
Scanning multichannel microwave radiometer snow water

equivalent assimilation

Jiarui Dong,1,2 Jeffrey P. Walker,3 Paul R. Houser,4 and Chaojiao Sun2,5

Received 16 February 2006; revised 7 December 2006; accepted 27 December 2006; published 10 April 2007.

[1] Accurate prediction of snowpack status is important for a range of environmental
applications, yet model estimates are typically poor and in situ measurement coverage is
inadequate. Moreover, remote sensing estimates are spatially and temporally limited due
to complicating effects, including distance to open water, presence of wet snow, and
presence of thick snow. However, through assimilation of remote sensing estimates into a
land surface model, it is possible to capitalize on the strengths of both approaches. In order
to achieve this, reliable estimates of the uncertainty in both remotely sensed and model
simulated snow water equivalent (SWE) estimates are critical. For practical application,
the remotely sensed SWE retrieval error is prescribed with a spatially constant but monthly
varying value, with data omitted for (1) locations closer than 200 km to significant open
water, (2) times and locations with model-predicted presence of liquid water in the
snowpack, and (3) model SWE estimates greater than 100 mm. The model error is
estimated using standard error propagation with a calibrated spatially and temporally
constant model error contribution. A series of tests have been performed to assess the
assimilation algorithm performance. Multiyear model simulations with and without
remotely sensed SWE assimilation are presented and evaluated with in situ SWE
observations. The SWE estimates from assimilation were found to be superior to both the
model simulation and remotely sensed estimates alone, except when model SWE estimates
rapidly and erroneously crossed the 100-mm SWE cutoff early in the snow season.
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1. Introduction

[2] Previous modeling and observational studies have
demonstrated that snow is an important climatic driver
through the surface albedo’s role in energy and water
budgets [e.g., Yeh et al., 1983; Namias, 1985; Barnett
et al., 1989; Yang et al., 1999, 2001; Cohen and Entekhabi,
1999]. Models have an advantage over in situ observations
in such climatic studies as they provide global estimates of
the spatial and temporal variation in snowpack conditions,
while in situ observations are limited in both space and
time. Moreover, models are able to quantitatively describe
the relationship between snowpack status and water and

energy balance, enabling the climate system feedback to be
fully explored. However, models are also limited by a
number of factors. For example, successful snow evolution
prediction is challenging due to immature knowledge of
snow evolution physics, simplifications in model paramete-
rizations, high spatial and temporal variability of snow
cover, and errors in the model forcing data [e.g., Lynch-
Stieglitz, 1994; Rodell et al., 2004].
[3] Space-borne passive microwave sensors provide an

alternate capability to monitor global-scale snow evolution,
yielding 1- to 3-day repeat snow water equivalent (SWE)
measurements at approximately 25- to 50-km resolution.
Such sensors include the scanning multichannel microwave
radiometer (SMMR), the special sensor microwave imager
(SSM/I), and the advanced microwave scanning radiometer
for the Earth (AMSR-E) observing system. Many investi-
gators have carefully evaluated the accuracy of remotely
sensed SWE, suggesting good prairie region performance but
poor boreal forest and high latitude tundra region perfor-
mance [e.g., Robinson et al., 1993; Tait and Armstrong,
1996]. To overcome these limitations, Foster et al. [2005]
derived an alternate algorithm that made systematic error
adjustments based on environmental factors including forest
cover and snowmorphology (i.e., crystal size as a function of
location and time of year). While this yielded an improve-
ment in SWE estimates, the SWE estimates were affected by
signal saturation above a SWE of approximately 100 mm,
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mixed pixel contamination for regions within 200 km of
large, open water bodies, and liquid water in the snowpack
for monthly air temperatures above�2�C [Dong et al., 2005].
Although this limits the use of remotely sensed SWE esti-
mates to inland locations for times of moderate snowpack
amount, it is at these times and locations that the snowpack is
typically the most dynamic and model estimates are the
poorest [e.g., Slater et al., 2001].
[4] As both model predictions and remotely sensed esti-

mates are characterized by different uncertainties at different
times and locations, the most accurate snowpack status
estimate results from the assimilation of remotely sensed
estimates into a land surface model, with correct observa-
tion and model error specifications. The SWE estimation
improvement using data assimilation can be verified using
nonassimilated in situ data. In order to attain this optimal
snowpack state estimate, it is essential that the assimilation
scheme account for the relative uncertainty of both model
predictions and observations. For example, direct replace-
ment of the modeled snow states with observations by
assuming that the observations are without any error can
often yield degraded model predictions in certain situations
[e.g., Liston et al., 1999; Rodell and Houser, 2004].
Moreover, direct replacement of SWE has only a minimal
impact on errors of correlated snow state estimates, such as
snowpack depth and temperature.

