continue
to be problematic when we consider the probable behavior
of the cascade rate with heliocentric distance ». The depen-
dence of eg,; with r can be determined by knowing the
dependence of P, n,, and Vg where v is treated as a
constant. The value of Py depends on the square of the
magnetic field fluctuation amplitude. This amplitude is
observed [e.g., Roberts et al., 1990] to follow closely the
geometrical optics prediction [e.g., Volk and Alpers, 1973]
of ¥ !* for > 0.3 AU so that P obeys . In a spherically
expanding solar wind, density varies as 7~ 2. The solar wind
speed can be taken to be a constant with reasonable
accuracy. The value of eg,; can then be shown to vary as
' and has this functional form both inside and outside of
1 AU. From (9) and using & = 0.9, €00, varies 7. Then,
€xoll€noar Varies as 4. Inside of 1 AU, ex,; on average (i.c.,
using values from our derived fit function) will approach
€near With decreasing r. Outside of 1 AU, eg,; will diverge
from e, with increasing r.

[59] A perpendicular cascade is what is actually expected
to occur in the solar wind. At 1 AU, we find no distinction

Table 6. Fit Function Parameters for € Versus €,

Fit Function X

_ 163\ ~1.22  0.05

€xor = (4.487109) €hier 1.55

_ 124y 124 + 0.05

€xor2n = (3425G5) € 1.46
_ 4134 x 102y 149 + 0.05

€xr = (0.02756 5 10°) €nianr 231

57 x 103 _1.51 + 0.05
€xrop = (002755 % 0) Ehew 221
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between the isotropic and 2-D cases. In this case, we
continue to associate the perpendicular fluctuations with
ones which maintain a constant frequency with distance.
This is not the only possibility since expansion can enlarge
perpendicular scales with increasing r, but the complete role
of expansion is not yet known (M. Velli, private communi-
cation, 2006). Outside of 1 AU, €x,; and ex,;, »p Will remain
nearly the same since the interplanetary magnetic field tends
toward the azimuthal direction. The discrepancy inside of
1 AU is actually increased by using ex,;2p as compared to
€xoi», and spacecraft data inside of 1 AU should be able to
distinguish the two cases. Inside of 1 AU, the interplanetary
magnetic field approaches the radial direction with decreas-
ing r. For a Parker interplanetary magnetic field, sin v varies
nearly as 7 inside of 1 AU. The factor 1/sin ¢ in €xy0p
would then result in a »~>° functional dependence. The
value of ek, 2p/€n0qr then varies as r~ % which increases the
discrepancy found at 1 AU by a factor of 2 at 0.3 AU.

[60] The Kraichnan rate at 1 AU is in closer agreement
with the expected heating rate. Inside of 1 AU, e, varies as
r! assuming constant Vgy, and outside of 1 AU, where V,
is nearly constant, e, varies as r~2. Inside of 1 AU, ex,/€/our
varies as 7"’ and on average this ratio will decrease
with decreasing r. At 0.3 AU, this would bring most values
of eg, to values that are one-third of ¢;,,,,. Outside of 1 AU,
exr/€near varies ! and so this ratio will only slowly
decrease with increasing r. For most values of Ty, ek
and €;,.,, will remain close out to 10 AU. Verma et al. [1995]
noted that heating rates could not be consistently matched
inside and outside of 1 AU and so concluded that the
isotropic Kraichnan prediction was not valid. However, this
situation might be remedied by the 2-D Kraichnan predic-
tion. Outside of 1 AU, ek, and €k, »p Will remain nearly the
same since, as before, the interplanetary magnetic field tends
toward the azimuthal direction. Inside of 1 AU, the factor
1/sin 4 within eg,.»p nearly compensates for the decrease of
€kl €hear With decreasing 7 so as to keep ex,.op close to €e4s.
In fact, €k, 2p/€peqr Varies as #~ %! inside of 1 AU.

8. Summary and Conclusions

[61] We have used 526 measured magnetic field fluctua-
tion power spectra from the high end of the inertial range to
evaluate cascade rates based on Kolmogorov and Kraichnan
predictions. The cases span a 4 year period about the peak
of solar activity in 2000. Measurements mostly correspond
to slow wind but there is an extensive range of proton
temperature. Spectral indices average near —5/3 but show
no tendency to narrow in range at large proton temperatures.
Integrated magnetic field fluctuation amplitudes in the high
end of the inertial tend to increase with increasing temper-
ature. Since amplitude is the primary factor in the evaluation
of cascade rates, both Kolmogorov and Kraichnan rates also
increase with temperature.

