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[1] This study attempts to establish the first continental-scale multiobservation calibration
and assessment of a land surface model (LSM) over the conterminous United States
by using the Colorado State University Unified Land Model (CSU ULM) within the
NASA GSFC’s Land Information System and the Parameter Estimation (PEST) model.
This study aims to calibrate the vegetation and soil optical parameters in different
landcover classes by comparing model-predicted surface albedo and those derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS) (including black- and
white-sky albedo for visible and near-infrared band). The sum of squared deviations (Y)
between model- and MODIS-derived albedo is iteratively reduced via the Gauss-
Marquardt-Levenberg (GML) algorithm. The first calibration process (1) reduced Y by
about 80% for noncalibrated as well as calibrated seasons and years, (2) revealed the
functional biases related to diffuse-radiation upscattering parameters in two-stream canopy
radiation scheme (which was fixed before the second calibration), and (3) shows that
the parameter related to the leaf angle distribution function could not be tuned. The second
calibration was implemented from the lessons learned from the first calibration, and
results in the more realistic convergence of the parameters. After calibration, the
summertime surface energy budget simulated by offline ULM changed significantly over
the less vegetated regions; for example, net shortwave radiation and available energy
increased by more than 40 W m�2 and radiative temperature increased by more than 1.6 K
in the postcalibrated experiment.
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1. Introduction

[2] Land surface models (LSM) diagnose terrestrial mass
and energy flux and biogeochemical processes, which are
critical for applications in numerical weather forecasting
and climate diagnostics. In the last several decades, hydrol-
ogy and climate communities have developed a number of
different types of LSMs for their research applications

[Pitman, 2003]. Many LSMs participated in the Project
for Intercomparison of Land-Surface Parameterization
Schemes (PILPS) [Henderson-Sellers et al., 2002]. PILPS’
Phase 1 and Phase 2 experiments found a significant
diversity in the performances of different LSMs [Pitman
et al., 1999]. This is because each LSM contain a number of
different functional equations that represent soil-vegetation-
atmosphere-transfer (SVAT) processes, and each function
consists of different tunable parameters that usually cannot
be measured directly or extensively in time and space.
[3] The agreement between model output and observa-

tions can be improved by modifying tunable parameters.
This process is called model calibration. Model calibration
can be accomplished manually (i.e., by hand) for the simply
structured LSM. However, as the structures of LSMs
become more complicated, a manual calibration becomes
difficult even for the experienced modeler. This is because
parameterizations within LSMs are nonlinear and coupled;
for example, a change in the surface albedo results in the
modification of turbulent heat flux, radiative temperature,
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photosynthesis, and root-zone soil moisture [Niyogi et al.,
1999]. Therefore the hydrology community has been de-
veloping an automatic calibration framework that tunes a
LSM via nonlinear inversion model [Gupta et al., 1999].
The automatic calibration more effectively improves an
LSM with a simpler structure than one with a more complex
structure [Wood et al., 1998].
[4] The calibration of an LSM generally requires two

types of data: (1) meteorological forcing and (2) ground-
truth observations of surface flux and state. The meteoro-
logical forcing data is the weather input that drives the LSM
to calculate the energy and mass exchange (e.g., turbulent
energy flux, runoff) and terrestrial state (e.g., biomass, soil
moisture, temperature, and albedo), while surface observa-
tional data are used to examine the gaps between observa-
tions and model output. Most of the LSMs are usually
calibrated or tested at a limited number of sites owing to a
lack of data sets required for the calibration. Calibrated
tunable parameters at the specific site are not the universal
answer, however. It is one possible combination of feasible
parameters that satisfies the given calibration period and
watershed; i.e., a calibration improves the performances of
the LSM for a given calibrated timescale and a given
calibrated watershed [Wood et al., 1998; Lee et al., 1995].
[5] LSMs create the spatial and temporal heterogeneity of

the land surface energy and mass flux by assuming specific
values of tunable parameters for each land-use/landcover
(LULC) type and the geographical feature (e.g., topography,
soil type, or leaf area). Because accurate spatial prediction
of surface energy and mass flux is critical for the prediction
of summertime deep cumulus convection and climate sen-
sitivity [Pielke, 2001], the performance of an LSM should
be assessed at every single numerical grid point within the
model domain. Limited site calibration leads to uncertainty
in the performance of an LSM, when the LSM has been
applied to a region that features different combinations of
soils, plants, and geology [Niyogi et al., 1999; Matsui et al.,
2005].
[6] Accuracy and horizontal coverage of data sets re-

quired for the calibration have been improved and extended
in the past several years. Continental-scale high-resolution
meteorological forcing has been developed by the Land
Data Assimilation System (LDAS) project [Cosgrove et al.,
2003]. High-quality satellite data sets (LULC, leaf area
index, surface temperature, and albedo) have been opera-
tionally derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard the Earth Observation
Satellite (EOS) Terra and Aqua, which has provided global
coverage since March 2000 [Justice et al., 2002]. A network
of ground eddy covariance tower measurements provides
fluxes of CO2, sensible and latent heat, and soil moisture,
which are not directly available from satellite remote
sensing [Baldocchi et al., 2001]. A framework is needed
that makes best use of the newly available data sets to
calibrate and enhance the performance of LSMs. Otherwise
it is becoming very difficult to evaluate an actual improve-
ment of the LSM.
[7] This study attempts to establish the continental-scale

multiobservation calibration and assessment of an LSM
over the conterminous United States (CONUS). This
regional calibration framework uses the Colorado State
University Unified Land Model (CSU ULM) within the

Land Information System (LIS) [Peters-Lidard et al., 2004]
coupled with the Parameter Estimation (PEST) model
[Doherty, 2004]. The continental-scale calibration process
has three objectives. The first objective is to directly
improve the performance of an LSM at a continental scale
by tuning (or generalizing) the LULC- and geography-
dependent parameters by minimizing the model-observation
discrepancy for all the grid points within the model domain.
The second objective is to determine the extent to which
improvement in the performance of the LSM can be
achieved by adjusting tunable parameters (obtained from a
literature review) versus changing model structure. The
third objective is to assess the performance between a
limited-site calibration and a new large-scale calibration.
[8] This study consists of a two-part series. This paper

describes the calibration methodology and surface albedo
calibration. Follow-up study [Matsui, 2006] shows calibra-
tion of the land surface temperatures and turbulent heat
fluxes. Surface albedo and associated net shortwave radia-
tion are critical components of the surface energy and mass
flux in an LSM [Dickinson, 1983], and the surface net
radiation modulate the performance of the SVAT scheme
(including surface turbulent flux and land surface tempera-
ture). Although the ULM initialization uses a consistent set
of the MODIS LAI and LULC data, the ULM does not
produce surface spectral albedos that are consistent with the
MODIS radiances, because of differences in the sophistica-
tion and assumptions of the canopy radiative transfer
algorithms and soil albedo configurations. This discrepancy
has been reported in a number of previous studies [Oleson
et al., 2003; Zhou et al., 2003; Tian et al., 2004;Wang et al.,
2004]. Thus surface albedo must be estimated and its
representation calibrated before the land-surface tempera-
ture calibration takes place.
[9] This paper is organized as follows. Section 2 des-

cribes a calibration methodology via the Gauss-Marquardt-
Levenberg (GML) algorithm. Section 3 describes the data
sets required for the calibration, including a brief descrip-
tion of the CSU ULM (section 3.1), the North American
LDAS meteorological forcing (section 3.2), MODIS surface
product for the model initialization (section 3.3), and
spatially complete snow-free MODIS surface albedo that
is used for model calibration (section 3.4). Section 4
describes the parameterizations and tunable parameters
(two-stream canopy radiative transfer in section 4.1 and soil
albedo in section 4.2), and the calibration domain and periods
(section 4.3). Section 5 presents the results of precalibration
(section 5.1) and postcalibration (section 5.2), and describes
the manual correction of the functional error in the canopy
radiative transfer model and second calibration result
(section 5.3). The new set of tuned parameters is validated
for a noncalibrated period (section 5.4), is compared with
those derived from limited-time and limited-site calibration
(section 5.5), and is tested for the sensitivity of surface
turbulent heat fluxes and skin temperatures (section 5.6).
Study results are summarized in section 6.