[5] Several recent studies have applied the Kalman filter
to the assimilation of snow cover and snow water equiv-
alent in land surface and hydrological models, and their
synthetic experiments showed improved streamflow and
SWE simulation accuracy [Sun et al., 2004; Andreadis
and Lettenmaier, 2006; Clark et al., 2006; Slater and
Clark, 2006]. An advanced assimilation system has recently
been developed to perform SWE assimilation with a one-
dimensional extended Kalman filter (EKF) by Sun et al.
[2004]. Their results from a series of identical-twin experi-
ments have clearly demonstrated that poor initial condition
effects can be removed, and runoff and atmospheric flux
predictions improved in the absence of significant model
and/or observation error [Sun et al., 2004]. As significant
model and remotely sensed SWE errors often exist in
reality, assimilation of satellite-derived SWE and verifica-
tion with actual in situ observations are challenging.
[6] Quantifying the observation and model uncertainties

in a meaningful way is an important prerequisite to
undertaking assimilation. While Dong et al. [2005] have
made a thorough uncertainty assessment of Foster et al.’s
[2005] semiempirical SWE retrieval algorithm which was
used in this study, some of their recommendations for
uncertainty assessment have required refinement for rou-
tine data assimilation application. Moreover, the model
error parameter in the assimilation system designed by
Sun et al. [2004] has been calibrated against observations

Figure 1. Spatial distribution of all half-degree by half-degree grid cells including one to four in situ
SWE stations (open squares) and five or more in situ stations (solid squares), with the background colors
showing snow classification according to Sturm et al. [1995]. The numbers 1 to 4 indicate selected pixels
used in subsequent analysis.
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to ensure realistic SWE error forecasts. The purpose
of this paper is to demonstrate the expected SWE
prediction improvement when remotely sensed SWE data
are assimilated into a land surface model. This is the first

study to assimilate SMMR-derived SWE estimates and to
evaluate results against in situ SWE observations. More-
over, this North American demonstration study illustrates
the water and energy budget impacts that can be

Figure 2. Map showing average values for February: (a) in situ SWE averaged to half-degree grid cells
in 1979 and (b) 1987; (c) SMMR passive microwave SWE estimates in 1979 and (d) 1987; and (e) model
simulated SWE in 1979 and (f) 1987.
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expected from the assimilation of remotely sensed SWE
estimates.

2. Data and Model

2.1. In Situ Snow Observations

[7] This paper uses the Canadian Snow Water Equivalent
Database estimates [Brown, 1996] for remotely sensed and
model SWE uncertainty characterization and assimilation
evaluation. This data set was chosen because of the spatially
dense monitoring network and better overlap with the
SMMR period than other available snow data sets. These
SWE data were derived from the Meteorological Service of
Canada (MSC) daily snow depth observation network,
using an interpolated snow density from the snow survey
network that was specifically designed to represent local
terrain and vegetation. The resulting SWE estimates are
reported to effectively represent observed spatial and tem-
poral snow depth variability [Brown and Braaten, 1998;
Brown, 2000; Mote et al., 2003]. These Canadian snow
observations are spatially dense in the southern more
populated regions and sparse further to the north (Figure 1).
[8] While there is a recognized spatial discrepancy

between the in situ observing station point measurements,

the spatially averaged remote sensing retrieval, and model
SWE simulation, this is the best verification data available.
Chang et al. [2005] suggested that 10 distributed snow
depth measurements per one-degree by one-degree grid cell
are required to produce a sampling error of 5 cm or better.
To minimize this discrepancy, in situ station SWE measure-
ments within half-degree by half-degree (approximately
50 km by 35 km at 50�N) pixels were averaged, resulting
in 1359 pixel averages having one or more stations. Figure 1
shows the pixels that include five or more in situ stations,
with background colors showing snow classification as
defined by Sturm et al. [1995]. There is a total 190 pixels
that include five or more stations, with most pixels located
in Prairie (28 pixels), Alpine (39 pixels), and Maritime
(94 pixels) snow classes. Of these, four pixels have been
selected for detailed analysis, one in Prairie, two in Alpine,
and one in Maritime. Figures 2a and 2b show an example
of in situ SWE data averaged to half-degree grid cells for
February 1979 and 1987, respectively.