[62] The cascade rates have been compared to expected
ones based on proton heating. Evaluation of uncertainties
from the equation of state indicate that on average an
estimate within a factor of 2 is obtained using the available
radial component of the proton temperature. Furthermore, we
expect that protons are heated more by the turbulent energy
cascade than are alphas and electrons. The Kolmogorov
prediction (2) with Cx ~ 1.6 (the value determined in
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hydrodynamic experiments) is found to be a factor of 10
or more above the expected rate (11), while the Kraichnan
prediction (4) with 4 =~ 1.4 (the value given in the
Matthaeus and Zhou [1989] model) is consistent with the
expected rate. On average, the Kolmogorov rate is a factor
of 20 greater than expected. If this discrepancy entirely
rests with Cg, then Cx ~ 12 is required to resolve the
difference, but then Cx is not a constant of order unity as
expected. With large Ck, the estimated interaction time
between turbulent eddies in the Kolmogorov model for
solar wind magnetic field fluctuations is far longer than
the nonlinear turnover time which governs hydrodynamic
eddies. This might indicate that the nonlinear turnover time
does not alone govern the interactions at the high end of the
inertial range for the solar wind case. On the other hand, the
Kraichnan model with 4 of order unity can potentially
account for the longer interaction times with the wave
effects included in this model. No distinction between
isotropic and 2-D forms is found in the data, but this is to
be expected because in most of our cases the magnetic field
is not near the radial direction. However, consideration of
the behavior of the predictions with heliocentric distance,
finds that the 2-D Kraichnan rate best follows the expected
trend of the proton heating rate with heliocentric distance.
We conclude that the 2-D Kraichnan prediction is the best
available estimator of the cascade rate for use in the high
end of the inertial range.

Appendix A: Reduced Spectra and the 2-D
Cascade Rate

[63] The predictions of Kolmogorov and Kraichnan cas-
cades employ the omnidirectional value of the spectral
power density. The measured spectrum Pp is the reduced
spectrum observed along one line of sight. The relation
between the two is needed to give an expression that can be
evaluated from measurements. In the isotropic case, the
omnidirectional spectrum is 474 k*k?~? where k is the total
wave number and ¢q is the spectral index. The factor of 47
represents the total contribution of the power in that wave
number across the entire sphere. The value of A, is the
scaling parameter in the energy spectrum Ao k7 2. If we
pick a particular axis, say the +x direction, and integrate
Ao k772 over all wave numbers transverse to the +x direction,
one finds that the isotropic case leads to an integral of this
form by trigonometric substitution:

/2
Py = 47rA0kj/ singcos 47 ¢ do, (A1)
0

where tan ¢ = k)z, + k2/k,. The integral can be related to
a beta function’ B(m, n) and gamma functions with the
relation

L(m)L(n)

20 (m +n)’ (A2)

/2 1
/ sin®" ! ¢ cos™ ! pdp = zB(m,n) =
0

For the isotropic case, m = 1 and n = —q/2, and combined
with the recursion relation I'(1 + n) = nl'(n), one can show
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that the integral reduces simply to —1/gq. The needed
relation between the reduced and the omnidirectional value
is then —gPg(k) = 4wA, k?. This explains why the absolute
value of the applicable spectral index is seen in (2) and (4)
in association with Pp.

[64] The 2-D case requires a new calculation of the
reduced and omnidirectional spectrums. Here, the omnidi-
rectional spectrum is 27kk? " where power is averaged over
the 27 circle about the background magnetic field direction.
Let x be in the direction of the magnetic field and the
vz plane contain the wave vectors of the fluctuations. First,
reduce the spectrum Aok? "' to the one for the +y direction
by integrating over all k, which leads to the following
integral expression

/2
P = (27rA0k;) (3> / cos 1 pdo. (A3)
) Jo
The integral can be further expressed as
_ 2\ v7rl'(=q/2)

Equation (A4) does not reduce to a rational fraction, and
so we have evaluated the integrals numerically for
the Kolmogorov case [ 72 cos®? ¢dp = 1.120251 and the
Kraichnan case fg” cos'? ¢ d¢ = 1.198140. From here, the
relation between the reduced and omnidirectional spectra in
wave number follows.