2. Parameter Estimation (PEST) Model: Gauss-
Marquardt-Levenberg Algorithm

[10] Parameter Estimation (PEST) model is a freely
distributed optimization software, which uses a robust
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Gauss-Marquhardt-Levenberg (GML) algorithm. The GML
algorithm combines the advantages of the Gauss-Newton
method and the steep descent method and therefore provides
faster and more efficient convergence toward the minima of
an objective function (Y: weighted sum of squared deviation
between model and observation). The best set of parameter
is selected from within reasonable ranges by adjusting the
values until the discrepancies between the LSM-generated
values and the corresponding observations are reduce to a
minimum in the weighted least squares sense [Doherty,
2004]. PEST has been used in other nonlinear inversion
problems, for example, a surface energy and carbon ex-
change model [Wang et al., 2001], a distributed watershed
model [Liu et al., 2005], and a nutrient transportation model
[Baginska et al., 2003].
[11] Figure 1 depicts the calibration process in the PEST.

While continental-scale calibration requires significant ma-
chine time especially for computing the Jacobian matrix (the
partial derivative of error as a function of each parameter),
the parallel mode of PEST allows us to use multi-CPUs for
ensemble simulations that significantly reduces the required
time (by nearly 30 times) [Doherty, 2004]. For this study,
we used a Mac Xserve G5, consisting of 15 servers with
dual 64-bit Mac G5 processors. Thus the maximum oper-
ating speed reaches to 135 gigaflops, enabling the comple-
tion of the calibration process in several days.
[12] It should be noted that the population-evolution-

based global optimization method generally performs better
than the pure local search algorithm, because the global
optimization method can avoid becoming stuck at multiple
local optima in the parameter space [Duan et al., 1993]. A
recent development of the global optimization method
enables an efficient calibration process [Vrugt et al.,
2003]. However, it generally requires a computational cost
that is as much as 10 times that of the local search
algorithm, and is impractical to apply to the high-resolution
continental simulation in this study. Thus we use the GML
local searching algorithm, and show that it effectively

reduces the apparent biases by generalizing the tunable
parameters that satisfy the entire grid in the focused domain.
This can be achieved mostly after the initial few iterations of
local searching. We also emphasize the importance of
evaluating the functional errors based on the postcalibration
biases, as well as that this study does not aim to develop an
effective calibration method. This study examines the per-
formance of large-scale calibration in comparison with a
traditional limited-site calibration.

3. Tools and Data Sets

3.1. LSM: Colorado State University Unified Land
Model and Initialization

[13] The Colorado State University (CSU) Unified Land
Model, hereafter denoted as ULM, is the numerical land-
surface model used in this study. The basic numerical
schemes and code are extracted from the Community Land
Model (CLM) 2.0 [Oleson et al., 2004], the General
Energy and Mass Transfer Model (GEMTM) [Chen and
Coughenour, 1994], and the Land Ecosystem-Atmosphere
Feedback (LEAF) model [Walko et al., 2000]. Detailed soil-
vegetation-atmosphere transfer parameterizations are de-
scribed in the follow-up study [Matsui, 2006]. The model
includes a 10-layer soil, a two-component (sunlit and
shaded) vegetation canopy, and 1 to 13 subgrid tiles.
ULM has been developed within the NASA GSFC’s Land
Information System (LIS) that contains several different
LSMs and a wide variety of surface boundary conditions
and meteorological forcings. The offline simulations of
LSM can be tested anywhere on globe down to the urban-
resolving scale [Peters-Lidard et al., 2004].

3.2. Meteorological Forcing: North American Land
Data Assimilation System

[14] High-quality atmospheric forcing data sets are criti-
cal for an LSM calibration. This study uses the assimilated
forcing data sets derived by the multi-institutional North
American Land Data Assimilation System (NLDAS) project

Figure 1. Flow chart of the calibration system. The Part I study uses MODIS data only to compute the
objective function Y. The Part II study uses MODIS and FLUXNET simultaneously. Model-observation
comparison (MOC) processes are distributed in the parallel computing environment.
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[Cosgrove et al., 2003]. Hourly National Weather Service
Doppler radar-based (WSR-88D0) precipitation analyses
were used to disaggregate the daily National Center for
Environmental Prediction (NCEP) Climate Prediction Cen-
ter (CPC) gauge-based precipitation to produce an hourly
observation-based precipitation data set. Surface downwel-
ling solar and thermal radiation is derived from Geostation-
ary Operational Environmental Satellite (GOES) radiation
data. Surface air temperatures, water vapor mixing ratios,
horizontal winds, and surface pressures are derived from
NCEP Eta Data Assimilation System (EDAS) output fields.
These comprehensive forcing data sets are archived on a
0.125� grid box at every hour across the conterminous
United States (details given by Cosgrove et al. [2003]).
The NLDAS meteorological field is used to force the CSU
ULM on a 1-hour time step.

3.3. Satellite-Based Surface Observation: Initialization
for the CSU ULM

[15] A 0.25-degree subgrid LULC map was compiled
from the MODIS-based University of Maryland (UMD)
1-km LULC data [Hansen et al., 2000]. The UMD LULC
map contains 13 LULC classes. This study arranged the
minimum tile fraction of 0.13% in the 0.25� grid in order to
fully utilize the 1-km information of the MODIS LULC
data. Figure 2 shows the fractional coverage of UMD LULC
classes in the study area. Vegetation amount is represented
by a combination of green leaf area index (LAI), dead LAI,
and stem area index (SAI), all of them derived from

monthly composites of the MODIS 1-km LAI from Boston
University (hereafter denoted as BU LAI) [Myneni et al.,
2002]. The BU LAI product is exceptional in terms of the
sophisticated algorithm used and the extensive validation
work [Knyazikhin et al., 1998; Yang et al., 2006]. For LAI
retrievals, the BU LAI uses a six-biome classification
aggregated from the UMD LULC classes. Thus BU LAI
can be directly reassigned to the LAI in one of the 13 UMD
LULC classes. The 1-km LAI data are aggregated for each
UMD LULC classes on the 0.25� grid map for the initial-
ization of the ULM. Dead LAI is derived from the subtrac-
tion of green LAI in a previous month to a current month,
assuming that dead foliage falls within a month [Dorman
and Sellers 1989]. SAI is computed as 20% of maximum
LAI (Lmax) of each UMD LULC class, whereas for grass-
lands SAI is computed from the difference between the Lmax

and green LAI. An Lmax map was derived from 2000–2005
data sets of monthly BU LAI for each LULC type on each
grid. Because ULM uses the one-dimensional canopy radi-
ative transfer model, vegetation fraction is defined as the
canopy transmittance computed from the two-stream canopy
radiative transfer model (TCRT). This configuration can
avoid double counting of the surface reflectance ratio for
vegetation fraction and LAI retrievals [Matsui et al., 2005].