2.2. Passive Microwave Observations

[9] Several SWE estimation algorithms have been deve-
loped for passive microwave observations. The commonly
used algorithm developed by Chang et al. [1987] estimates

Figure 3. Comparison of monthly climatological median SMMR root mean square retrieval error, in
situ SWE, and SMMR SWE estimates for pixels including five or more ground stations and farther than
200 km from open water, with an average monthly daytime temperature below �2�C, and (a) an in situ
SWE estimate of less than 100 mm or (b) a model SWE prediction less than 100 mm. The white lines are
the median values while the shaded regions show the range between upper and lower quartiles.
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SWE from the SMMR 18 and 37-GHz or SSM/I 19 and
37-GHz brightness temperature difference, multiplied by a
constant derived from radiative transfer theory; the 37-GHz
data are sensitive to snowpack scattering, while the 18-GHz
data are relatively unaffected. In this paper, we use the
algorithm developed by Foster et al. [2005] who modified
the algorithm of Chang et al. [1987] using spatially and
temporally varying constants to account for the effect of
forest cover and snow crystal size.

SWE ¼ F c T18 � T37ð Þ; ð1Þ

where F is the fractional forest cover factor calculated using
the International Geosphere–Biosphere Program (IGBP)
land cover map described by Loveland et al. [2000], and c is
parameterized according to the Sturm snow class categories
[Sturm et al., 1995] and time of year. T18 and T37 are the
horizontally polarized brightness temperatures at 18 and
37 GHz, respectively. Daytime SMMR observations and T37
observations greater than 240 K were excluded to partly
minimize wet snow effects resulting from meltwater in the
snowpack. Figures 2c and 2d show an example of SMMR
SWE estimates by Foster et al. [2005] averaged over

February in 1979 and 1987, respectively. The SMMR-
derived SWE shows a close agreement with in situ data in the
prairie and taiga regions but shows a significant under-
estimation in the east coast maritime region.

2.3. Snow Model and Assimilation Scheme

[10] The three-layer snow model of Lynch-Stieglitz
[1994] used by the catchment-based land surface model of
Koster et al. [2000] accounts for snowmelting and refree-
zing, dynamic changes in snow density, snow insulating
properties, and other physics relevant to the growth and
ablation of the snowpack. A novel component of this model
is the nontraditional shape of the land surface element,
defined to be the hydrological catchment. In this applica-
tion, about 5000 catchments are used to model the North
American continent, with an average catchment size of
3600 km2. An internal mapping routine allows quantities on
the irregular catchment domain to be communicated to and
from a regular grid. This mapping routine uses an area-
weighted average to undertake the mapping. The forcing
data used in this study are from the 1.125 degrees 1979–1993
observationally corrected European Centre for Medium-
Range Weather Forecasts (ECMWF) 15-year Re-analysis

Figure 4. Comparison of fraction of snow-covered SMMR pixels eliminated by using either daily
maximum temperature greater than �2�C as an indicator of liquid water in the snowpack or a land surface
model liquid water diagnostic for (upper panel) January to March 1979 and (lower panel) October 1986 to
May 1987.
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(ERA-15) data set [Berg et al., 2003]. Figure 2 compares
model SWE estimates with in situ data and SMMR retrievals
averaged over February in 1979 and 1987, respectively.
These spatial representations of model SWE are quite
‘‘smooth’’ when compared to the remotely sensed estimates.
While the SWE predicted by the model in Figure 2 agrees

closely with in situ data for the southeast maritime regions, it
is significantly overestimated in the west coast regions.
[11] Here we use the assimilation system recently deve-

loped by Sun et al. [2004] to assimilate SMMR-derived
SWE observations. This assimilation scheme uses a one-
dimensional extended Kalman filter to sequentially update
the model state and covariance estimates as remotely sensed