[65] Since the direction of measurement in the solar wind
will be in the radial direction, let the y direction be in the
plane rx. Then it can be shown that k. = &, [sin | and let
k. = 2 mv/Vsy: The scaling factor Ay = 6Bzvk6 71 must also
be converted from wave number to v. With all of this, the
2-D Kolmogorov prediction can then be given as

ekot2p = (27/ Ve ) |sin~" |1/

(1 4 Ry)(1.402182) (Py(v) /gy, ) /Ck] ™ (AS),

and the 2-D Kraichnan as
exrap = 21/ V) |sin™" 0|V 10

- [(1.311029) (Ps(v) / tigmypmy) /4] (A6)
Appendix B: Method Used to Evaluate the
Equation of State

[66] We do not have all the measurements needed to
evaluate the more complete equation of state in (13). How-
ever, we can use the known statistical properties of the
missing solar wind values at 1 AU to evaluate € from (13)
and then compare with (11). On this basis, we can assess how
well €04, 18 known when we neglect terms in (13).

[67] We draw from average values of measurements and
then use a Gaussian function G(u, > o, < o) to distribute
these values about the most probable value p, where
different standard deviations o are used above u, denoted
by >0, and below by <¢. Table B1 summarizes the assign-
ments. We use an ensemble of 10,000 evaluations per data
point from our 526 cases to find average values of € and
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standard deviations. Results differ little from using 1000
evaluations per data point, and so we believe that the results
are statistically accurate.

[68] The measurements which we have for all 526 cases
are the average magnetic field intensity By, the angle 1),
between the background magnetic field and the radial
direction which here we restrict to the range 0 and 90°,
the total proton density 7,, the radial component of the
proton bulk speed Vgy; and the radial component of proton
temperature 7). To evaluate (13), the quantities that we
need to represent in a statistical fashion are the total proton
anisotropy A and parallel heat flux, relative concentration
and differential speed of the proton beam, alpha number
density, for which we have measurements in 500 cases, and
the change with heliocentric distance » of the background
magnetic field, A, parallel heat flux, and proton differential
speed. Below, we discuss the assignment of values.

[60] We will assume a radial symmetric background
magnetic field By in the 7¢ plane. This field has components
B, = Bycos 1o (ro/r)* and By = —By sin g (ro/r) where B,
and 1) are the measured values at rq, corresponding to 1 AU.
The form of B, satisfies a divergence-free field in the radial
limit. The form of B, corresponds to a current-free field,
and its 1/r behavior is reasonably in accord with the average
behavior of B, near 1 AU. Changes in field intensity and ¢
will be needed in the equation of state. The change in field
intensity OB/Or can be shown to be

1 0B  2cos® yry/r® + sin® Y3 /r
B Or  cos?hyrd /1t + sin ord /12

(BI)

When (B1) is evaluated at ry, we find that (1/B) (OB/Jr) =
—(2 cos® 1o + sin® 1o)/ry. The change of 1) with » can be
derived by differentiating the ratio —B4/B, which can

be rewritten as tan ¢ = tan 1y(#/ry). From this we find that
oYlor is

QP singyycos® P
or  rocostyy (B2)

which at r is (sin ¥ cos ¥g)/r.

[70] The protons will be taken to be a combination of a
core and beam with known total density 7,. The relative
beam concentration 7,/n, at 1 AU is near 0.2 according to
Marsch et al. [1982, Figure 16] and we assign using G(0.2,
>(.15, <0.05). We neglect any change in #n,/n, with r. Core
protons will be assumed to move at the speed Vg in the
radial direction. The proton beam will also move at this
speed with the addition of a component of velocity V,,, along
the known By. Then, the total proton velocity components are
U, = Vsw + (np/n,) V,,y, cos ¢ and U, = —(ny/n,) V,psin 2.
The change in r of the proton bulk velocity components can
be written as

8Up,. - 8VSW np anp . Bw
o or +np (cosw or Vo Smwar ’ (B3)
aqu') _ np . 8Vpp 81/)
o " m, (smw o + Vi coswar . (B4)
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Table B1. Statistical Assignment of Solar Wind Quantities
Quantity Vsw Range, km/s Functional Form
ny/n,, all G(0.2, >0.15, <0.05)
Yace Vew < 319 G(0.135, 0.038, 0.038)