3.4. Satellite-Based Surface Observation:
MODIS Spectral Albedo

[16] TheMODIS instrument aboard the EOS Terra satellite
has been providing important information for land surface

Figure 2. Distribution of fractional coverage of UMD LULC classes: (a) evergreen needleleaf forests,
(b) evergreen broadleaf forests, (c) deciduous needleleaf forests, (d) deciduous broadleaf forests, (e) mixed
forests, (f) woodlands, (g) wooded grasslands, (h) closed, shrublands, (i) open shrublands, (j) grasslands,
(k) croplands, (l), barren, and (m) urban.
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properties with local overpass times around 10:30 AM/PM
[Justice et al., 2002]. Data quality of the MODIS land
product is significantly better than those of the Advanced
Very High Resolution Radiometer (AVHRR), because of
the sensor on-orbit calibration [Xiong et al., 2003], quality
flags, and validation projects [Morisette et al., 2002]. In
addition to the MODIS LULC and BU LAI map for
ULM’s initialization, we use the MODIS spatially com-
plete spectral surface albedo [Moody et al., 2005] in this
study and land-surface temperature (LST) [Wan et al.,
2002] in follow-up study for calibration and evaluation
of the performance of the offline ULM. This study does
not utilize other MODIS land products, such as surface
evaporation fraction and net primary production, since they
are derived from the surface spectral albedo, LAI, LULC
and LST data using their own assumed relationships. In
other words, the spectral albedo and LST are considered to
be the data more directly related to the MODIS-observed
radiance.
[17] The spatially complete snow-free MODIS albedo

data sets are used to calibrate leaf and soil optical properties
in ULM (see section 4). The MODIS albedo was generated
through a semi-empirical, kernel-driven linear bidirectional
reflectance distribution function (BRDF). This BRDF relies
on the 16-day composite of the atmospherically corrected
MODIS surface reflectance. The product of MODIS albedo
consists of local noon black-sky (for direct radiation) and
white-sky (for diffuse radiation) albedo [Schaaf et al.,
2002]. A comparison with field measurement from the
Surface Radiation Budget Network (SURFRAD) show that
the MODIS surface albedo generally meets an absolute
accuracy requirement of 0.02, with the root mean square
errors less than 0.018 [Jin et al., 2003]. In this study, this
uncertainty of MODIS albedo is not taken into account for
optimization process, but for the analysis of postcalibrated
and precalibrated model albedo biases. Since this study
intends to calibrate the vegetation and soil optical parame-
ters, snow-free filled MODIS albedo products are used. The
filled albedo product is a value-added product derived from
MODIS spectral albedo by filling the missing values
(including snow-covered pixels) or low-quality values
[Moody et al., 2005]. A temporal interpolation technique
imposes pixel-level and local regional ecosystem-dependent
phenological behavior onto retrieved pixel temporal data,
while regional unique pixel-level information is well main-
tained. The resulting snow-free spatially complete white-
and black-sky surface spectral albedo maps are archived
onto 1-min global map [Moody et al., 2005]. For calibration
work, 1-min MODIS data were aggregated onto the 0.25�-
grid map, if more than 95% of land pixels are available in a
0.25�-grid cell.
[18] This study uses the four different types of albedo:

surface black- and white-sky albedo at visible (VIS) and
near-infrared (NIR) bands, which corresponds to the direct
and diffuse albedo at the VIS and NIR bands computed
from the two-stream canopy radiative transfer model
(TCRT) [Dickinson, 1983; Sellers, 1985]. The calibration
of both black- and white-sky albedo is necessary for the
ULM, because their accuracies are directly linked to the
performance of sunlit- and shaded-canopy photosynthesis
and net radiation in the ULM (and is described in the
follow-up study [Matsui, 2006]). The effect of snow on

the surface albedo was mechanically removed (snow com-
ponent in the albedo was set to be zero in the numerical
code) in this study, because this study aims to calibrate plant
and soil optical properties against the snow-free MODIS
surface albedo. Snow albedo will be calibrated in a future
study.
[19] The PEST (and GML) algorithms are able to handle

an error covariance matrix in an estimation process by
incorporating grid-dependent (or value-dependent) weight-
ing functions. However, the error structures in the MODIS
surface albedo are only known as a flat value with a 2%
uncertainty level [Jin et al., 2003]. Thus the weight is
assigned as unity for all the MODIS albedo values in this
study.

4. Tunable Parameters and Calibration Periods

4.1. Two-Stream Canopy Radiative Transfer (TCRT)

[20] Surface spectral albedo is parameterized by the two-
stream canopy radiative transfer model (TCRT) [Dickinson,
1983; Sellers, 1985] and empirical soil albedo model [Idso
et al., 1975]. Soil albedo is used for the lower boundary
condition of TCRT for vegetated tiles, while it represents
the surface albedo for nonvegetated tiles (urban and bare-
grounds class). Albedos in all subgrid tiles are averaged on
the basis of the fraction of subgrid tile coverage (0 � 1) to
represent the total grid albedo.
[21] The TCRT model has been widely used in different

LSMs [e.g., Xue et al., 1991; Dickinson et al., 1993; Sellers
et al., 1996; Oleson et al., 2004], because of its accuracy and
computational efficiency in comparison with multistream or
three-dimensional canopy radiative transfer [Dickinson et al.,
1987]. The TCRT model also plays an important role
in computing the extinction coefficient of within-canopy
sunlight penetration that is used for the sunlit and shaded
components of canopy, photosynthetic capacity, and actually
photosynthesis rates in the ULM.
[22] Dickinson [1983] originally proposed to solve the

canopy radiative transfer via the two-stream approximation,

�m
dI"

dL
þ 1� wþ wb½ �I" � wbI# ¼ wmK mð Þbo exp �K mð ÞLð Þ

ð1Þ

�m
dI#

dL
þ 1� wþ wb½ �I# � wbI"

¼ wmK mð Þ 1� boð Þ exp �K mð ÞLð Þ; ð2Þ

where I" and I# are the upward and downward diffuse
radiative flux normalized by the incident flux; m is the
cosine of the solar zenith angle; K(m) is the optical depth of
direct beam per unit leaf (or stem) area, and K(m) = G(m)/m;
G(m) is the relative projected area of leaf (or stem) in the
direction of cos�1 m, and G(m) = f1 + f2m (where f1 = 0.5�
0.633cL � 0.33cL

2 and f2 = 0.877(1� 2f1)); cL is departure
of leaf angles from a random distribution; m is the average
inverse diffuse optical depth per unit leaf (or stem) area, and

m ¼
Z 1

0

m0=G m0ð Þ½ �dm0 ¼ 1

f2

1� f1

f2

ln
f1 þ f2

f1

� �� �
(where

m0 is the direction of scattered flux); w is the scattering
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coefficient, and w = r + t; r is leaf-stem albedo; t is the leaf-
stem transmittance; L is the cumulative leaf-stem area index;
b and bo are upscattering fraction for diffuse and direct
radiation, respectively. The upscattering parameter for
diffuse radiation is inferred from the analysis of Norman
and Jarvis [1975],

wb ¼ 0:5 � rþ t þ rþ tð Þ 1þ cl

2

� �2
" #

: ð3Þ

The upscattering fraction for direct radiation can be
analytically derived from equations (1) and (2) with the
assumption of single scattering (w ! 0) and semi-infinite
canopy (L ! 1) [Dickinson, 1983],

wbo ¼
1þ mK mð Þ
mK mð Þ a mð Þ; ð4Þ

where a(m) is single scattering albedo

a mð Þ ¼ w
2

G mð Þ
mf2 þ G mð Þ

� 1� mf1

mf2 þ G mð Þ ln
mf1 þ mf2 þ G mð Þ

mf1

� �� �
: ð5Þ

The analytic solution requires the inputs of the scattering
coefficients of leaf and stem (w = r + t), soil albedo (asoi, see
the next section), total LAI and SAI, departure of leaf angles
from a random distribution (cL), and the angle of the solar
radiation (m) (see the detailed analytic solution in work by
Sellers [1985] and Oleson et al. [2004]).
[23] In this study, tunable parameters include leaf reflec-

tance at the VIS and NIR bands (rleaf
VIS and rleaf

NIR, respectively),
dead leaf and stem reflectance for the VIS and NIR bands
(rstem

VIS and rstem
NIR , respectively), and the departure of leaf

angles from a random distribution (cL). The leaf-stem
element reflectance (r) are computed from the average of
leaf and stem reflectances on the basis of the weight of LAI
and SAI. The equations applied to the VIS and NIR leaf and
stem transmittance (t) are kept the same as the ratio
between the initial set of leaf reflectance and transmission
in order to prevent an unrealistic ratio between leaf reflec-
tance and transmittance due to an overfitting in the calibra-
tion process.