Figure 5. Monthly climatological maps showing the fraction of SMMR SWE retrievals that can
ultimately be used for assimilation after accounting for distance to open water, signal saturation due to
SWE amount, and liquid water presence.
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SWE estimates become available. The EKF is a linearized
statistical approach that provides a near-optimal state esti-
mate of a nonlinear system, based on the relative magni-
tudes of the covariance of both the model system state
estimate and the observations [e.g., Gelb, 1974]. Recent
applications show that the principal advantage of this
approach is that the EKF provides a framework within

which the entire system is modified, with covariances
representing the reliability of the observations and model
predictions [Houser et al., 1998; Walker and Houser, 2001;
Sun et al., 2004].
[12] Snow water equivalent together with heat content

and snow depth describes the snowpack in the scheme
designed by Lynch-Stieglitz [1994]. Sun et al. [2004]

Figure 6. Comparison of predicted (dash lines) and actual model error estimates (solid lines; defined as
root mean square error (RMSE) between the simulated SWE and the ground SWE observations) averaged
for all the pixels including at least one station (top row), five or more stations (second row) and for each
Sturm snow class (other rows).
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designed a scheme that assimilates and updates the total
catchment SWE, then updates snow depth and heat content
in each layer by using the model-predicted snow tempera-
ture and density. This innovative approach is suitable for
assimilating SMMR observations (since SMMR measures
the total snowpack SWE) and overcomes the difficulty
associated with model layer geometry and unique snow
processes related to ablation. A full land surface model,
snow model, and data assimilation system description are
given in the papers noted above, so only the pertinent details
are given here. Moreover, a detailed summary of the snow
model is also given in the study by Sun et al. [2004].

3. Error Assessment

3.1. Remotely Sensed SWE Error Estimates

[13] Based on an extensive evaluation of SMMR SWE
estimates using the algorithm by Foster et al. [2005] with in
situ observations, Dong et al. [2005] suggest that SMMR
SWE retrievals should not be used for (1) regions within
200 km of significant open water bodies due to mixed pixel
contamination, (2) times when monthly mean air tempera-
ture is above �2�C due to potential meltwater contamina-
tion, and (3) times and locations where in situ SWE values
are above 100 mm due to microwave signal saturation.
Restricting the use of remotely sensed SWE on this basis
was found to result in a nearly unbiased SWE estimate with
seasonal maximum 20 mm RMS median error (Figure 3a).

The monthly root mean square error (RMSE) median of
SMMR SWE retrievals was obtained by first calculating the
RMSE in each pixel over the entire SMMR period (1979–
1987) and then obtaining the median among the pixels
including five or more in situ stations.
[14] While imposing these rules on the remotely sensed

SWE product makes it useful for practical applications,
global application is difficult. For example, the 100-mm
SWE cutoff rule requires prior knowledge of the actual
SWE amount, which is only available at in situ measure-
ment stations. Therefore a surrogate, such as the remotely
sensed or model SWE, is required to replace the in situ
SWE data. The problem with using the remotely sensed
SWE is that deep snowpacks were significantly underesti-
mated. However, use of model SWE in place of the in situ
SWE (even without assimilation) was found to have a
similar effect on eliminating erroneous remotely sensed
SWE estimates in deep snowpack regions (Figure 3b).
[15] The other rule to be revised was the temperature

cutoff, as snowmeltwater and refreezing ice both degrade
the resultant SWE estimate. The presence of meltwater in
the snowpack raises the 37-GHz microwave brightness
temperature, and the refreezing ice crust results in the
microwave signals having similar responses at the two
frequencies [Foster et al., 2005]. While climatological air
temperature is a good indicator of the presence of meltwater,
it does not contain information on the melt history and
likely presence of ice. In contrast, the snow model keeps

Figure 7. Monthly climatological maps of extended Kalman filter model error estimates.
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track of snowpack liquid water content through conside-
ration of meltwater generation, refreezing, and losses from
evaporation and runoff when the liquid water exceeds the
snowpack holding capacity. Therefore using the model
simulated snowpack liquid water should be a better descrip-
tor for eliminating contaminated remotely sensed retrievals
due to wet snow effects than using air temperature data.
[16] The difference in the number of eliminated SMMR

pixels between the two approaches is minor, with the
exception of autumn and spring months (Figure 4). The
large difference in these months is typically due to
the absence of modeled snow (thus no liquid water in
snowpack) in such pixels and air temperature greater than
�2�C. Therefore the air temperature diagnostic is used as
the default to determine observation quality when there is
no model snow presence in the pixel. The differences found
during midwinter months indicate that the air temperature
diagnostic is typically conservative, meaning that some
good data are eliminated. The exception is March 1979,
where the temperature diagnostic missed some melt events.
Therefore overall the use of modeled meltwater is an
enhancement over the use of air temperature data for quality
control on remotely sensed SWE.
[17] The average monthly varying RMS errors in the