319 < Ve < 354 G(0.062, 0.032, 0.032)

354 < Ve < 391 G(0.016, 0.037, 0.037)

391 < Vg < 447.5 G(—0.021, 0.041, 0.041)

Vew > 447.5 G(—0.010, 0.038, 0.038)
V!V Vew < 400 G(1.1,>0.3, <0.2)

400 < Ve < 600 G(1.1, >0.4, <0.2)

Vw > 600 G(1.25, >0.5, <0.1)
na/n, all G(0.03, >0.01, <0.01)
av,,Jdr all G(—(0.1 + cos? 1)

V,plro, >0.5, < 0.5)
A Vew < 500 G(0.6, 0.2, 0.15)

500 < Vg < 600 G(0.7, 0.3, 0.15)

Vew > 600 G(0.8, 0.3, 0.15)
dA/dr all G(—0.5A/rg, >0.5, < 0.5)

q|| all G(0.1 g0, <0.5,>0.5)
dq|/dr all G(0.1 d g| o/dr, >0.5, <0.5)

We first consider the change for Vg, with » and then for
differential speed.

[71] The change of Vg with 7 can be found in the work
of Arya and Freeman [1991] based on power law fits where
Vsw = Vswo (rlro)’<. We take values in their Table 3 for
solar maximum and assign as given in Table B1.

[72] Differential streaming speed V,, will be assigned
with respect to the local value of ¥, based on Marsch et al.
[1982, Figure 13] and is given in Table B1. To evaluate V,
we use both proton and alpha number densities and masses
and neglect the small mass of electrons. In 500 cases the
alpha density is known. For the remaining 26 cases, relative
alpha concentration is assigned with G(0.03, >0.01, <0.01)
based on our data. The change of V), with r is taken to
follow approximately V; and is assigned with G(—(0.1 +
cos” 1) Vyplro, >0.5, < 0.5), where o is 1 AU in units of
kilometers. Actually, the term proportional to cos® v is the
change of V, with » assuming a constant solar wind speed.
The standard deviation here is assigned to get a wide spread
of values. In all cases here, we do not have detailed
estimates of speed gradients to draw from and so assign
values as shown. When this form of differential streaming is
substituted into (B4), one will find on average that U, is
approximately constant with 7. In a cold solar wind without
forces decelerating the beam, U, would vary as 1/r, and
nearly so even in a warm solar wind.

[73] Proton total temperature anisotropy A and its change
with r are taken from Marsch et al. [1982, Figure 15]. The
assignment of 4 is given in Table B1. The average proton
temperature 7), can then be found using (15) with the known
radial proton temperature 7),. Results discussed in the text
are obtained by assuming that the gradient of T, has a
power law index £ = 0.9. Taking the derivative of 7 in (15)
relates the gradients of 7, and 7, by

oT, 1424 1 oT,,
o3 cos?ip+ Asin>y Or
Tpr(1 +2A) 2 sin® 4 0A

3(cos? 1 + Asin’ 1) 1+2A4  cos?tp + Asin’ 4| Or
(1+2A4) (A—1)singcosyy Oy

—oT, .
g 3 (cos? 1) + Asin® w)z or

(BS)
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The change of A with r is assigned as G(—0.5 A/ry, > 0.5,
<0.5) where 7y = 1.5 x 10" m or 1 AU. We take T,=Ty
(ro/r)f""g and can determine &,,, at ry as

., 2 sin® 1), 0A
l1+24 cos? Yo + Asin® ] Or

2(A-1) i 2
cos? 1y + Asin® 1, ST Y cos™ o,

gavg = f -

(B6)

In our evaluations, we find that the term dependent on the
change of anisotropy with » has only a small effect and
that most of the difference from & is due to the change of v
with 7.

[74] Feldman et al. [1973] showed that the average value

of the parallel heat flux g is 0.1¢) o where g0 = 1.5 n,m,

(ksT,/m,)** (3/(1 + 2 A))"2. They also found an additional
term which depends on A, but Marsch et al. [1982] reported
that this dependence was not seen in their data. Instead, g
has a wide spread about g . Therefore we assign g
according to G(0.1gj o, <0.5, >0.5) where the standard
deviation is a guesstimate. The change of g with r is
computed from the definition of ¢ o and is then assigned
with G(0.1dgq) o/dr, >0.5, <0.5).
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