4.2. Soil Albedo

[24] Initial model experiment uses the global soil color
map, which contains nine classes of soil color type that have
values of dry and saturated (50% of dry value) soil albedo
[Reynolds et al., 1999]. This global soil map is not tunable,
and the footprint size is too large (2.5� � 2.5� grid size) to
represent the spatial variability of soil albedo on the grid
size used in this study. Thus we introduced a tunable soil
albedo map as a function of the log-normalized difference
of maximum leaf area index (Lmax) (see section 3.3) (LND).

LND ¼ ln Lmaxð Þ � ln 0:2ð Þ
ln 7ð Þ � ln 0:2ð Þ : ð6Þ

LND is closely related to the Normalized Difference
Vegetation Index (NDVI), because LAI is derived as an

exponential function of NDVI [Myneni et al., 2002]. The
values 0.2 and 7 are assigned as the minimum and
maximum LAI within the domain. The LND should have
a relationship with the topsoil organic fraction, because the
maximum LAI is a good indicator of plant production rate
and standardized soil respiration rate [Reichstein et al.,
2003]. It is also well known that higher topsoil organic
fraction tends to lower the soil albedo [e.g., Jensen 2000,
Figure 13–8]. Thus an empirical function is introduced to
relate LND to dry soil VIS and NIR albedo:

aVIS
dry ¼ 0:01

aVIS þ bVISLND
ð7Þ

aNIR
dry ¼ 0:01

aNIR þ bNIRLND
; ð8Þ

where aVIS, bVIS, aNIR, bNIR are tunable parameters, and
‘‘dry’’ and ‘‘sat’’ refer to the dry and saturated (defined by
the wetness fraction) soil moisture conditions. The proposed
equations and tunable parameters can fit any possible
pattern of expected relationship between the soil albedo and
LND. Saturated soil albedo (asat

VIS and asat
NIR) is assumed to be

50% of the dry albedo [Reynolds et al., 1999].
[25] Temporally varying soil albedo is derived from dry

and saturated soil albedo, wetness fraction (D) in top-soil
moisture [D = h/hmax where h is volumetric soil moisture
(m3 m�3) and hmax is porosity (m3 m�3)], and solar zenith
angle [Idso et al., 1975]. For dry soil (D < 0.3), soil albedo
is a sum of dry soil albedo and a correction factor of solar
zenith angle Af [For direct radiation: Af = {exp [0.003286 �
f1.5] � 1}/100. For diffuse radiation, Af is integrated for all
solar zenith angles for direct radiation (= 0.034).],

aVIS
soi ¼ aVIS

dry þ Af ð9Þ

aNIR
soi ¼ aNIR

dry þ 0:5Af: ð10Þ

For wet soil (D < 0.5), soil albedo is a sum of saturated soil
albedo and a correction factor of solar zenith angle

aVIS
soi ¼ aVIS

sat þ Af ð11Þ

aNIR
soi ¼ aNIR

sat þ 0:5Af: ð12Þ

For intermediate soil, (0.3 < D < 0.5), soil albedo is linearly
interpolated from values between saturated and dry albedo
(equations (9)–(12)),

aVIS
soi ¼ aVIS

dry �
D� 0:3ð Þ aVIS

dry � aVIS
sat

� 	
0:2

ð13Þ

aNIR
soi ¼ aNIR

dry �
D� 0:3ð Þ aNIR

dry � aNIR
sat

� 	
0:2

: ð14Þ
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4.3. Calibration Domain and Period

[26] The domain size covers approximately the contermi-
nous United States and northern Mexico (latitude of 25�N to
50�N, longitude of 125�W to 65�W) and a grid size of
0.25� � 0.25� (Figure 3). The domain and grid size are
configured close to those of NLDAS meteorological forc-
ing. The simulation domain comprises of 16,648 land grid
cells and total 61,883 subgrid tiles. The number of subgrid
tiles per grid cell is close to one over the croplands in the
Midwest, whereas it ranges up to 11 over the southeast and
western portion of the domain (Figure 3).
[27] While the MODIS spatially complete surface spectral

albedo data set is available from March 2000 to December
2004, we selected 3 months from 2000, March, July and
November, for the calibration due to computational time
constraints. These 3 months characterize the early develop-
ment, maturity and senescence, respectively, of the vegeta-
tion over United States (Figure 4). The sensitivity of soil
albedo (aVIS, bVIS, aNIR, bNIR) to the surface albedo can be
relatively large in March, since both LAI and SAI are small
over most the regions including the broadleaf and mixed
forested areas. The contribution of soil albedo is almost
negligible when the sum of LAI and SAI becomes greater
than three [Goudriaan, 1977]. Thus the contribution of leaf
reflectance (rleaf

VIS and rleaf
NIR) becomes large in July over the

eastern portion of domain and coastal regions in the western
United States Because of the senescence of the vegetation in
November, the contribution of the stem/dead leaf reflec-
tance (rstem

VIS and rstem
NIR ) becomes large over the deciduous

forests. Over the central United States, owing to small LAI,
soil albedo is the key parameter that controls the spectral
albedo throughout the seasons. Top-layer (0 � 2 cm) soil
moisture has different spatial distributions between March,
July, and November so that the parameterized soil albedo
could be calibrated as a function of soil moisture. Thus
multimonth albedo calibration is designed to balance the
calibrating weight of the optical properties between leaf,
stem/dead leaf, and soil surface. The total number of
calibrating points in the 3-month period is 175,800, includ-
ing black and white-sky albedo at the VIS and NIR bands.

The large number and variations of simulation points
enables a more robust calibration process than a limited-
site calibration does. Each monthly simulation is separately
performed for March, July, and November.

5. Results

5.1. Experiments Before Calibration

[28] Table 1 shows the initial set of tunable parameters for
each UMD LULC class. According to the correspondence
between UMD LULC and BU LAI vegetation classes, the
tunable parameters for surface albedo are the same between
evergreen needleleaf and deciduous needleleaf forests,
evergreen broadleaf and deciduous broadleaf forests, wood-
land and wooded grasslands, closed and open shrublands
(Table 1). In order to avoid unrealistic convergence, upper
and lower bounds are assigned for tunable parameters for
forests and savannas classes, respectively: rleafVIS (0.08, 0.2),
rleaf
NIR (0.3, 0.6), rstem

VIS (0.08, 0.3) and rstem
NIR (0.25, 0.7). Values

for the precalibration tunable parameters correspond to
those that are commonly used in the community [Bonan
et al., 2002; Dorman and Sellers, 1989], and are displayed
in Table 1. cL of savannas, crops and shrubs are set to be
zero (random distribution). The precalibration ULM simu-
lation used the existing global soil color map [Reynolds et
al., 1999].
[29] Figure 5a shows the spatial map of differences in

local-noon surface spectral albedo between the MODIS
observations and the precalibration ULM (i.e., MODIS �
ULM). In March and November, ULM overestimates the
VIS albedo over the central United States, where LAI is
small. These biases are similar between black and white VIS
albedo, but appear to be slightly larger in white albedo.
Large errors appear at the NIR band. The largest overesti-
mation of ULM exists in the central United States for all the
months. In July, ULM underestimates the black NIR albedo
across the Appalachian Mountains, Midwest, and the west-
ern edge of U.S. ULM overestimates the white NIR albedo
over the most of the domain in all the months.
[30] Figure 5b shows descriptive statistics (m: mean,

s: standard deviation, and rmse: root-mean-square error) and
scatterplots of the errors (MODIS � ULM) in the local-noon
albedo (� 100) for the tile fraction (0.8 � 1.0) of each
LULC type. Black and white sky VIS albedos show small
scatter (s < 2.0) and biases (m < 2.0) of errors in all forest
classes, savannas, and croplands, while large variations and
biases are observed in shrublands, grasslands, bare ground,
and urban. The ULM overestimates the black and white VIS
albedo in shrublands, grasslands and urban. The overesti-
mation of VIS albedo in shrublands and grasslands corre-
sponds to the blue-shaded regions over the central U.S in
March and November 2000 (Figure 5a). The ULM also
slightly overestimates the white VIS albedo in needleleaf
forests, broadleaf forests, and mixed forests, but this is
almost within the uncertainty ranges (<2.0) in the opera-
tional MODIS albedo product (Jin 2003). Strong variations
and biases exist in all the LULC classes for NIR albedo. The
ULM tends to underestimate the black NIR albedo in
needleleaf forests, broadleaf forests and savannas, which
corresponds to the red regions of black NIR albedo in July
(Figure 5a). The ULM strongly overestimates (m < �5.0)
NIR albedos in mixed forests, grasslands, croplands and