SMMR SWE estimates shown in Figure 3b are used to
represent the passive microwave SMMR SWE estimate
uncertainties in the regions beyond 200 km of significant
open water bodies, locations and times with no liquid water
presence in the snowpack, and the model SWE values
below 100 mm. Figure 5 shows the average fraction of
SMMR SWE retrievals used in the assimilation for each
winter month based on the above three rules. Beyond the
coastal areas, reliable SMMR SWE retrievals were available
at most regions in November, December, January, and
February, with reduced areas in March and April. The
reduced percentage of SMMR SWE data available for use
in assimilation during January and February when com-
pared to November and December is due to the model SWE
100-mm cutoff. The reduced areas in March and April are
due to the effects of liquid water presence in the snowpack.
As will be demonstrated later, the reliable SMMR SWE data
during the early snow season (November and December)
play the most important role in the assimilation.

3.2. Modeled SWE Error Estimates

[18] Model-predicted total SWE (P f) uncertainty esti-
mates are propagated forward in time from the land surface
dynamics using the EKF forecast equations (equation (4) in
the study of Sun et al. [2004]). However, accurate estima-
tion of the model error covariance (Q) is the most difficult
task of any data assimilation problem, since it requires
knowledge of the ‘‘truth’’ model states, which are typically
unknown. Model forecast error may result from various
sources, such as forcing data, model physics, and model
parameters. While each of these components could be
treated explicitly, the approach taken is to use a lumped
predefined constant error term. Here applicability of the
(10 mm)2 value per 20 min chosen by Sun et al. [2004] in
their identical-twin experiments is investigated for assimilat-
ing SMMR data, subject to an initial error estimate of
(20 mm)2. This is tested using the EKF forecast equations
without assimilating any data.

Figure 8. Climatological maps of (a) observed and (b)
predicted model uncertainty for half-degree pixels with
coincident ground truth observations for the winter season
(November to April) during the period of 1979 to 1987;
(c) error in predicted uncertainty.
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[19] Comparison of predicted uncertainty with observed
uncertainty [defined as root mean square error (RMSE)
between the model and in situ SWE] found that the model
forecast error globally overestimated the observed uncer-
tainty by about 10 times (not shown) when using the default
values. However, the predicted uncertainty temporal evolu-
tion agreed well with the observed uncertainty at seasonal
scales. Therefore the globally constant error covariance was
reduced to (1 mm)2 from the value of (10 mm)2 per 20 min.
Using the revised error values, a close agreement was found
between the predicted and observed model uncertainty
(Figure 6). Moreover, a good agreement was found for the
different snow class categories with the exception of Taiga,
where model-predicted uncertainty remained larger than
observed uncertainty. The summertime model-predicted
uncertainty increase is an artifact of the error propagation
as discussed below and the fact that there is no assimilation
during that period. Consequently, there is always a large
model-predicted uncertainty for the start of each snow
season.
[20] Figure 7 shows monthly model forecast error spatial

distributions averaged over the 1979–1987 period, with
obvious spatial and temporal variations. Since the Kalman
filter is designed to propagate the uncertainty, the model
error is steadily increased according to the model error
variance (during snow free periods) and model physics
(during snow periods). In November, there are very small
errors predicted in model estimates for almost all regions in

Canada and the mountainous areas in the United States due
to the earlier model snow presence. However, these areas
are also among those with the largest errors in April due to
the deeper snowpacks there in late winter. The largest
forecast model uncertainty exists during summer no-snow
periods and winter deep-snow periods. While the large
summertime uncertainty may be unrealistic, a result of
using a constant model error term, it is not considered to
be a bad approximation for this demonstration study. One
reason for this assertion is that the model error covariance is
typically initialized high in data assimilation studies such as
this, to represent the large degree of model initial condition
uncertainty. Therefore the forecast model covariance essen-
tially resets itself during the summer period, which repre-
sents the high degree of uncertainty with early wintertime
SWE forecasts.
[21] Error statistics are calculated for the 1359 half-

degree pixels having coincident ground truth observations
for the winter months (November to April) during the
period of 1979 to 1987 (Figure 8a). Here the eastern
coastal regions and western mountainous areas show the
largest observed uncertainty in model SWE, reaching
above 100 mm, while most Prairie, Tundra, and Taiga
regions have very small observed uncertainty with values
below 30 mm. The model-predicted uncertainties match the
observed uncertainty very well in the Prairie and Great
Lakes regions, are slightly too large in Tundra regions, and
are too large in Taiga regions (Figures 8b and 8c).