Figure 3. Number of subgrid tiles per modeled grid cell.
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urban classes. Those overestimations characterize the exten-
sive blue area of white NIR albedo in Figure 5a. An
interesting pattern of albedo bias in the ULM is that biases
in white sky albedo are larger than those in black sky albedo.
This is consistent with the finding from Wang et al. [2004],
and can be explained by the fact that a difference between
black- and white-sky albedo in the ULM (i.e., TCRT) is

larger than that in the MODIS albedo. This will be further
discussed in the following section.

5.2. First Calibration Experiment

[31] The calibration process takes approximately five
iterations to achieve the convergence (approximately
300 model runs). Most of the errors were reduced after

Table 1. Tunable Parameters of Each LULC Class Before the Calibrationa

UMD Class Number
and Description BU LAI rleaf

VIS rleaf
NIR rstem

VIS rstem
NIR cL

1. evergreen needleleaf
forests

3. deciduous needleleaf
forests

needleleaf
forests

0.070 0.350 0.160 0.380 0.00

2. evergreen broadleaf
forests

4. deciduous broadleaf
forests

broadleaf
forests

0.100 0.450 0.160 0.380 0.250

5. mixed forests . . . 0.100 0.450 0.160 0.380 0.250
6. woodlands
7. wooded grasslands

savannas 0.070 0.350 0.160 0.380 0.00

8. closed shrublands
9. open shrublands

shrubs 0.100 0.450 0.160 0.380 0.00

10. grasslands grasses/cereal
crops

0.110 0.580 0.360 0.580 �0.30

11. croplands broadleaf
crops

0.110 0.580 0.160 0.380 0.00

aPrecalibration soil albedo uses the global soil albedo map [Reynolds et al., 1999].

Figure 4. Monthly mean of leaf area index (LAI), dead leaf and stem area index (SAI), top-layer
(0 � 2 cm) soil moisture (kg m�2).
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the first and second iterations. The entire calibration process
results in the final Y of 1.12 � 106, which is 18.3% of Y in
the experiment before the calibration (Y = 6.12 � 106).
Table 2 shows the resultant parameters for each LULC class
and soil albedo parameterization. Maximum relative
changes of VIS leaf reflectance (rleaf

VIS) occur in broadleaf
and mixed forest. Broadleaf forest increased about 50% of
the initial rleaf

VIS until at the high bound (0.15), while mixed

forest decreased about half of the initial rleaf
VIS. In NIR leaf

reflectance the absolute changes are quite large (�0.14),
although the relative changes are small. rleaf

NIR was decreased
in the mixed forests, shrublands, grasslands, and croplands,
while it was increased in the needleleaf forests, broadleaf
forests, and savannas. VIS stem reflectance (rstemVIS ) shows a
quite variety of changes. All the forest classes decrease the
rstem
VIS near the low bound (0.08). Shrublands increased by

Figure 5. (a) Spatial map of precalibration differences (MODIS � ULM) in spectral surface black and
white albedos (� 100). Note that VIS and NIR albedo use different scales. (b) Scatterplots and statistics
(m, mean; s, standard deviation; and rmse, root mean square error) of the precalibration difference
(MODIS � ULM) in spectral surface black and white albedo (� 100). The x axis represents the fraction
(0.8 � 1.0) of each landcover class. VIS and NIR albedo use different scales in the y axis.
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about 50% of the initial rstem
VIS , while grasslands decreased by

half of the initial rstem
VIS . NIR stem reflectance (rstem

NIR ) sub-
stantially increased in the broadleaf forest (�63%), savan-
nas, and shrublands, while it decreased in the grasslands
considerably (38.3%). The convergence of the departure of
leaf angles from a random distribution (cL) appears to be
unusual in some classes. Broadleaf forests were expected to
range from the random to the horizontally oriented distri-
bution; however, it decreased cL to the lower bound (�0.4:
vertically oriented leaf). Grasslands were expected to range
from the random to the vertically oriented distribution;
however, it increased cL to the higher bound (0.6: horizon-
tal leaf). The mixed forests and croplands also increased cL

to the higher bound (0.6: horizontal leaf). This unrealistic
cL causes a problem in predicting the daytime diurnal cycle
of within-canopy sunlight penetration and consequently the
sunlit and shaded components of photosynthesis and net
radiation. For example, a canopy with completely horizon-
tally oriented leaves has a constant rate of sunlight pene-
tration during daytime. This tends to overestimate the
sunlight penetration (sunlit component of canopy) for local
morning/evening time, while underestimating the sunlight
penetration around local noon.
[32] Figure 6a shows the spatial map of differences

(MODIS � ULM) in surface spectral albedo between the
postcalibration ULM and the MODIS. The calibration
process significantly reduced the biases of ULM albedo
over the central United States in the VIS band, and also
reduced the biases of NIR albedo in most of the domain. In
the VIS band, the underestimations of the ULM albedo (red
spots) appear to be in the area near the Great Salt Lake in
Utah and barren land in central Mexico.
[33] Figure 6b shows the statistics and scatterplots of

biases after calibration for each LULC class. In shrublands
and grasslands, the mean values of the errors in VIS albedo
range within the uncertainty level of the MODIS product
[Jin et al., 2003]. In addition, the spread (standard devia-
tion) of errors in grasslands becomes about 50% smaller
than those of the precalibration: 1.41 versus 3.17 for black-

sky albedo and 1.46 versus 2.69 for white-sky albedo
(Figure 5b). This means that the new adjustable soil albedo
parameterization together with tuned vegetation optical
parameters improved the spatial representation of surface
albedo in the ULM. On the other hand, errors in bare and
urban-buildup classes have not been improved in terms of
the RMSE, because the total grid number of these classes in
the domain is too small to account for in the objective
function. In addition, in urban regions, LAI is arbitrarily
fixed to zero in the ULM. This might be unrealistic in the
urban and suburban regions, where urban buildup and
sidewalk trees coexist. Therefore a manual calibration is
currently needed for the urban pixels.
[34] In the NIR band, biases (absolute values of mean

error) in black-sky and white-sky albedo are decreased after
the calibration for all LULC classes. However, black-sky
NIR albedo in ULM appears to be slightly underestimated,
because the biases of all the classes (excepting urban) of the
albedo are positive, while the white NIR albedo in the ULM
appears to be less biased. This means that the difference
between black and white albedo in the ULM is still slightly
larger than that in the MODIS albedo even after the
calibration. This bias cannot be fixed by modulating the
tunable parameters; it appears to be a functional bias, which
will be investigated in the following section.

5.3. Second Calibration Experiment

[35] In order to investigate the functional bias of the
TRCT function, we plot the diffuse- and direct-radiation
upscattering fraction (wb and wbo defined in equations (3)
and (4)) for three different values of cL (�0.4, 0.0, and 0.6)
as a function of cosine of solar zenith angle in Figure 7a.
The diffuse-radiation upscattering fractions are larger than
the direct-radiation upscattering parameter for any solar
zenith angle. This is not possible, because the diffuse
radiation is an integration of all angles of the direct
radiation; i.e., diffuse-radiation upscattering fraction should
be within the range of the direct-radiation upscattering
fraction. We found that this is due to the fact that the

Table 2. Tunable Parameters of Each LULC Class After the Initial Calibrationa

UMD Class Number
and Description BU LAI rleaf

VIS rleaf
NIR rstem

VIS rstem
NIR cL

1. evergreen needleleaf
forests

3. deciduous needleleaf
forests

needleleaf
forests

0.047 0.376 0.094 0.342 �0.208

2. evergreen broadleaf
forests

4. deciduous broadleaf
forests

broadleaf
forests

0.15 0.516 0.096 0.426 �0.400

5. mixed forests . . . 0.054 0.338 0.080 0.292 0.600
6. woodlands
7. wooded grasslands

savannas 0.074 0.420 0.234 0.551 �0.017

8. closed shrublands
9. open shrublands

shrubs 0.081 0.329 0.327 0.622 �0.240

10. grasslands grasses/cereal
crops

0.132 0.44 0.158 0.364 0.600

11. croplands broadleaf
crops

0.095 0.477 0.149 0.321 0.600

aIn boldface are the parameters that reach the upper or lower boundaries. Soil parameters are aVIS = 0.0524, bVIS = 0.070,
aNIR = 0.0285, and bNIR = 0.0263.
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definitions of the upscattering fractions in equation (3) and
(4) are taken from different sources. The wb is acquired
from the analysis of Norman and Jarvis [1975], while wbo

is derived from the analytic solution with the assumption of
single scattering and semi-infinite canopy [Dickinson,
1983].
[36] Thus the definition of upscattering fraction for dif-

fuse radiation is modified so as to be consistent with that
for direct radiation. Numerically, we average the direct-

radiation upscattering fraction for nine sky angles similar to
the canopy model of Goudriaan [1977],

wb ¼

X9
i¼1

1þ mK mið Þ
mK mið Þ a mið Þ

9
; where mi ¼ cos i� 1ð Þ � 10þ 5½ �:

ð15Þ

Figure 6. (a) Same as Figure 5a, but after the initial calibration. (b) Same as Figure 5b, but after the
initial calibration.
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Figure 7a shows that a new diffuse-radiation upscattering
function together with the original value. It is now within
the ranges of the direct-radiation upscattering function, and
it is physically reasonable. We have computed the albedo
for diffuse radiation by using the original formula
(equation (3)) and the new formula (equation (15)) (LAI =
3, r = 0.1, t = 0.05, asoi = 0.1). The new function reduces the
white albedo from the original formulae (Figure 7b). For a
cosine of solar zenith angle close to the unity, the differences
between black and white sky albedos become smaller with
the new functions. This new function does not slow down
the computational time of the TCRT model for a long-term
integration, because the modified diffuse-radiation upscat-
tering fraction (equation (15)) needs to be computed once a
day, and it is kept in the computer memory.

[37] A second calibration was implemented from the
lessons learned from the first calibration (1) fixed the
functional error in diffuse-radiation upscattering fraction,
(2) manually fixed the surface albedo for the urban class
(0.06 (VIS) and 0.20 (NIR) based on the mean albedo of the
urban pixels from the MODIS, and (3) fixed cL as the initial
value (not calibrated) to prevent the unrealistic diurnal cycle
of within-canopy sunlight penetration. The calibration pro-
cess is completed with these conditions, and it takes approx-
imately the same number of time steps to reach the final Y of
1.24 � 106, which is comparable to that of the initial
calibration (1.12 � 106), and 20.2% of Y in the experiment
before the calibration (Y = 6.12 � 106).
[38] Table 3 shows the final set of the tuned parameters.

VIS leaf and stem reflectance (rleaf
VIS and rstem

VIS ) do not diverge

Figure 7. Upscattering fractions and albedo computed from TCRT (LAI = 3, r = 0.1, t = 0.05, asoi =
0.1). (a) Upscattering fraction for diffuse-radiation (solid thin line), direct radiation (solid thick line), and
modified version of diffuse radiation (dashed line). (b) Surface albedo for diffuse radiation (solid thin
line), direct radiation (solid thick line), and modified version of diffuse radiation (dashed line).

Table 3. Tunable Parameters of Each LULC Class After the Second Calibrationa

UMD Class Number
and Description BU LAI rleaf

VIS rleaf
NIR rstem

VIS rstem
NIR cL

1. evergreen needleleaf
forests

3. deciduous needleleaf
forests

needleleaf
forests

0.061 0.418 0.135 0.357 0.00

2. evergreen broadleaf
forests

4. deciduous broadleaf
forests

broadleaf
forests

0.113 0.517 0.150 0.457 0.250

5. mixed forests . . . 0.070 0.388 0.131 0.386 0.250
6. woodlands
7. wooded grasslands

savannas 0.088 0.494 0.217 0.588 0.00

8. closed shrublands
9. open shrublands

shrubs 0.107 0.355 0.182 0.667 0.00

10. grasslands grasses/cereal
crops

0.124 0.539 0.193 0.380 �0.30

11. croplands broadleaf crops 0.116 0.566 0.156 0.320 0.00
aIn boldface are the parameters that are invariant during the calibration. Soil parameters are aVIS = 0.0543, bVIS = 0.0529,

aNIR = 0.0279, and bNIR = 0.0236.
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from the initial value in comparison with the first calibration
results in Table 2. NIR leaf and stem reflectance (rleaf

NIR and
rstem
NIR ) are changed notably from the initial set of values in

Table 1. The highest NIR leaf reflectance is cropland
(0.566), and the lowest is shrubland (0.355). The highest
NIR stem reflectance is shrubland (0.667), while the lowest
is cropland (0.320). It seams that values between the stem
and leaf reflectance in shrubland and cropland compensated
each other during the calibration process.
[39] Figure 8a shows the spatial map of differences

(MODIS � ULM) in surface spectral albedo between the

second calibrated ULM and MODIS. Similar to the map
after the initial calibration, the additional calibration process
and manual correction of the function in the TCRT model
considerably reduced the biases of ULM albedo. Again, in
the VIS band, the underestimation of the ULM albedo (red
spots) appears in the same places as before.
[40] Figure 8b shows the statistics and scatterplots of

biases for each LULC class. VIS black- and white-sky
albedo in the three forest classes virtually have no biases,
and two standard deviations are mostly within the uncer-
tainty ranges (<2.) of the operational MODIS albedo

Figure 8. (a) Same as Figure 5a, but after the manual correction and second calibration. (b) Same as
Figure 5b, but the manual correction and second calibration.
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product [Jin et al., 2003]. Characteristics of biases of VIS
black- and white albedo for the other LULC classes are
quite similar to those in the first calibration experiments.
Although standard deviations are slightly high, the mean
biases of the NIR black- and white-sky albedo are also
improved (<2.) from the precalibration and the first calibra-
tion experiments, except for bare ground. By manually
fixing the albedo, the biases and standard deviation of all
types of albedo, including the urban class, are improved in
comparison with the precalibration and first calibration
experiments.
[41] Finally, Figure 9 shows the fitted soil albedo values

as a function of LND with a set of tuned parameters (aVIS =
0.0543, bVIS = 0.0529, aNIR = 0.0279, bNIR = 0.0236). Both
VIS and NIR albedos gradually decrease as LND decreases.
The calibrated soil VIS albedo ranges from 0.18 to 0.09,
whereas the Reynolds’ soil color map ranges from 0.24 to

0.10. The calibrated soil NIR albedo ranges from 0.36 to
0.19, whereas the Reynolds’ soil color map ranges from
0.48 to 0.20. For both VIS and NIR band, the lowest values
of albedo are very similar between the calibrated soil albedo
and Reynolds’ map. Soil VIS albedo is 50% of the NIR
albedo, which is exactly the same ratio that Reynolds’ soil
albedo map specifies. Overall, the tunable albedo ranges are
within realistic values compared to Reynolds’ map, while
minimizing the difference between the simulated and
observed albedo.

5.4. Validation of Calibrated Albedo in Different
Years and Seasons

[42] This section validates the tuned surface albedo in the
ULM for March, July, and November of 2001 to 2004, using
precalibrated and postcalibrated optical parameters (Table 1
and Table 3). The precalibrated and postcalibrated albedos
are compared in terms of the objective function (Y) - the sum
of squared errors between model and observations.
[43] Figure 10a shows the objective functions for black-

and white-sky VIS and NIR albedo. Precalibration has far
greater values of total objective function in all years than
those of the postcalibrated experiments. The largest com-
ponent of the errors is attributed to the white-sky NIR
albedo in the precalibration experiments [cf. Wang et al.,
2004]. It is clear that the manual correction of the functional
error and the calibration process significantly reduced the
objective function not only in the calibrated year (2000) but
also in the noncalibrated years (2001 � 2004). For all years,
Y of the postcalibration experiments are approximately 20%
of that of precalibration experiment.
[44] In addition, ULM was applied in the three seasons

between the calibrated months in 2000: April–May–June
(AMJ),August–September–October (ASO), andDecember–
January–February (DJF), with precalibration and postcali-
bration parameters (Table 1 and Table 3). Figure 10b exhibits
the corresponding objective functions for precalibration and
postcalibration experiments. Precalibration experiments show
again high values of the objective function in all seasons,
with highest values in DJF, an indication of the errors in the

Figure 9. Dry and saturated soil albedo as a function of
LND (see definition in section 4.2) with a set of tuned
parameters (aVIS = 0.0543, bVIS = 0.0529, aNIR = 0.0279,
bNIR = 0.0236).

Figure 10. (a) Objective function (Y) of spectral surface albedo for precalibration and postcalibration
simulations for March, July, November in 2000 (calibrated year), and 2001 � 2004 (validation years).
(b) Objective function (Y) of spectral surface albedo for precalibration and postcalibration simulations for
AMJ (April–May–June), ASO (August–September–October), and DJF (December–January–February)
in 2000. January and February correspond to 2001.
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stem and soil optical parameters. The postcalibration experi-
ments show small values of the objective functions, partic-
ularly in warm seasons, AMJ and ASO. Similar to the
precalibration experiments, the objective function in DJF
appears to be larger than those in AMJ and ASO. This study
used the spatially continuous snow-free albedo, which inter-
polate the missing or snow-covered pixel [Moody et al.,
2005]. In DJF, the snow cover is often extensive in the
northern portion of United States, and the effect on surface
albedo was unnaturally removed during the calibration pro-
cess. However, the soil moisture is usually saturated beneath
the snow in ULM, and it increases the discrepancy from the
interpolated MODIS albedo in DJF (not shown here).
[45] While the calibrations are conducted in three separate

months in 2000, the set of calibrated parameters also
improved the representation of albedo in ULM for the
noncalibrated period at the same level. This suggests that
(1) interannual variability of albedo is lower than seasonal
variability [Wang et al., 2004] and (2) multiseason calibra-
tion successfully generalize the set of tunable coefficients,
while avoiding the overfitting of particular components of
the optical parameters.

5.5. Local- and Large-Scale Calibration

[46] This section compares the postcalibrated albedo with
those calibrated in the limited-time period as well as for
limited grid points. The different methods used for calibrat-
ing albedos are compared in terms of the objective function
(Y). Four additional calibrations were conducted. The first
experiment is to calibrate a set of tunable parameters only in
July, which represent the limited-time calibration (denoted
as July). The second, third, and forth experiments use the
model grid of only every 2, 4, and 8 degrees in latitude and
longitude direction (denoted as 2deg, 4deg, and 8deg,
respectively). For example, because this study uses a
0.25� grid, 2deg experiment uses approximately (.25/2)2 =
1/64 of the total grid points that are in the post experiment
(= 175,800). Thus the 8deg experiment uses the least grid
points [(.25�/8�)2 = 1/1024].
[47] These experiments derived four different sets of

tunable parameters for the given number of grid points

and periods. These derived sets of tunable parameters are
tested for the entire domain (every grid point for a total of
175,800 grid points) in a similar manner as in section 5.4.
Figure 11 shows the objective functions of the limited-time
and limited-site calibrations. The July experiment has the
higher Y (1.93 � 106) than that of the post experiment
(1.24 � 106) in a March–June–November period of 2000.
The July experiment shows a nearly identical Y in the AMJ
period, a slightly higher Y in the ASO period, and is twice
higher in the DJF period in comparison with that of the post
experiment. This clearly shows that the limited-time cali-
bration tends to localize a set of tunable parameters for the
limited calibration period. The 2deg, 4deg, and 8deg experi-
ments show the trend of Y, which are gradually increased
from the 2deg to 8deg experiments. This suggests that a
fewer number of the calibrated grid points tends to localize
the tunable parameters for the calibrated points.
[48] Although the localizing tendency is shown, the

limited-site calibration even reduces the Y significantly
from the post experiment (Figure 10) and it reduces the
wall-clock time of calibration time linearly with respect to
the grid number. Thus there could be an optimal grid-
volume reduction method for the continental calibration.
For example, the EOF technique can be used to derive the
grids and periods with the most representative combination
of LAI, SAI and top-soil moisture for the large-scale
domain. Together with a parallel simulation environment,
this could considerably reduce the wall-clock time of the
continental-scale calibration process, while the detailed
method can be examined for future study.

5.6. Sensitivity of Albedo Calibration to the Surface
Heat Flux and Temperature

[49] The sensitivity of the simulated surface energy budget
to the albedo calibration was addressed using precalibrated
and postcalibrated surface albedo for the June–July–August
period in 2000. The initial conditions and meteorological
forcings are set identically between the experiments.
Figure 12 shows the difference (postcalibration � precali-
bration) at 18:00 Z (around local noon time) of net shortwave
radiation, available energy (sensible heat flux + latent heat

Figure 11. The objective functions of limited-site and limited-time calibrations are compared with
continental-scale calibration.
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flux), and radiative temperature averaged over the simulated
period. Overall, the simulated surface energy budget has
been changed significantly over the less-vegetated regions
after the calibration. The largest difference exists over
southwest United States and Mexico, particularly over Great
Basin, Chihuahuan Desert and Baja California. In those
regions, net shortwave radiation and available energy in-
creased by more than 40 Wm�2 and radiative temperature
by more than 1.6 K in the postcalibration experiments. On
the other hand, net shortwave radiation, available energy,
and radiative temperature were slightly decreased over the
Appalachian Mountains, where the dominant LULC class is
the broadleaf forest. The postcalibration simulation tends to
improve the performance of the model LST in comparison
with MODIS LST (also discussed in the follow-up study
[Matsui, 2006]). However, this improvement simultaneously
depends on other parameters related to the function of
surface heat flux in the ULM. Thus we should note that
the improvement of simulated albedo might not improve
overall performance for different LSMs.

6. Summaries and Discussions

[50] We established the continental-scale multiobservation
calibration system for Colorado State University (CSU)
unified land model (ULM) in the Land Information System
(LIS) coupled with the Parameter Estimation (PEST) model.
The simulation domain comprised 16,648 land grid points
and a total 61,883 subgrid tiles over the conterminous United
States (CONUS), which enabled a more robust calibration
process than a limited-site calibration does. This paper aimed
to calibrate the vegetation and soil optical properties by
comparing model- and satellite-derived surface spectral
albedos. The four different types of MODIS surface albedo,
including black- and white-sky albedo for the visible (VIS)
and near-infrared (NIR) bands were compared with the
corresponding direct- and diffuse-radiation albedos for
the VIS and NIR bands from the two-stream canopy
radiative transfer (TCRT) and soil albedo model. Leaf
and stem reflectances (rleaf

VIS, rleaf
NIR, rstem

VIS , and rstem
NIR ), the

departure of leaf angles from a random distribution (cL)
for seven bundled LULC classes, in addition to the four
parameters (aVIS, bVIS, aNIR, and bNIR) for new soil albedo

parameterization were selected and calibrated via the
Gauss-Marquardt-Levenberg (GML) algorithm. A new tun-
able soil albedo parameterization was developed as a func-
tion of log-normalized difference Lmax (LND). Three months
from 2000, March, July and November, were selected for the
calibration, because these characterize the early develop-
ment, maturity and senescence, respectively, of the vegeta-
tion over United States.
[51] Although the ULM initialization used a consistent set

of the MODIS LAI and LULC, it was not guaranteed that
the ULM would predict surface spectral albedos consistent
with those observed from the MODIS radiances. ULM also
showed that the experiment with the original set of param-
eters slightly overestimated the VIS black- and white-sky
surface albedo in shrublands and grasslands over the central
United States, and strongly overestimated the NIR black-
and white-sky albedo in the most of the LULC classes. The
strong biases of VIS surface albedo in shrublands and
grasslands are probably due to fact that the analytic solution
of the original TCRT was derived under an assumption of
semi-infinite canopy [Dickinson, 1983], which is an inap-
propriate assumption for less-vegetated LULC classes.
[52] The GML calibration process takes approximately

five iterations to achieve the convergence. The entire
calibration process reduced the Y (a weighted sum of
squared deviation between model and observation) by
18.3% of Y before the calibration (Y = 6.12 � 106). After
the initial calibration, ULM with a set of tuned optical
parameters significantly reduced the biases in the VIS
albedo for shrublands and grasslands over the central United
States and the biases appeared in NIR albedo for most of the
LULC classes. The lowered standard deviations of errors
suggest that the new adjustable soil albedo parameterization
together with the tuned vegetation optical parameters im-
proved the spatial representation of surface albedo in ULM
in comparison with MODIS albedo.
[53] Multiobservation (black- and white-sky albedo) cal-

ibration revealed that the upscattering fraction for diffuse
radiation was too high and physically unfeasible. Thus we
integrated the direct-radiation upscattering fraction of nine
sky angles for the diffuse-radiation upscattering fraction,
which solved the issue (2) raised after the initial calibration.
A second calibration was implemented from the lessons

Figure 12. Sensitivity to albedo calibration (POST-EXP � PRE-EXP) of net shortwave radiation
(SWNET), available energy (QLE + QH), and radiative temperature (RadT) averaged over June–July–
August 2000.
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learned from the first calibration: (1) the functional error in
diffuse-radiation upscattering fraction was fixed, (2) manu-
ally fixed the surface albedo for the urban class (0.06 for
VIS and 0.20 for NIR based on the mean albedo of urban
pixel from the MODIS), and (3) cL was retained as the
initial value (not calibrated). This second calibration show
an overall improvement of albedo from the precalibration
and initial calibration experiments, while retaining the set of
more realistic values of parameters than those from after the
initial calibration process.
[54] Although the calibrations were conducted only in

March, July and November in 2000, the set of calibrated
parameters also improved the representation of albedo in
ULM for noncalibrated periods at the same level. This
demonstrates the robustness of the albedo calibration period
designed in this study. On the other hand, another validation
shows that the limited-time and limited-site calibration
tends to localize sets of tunable parameters for a given
calibrated periods and time. Some may inquire on the
justification of tuned leaf/stem optical properties, which
deviate from the literature-reviewed values [Dorman and
Sellers, 1989; Bonan et al., 2002]. This can be explained as
follows. Usually optical properties are adjusted according to
the simplification of a radiative transfer scheme. For exam-
ple, atmospheric one-dimensional two-stream radiative
transfer modifies the atmospheric optical properties through
the delta adjustment in order to account for the forward
scattering peak [e.g., Joseph et al., 1976]. Similarly, this
calibration process can be judged as the adjustment of leaf/
stem optical properties so as to account for the several
assumptions in the TCRT, including two-stream intensity,
isotropic scattering, single-scattering assumption, plane-
parallel canopy, semi-infinite canopy, and linear interpolation
between the leaf and stem optical properties [Dickinson,
1983; Sellers, 1985]. The derived set of optical parameters
can be applied to other model as the default values as long as
using the same set of the parameterization and the MODIS
products.
[55] It is worthwhile to refer to the study described by

Tian et al. [2004]. They reduced the biases of albedo in
CLM2 with given vegetation optical properties by incorpo-
rating the new 500m MODIS Vegetation Continuous Fields
(VCF) [Hansen et al., 2000] and consistent MODIS BU
LAI, and Plant Functional Types LULC maps. However, a
note of caution about this approach needs to be mentioned
here. BU LAI uses the specific LULC class (bundled UMD
type LULC) to derive the 1-km LAI map, while Hansen et
al. use their own algorithm to derive the fraction of forests
and grasslands in the VCF. As Myneni et al. [2002] has
shown, LAI biases become large if the LULC category is
misclassified between forests and grasslands. Therefore the
use of both BU LAI and VCF would be appropriate, only if
the BU LAI algorithm consistently uses VCF for the
derivation of LAI. The VCF and LANDSAT-level high-
resolution LULC sets will be eventually required to cor-
rectly classify the LULC and to accurately derive the LAI
and surface albedo.
[56] The sensitivity of simulated the surface energy

budget to albedo calibration was addressed using precali-
bration and postcalibrated surface albedos for summer
(June–July–August) 2000. The largest difference occurred
over southwest United States and Mexico, particularly over

Great Basin, Chihuahuan Desert and Baja California. In
those regions, net shortwave radiation and available in-
creased by more than 40 Wm�2 and radiative temperature
by more than 1.6 K in the postcalibrated experiment. This
suggests that these biases could have a prominent effect on
the regional/global climate simulations.
[57] Thus we conclude the following.
[58] 1. Continental-scale calibration improved the model

representation of surface albedo over the entire domain in
comparison with the operational MODIS snow-free albedo,
although the set of the tuned parameters might not be the
global optima.
[59] 2. Continental-scale calibration suggests the func-

tional error in the model. We found the errors in the
formulation of diffuse-radiation upscattering fraction in
the original TCRT model. The model must be corrected to
reduce the overestimation of white-sky albedo. Our sug-
gested formula would be easy to incorporate into different
models that use TCRT.
[60] 3. The leaf angle distribution function cannot be

calibrated probably because of the fundamental difference
between the formulations used in the TCRT model the
MODIS operational albedo products.
[61] 4. The albedo in ULM was improved for not only the

calibrated period but also noncalibrated years and seasons.
The choice of calibration periods must be short for compu-
tational efficiency, but needs to have as large a variation in
the calibrating parameters as possible for the representative-
ness of the tuning parameters. This enables an efficient,
robust calibration process.
[62] 5. Errors in the surface albedo directly control the

surface energy and mass flux in the land surface model
(LSM). Because all LSMs use a different set of parameter-
izations and data sets, albedo calibration over the simulated
domain must occur first.
[63] The continental-scale calibration that we propose

need to be developed further. There are a variety of data
to be incorporated in the optimization processes, and the
optimization algorithm should be improved. Once, more
detailed error structures in the MODIS and other satellite
land products are known, the covariance of observation
errors can be utilized in the optimization process. Addi-
tional validation studies for the MODIS products should
reveal such detailed error structures [Morisette et al.,
2002]. Although this study uses the simple local search
(GML) algorithm for the optimization process, a population-
evolution-based global optimization method could ideally be
applied to the continental-scale calibration process. This can
be achieved by either using a super computing environment
or by reducing the number of land-grid points via empirical
orthogonal functions or singular value decomposition tech-
niques. Likely, these updates will be presented and published
elsewhere in the near future.
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