Figure 9. Comparison of the median SWE for pixels including five or more stations; ground
observations (black dots), SMMR observations (plus), model forecast (dash lines), model forecast with
assimilation run-I (dotted lines) and run-II (solid lines) from (a) January to March in 1979 and (b) from
July 1986 to June 1987 (zoomed to the winter months from October 1986 to April 1987). The vertical
lines show plus and minus one standard deviation from the median of ground observations.

Table 1. Statistics of Bias and Root Mean Square Error (RMSE) Between In situ Data and Model Open-loop run,

Assimilation Run-I, and Assimilation Run-II for Pixels Only Including Five or More Ground Stations and With an

In situ SWE Value Greater Than Zeroa

Experiment Samples

Bias, mm RMSE, mm

Open loop Assim-I Assim-II Open loop Assim-I Assim-II

A1 436 �51.21 �45.61 �9.06 50.67 40.36 40.28
A2 1422 9.70 �23.29 2.04 70.39 87.62 61.46
A3 10962 30.46 NA 8.66 96.65 NA 76.77

aExperiments 1–3 represent the cases shown in Figure 9a (January to March 1979), Figure 9b (July 1986 to June 1987), and
Figure 11 (July 1979 to June 1987), respectively.
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However, there are no remotely sensed SWE estimates to
be assimilated in the northern Canadian waterways with
Tundra snow classification due to ice effects, meaning that
the relatively poor uncertainty estimates in the Tundra
region do not affect the model results. Likewise, there is
typically no assimilation in the Taiga regions which are
characterized with deep snowpacks (refer to Figure 2), with
satellite observations typically eliminated due to the SWE
being greater than 100 mm. In the western mountainous
areas, the model-predicted uncertainty is largely underesti-
mated, but the model-predicted uncertainty (above 40 mm) is
approximately twice the estimated satellite observation
uncertainty (less than 20 mm). Therefore the assimilation
scheme will still put more reliance on the satellite SWE
estimates than the model forecasts in this region.

4. Numerical Experiments

[22] A set of numerical experiments have been under-
taken to evaluate the impact of assimilating quality-
controlled SMMR SWE retrievals on snowpack state
variables (snow water equivalent, snow depth, and heat
content), using Sun et al.’s [2004] assimilation scheme,
parameter specifications, and atmospheric forcing. Three
model simulations (described below) were performed using

the catchment-based land surface model for two periods:
starting from (1) the middle of winter on 1 January 1 1979
and (2) from the middle of summer on 1 July 1 1986
(Figure 9). The initial conditions for these simulations were
from a repeated 10-year simulation on a given year of
forcing data, with the exception that all snowpack memory
was erased at the initial time step. The snowpack state
memory was erased so that erroneous model deep snow-
pack forecasts did not inadvertently prevent snowpack
assimilation in the midwinter simulation.
[23] The first simulation is a straight model simulation

run (referred to as the open-loop run) to show how the
model performed in the absence of assimilation. The second
and third simulations are two extended Kalman filter
assimilation experiments (referred to as assimilation run-I
and run-II), started with the same initial conditions as the
open-loop run, but assimilating the remotely sensed SMMR
SWE estimates when available. The difference between
these two runs is that run-I assimilates all available SMMR
SWE data while run-II only assimilates quality-controlled
SMMR SWE data according to the three rules discussed
earlier in this paper. A multiyear model open-loop run and
remotely sensed SWE assimilation simulation (using assi-
milation run-II) are also presented for the entire SMMR
duration from 1979 to 1987.

Figure 10. Fraction of SMMR SWE data omitted in response to each data quality rule for the periods
(upper panel) January to March 1979 and (lower panel) October 1986 to May 1987.
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[24] To assimilate the regular grid SMMR SWE data into
the catchment-based land surface model, the half-degree
SMMR SWE data were first converted to the catchment
domain. Therefore the assimilation was performed on a per
catchment basis. When the open-loop simulation and assi-
milation were completed, the catchment-based output was
then converted to half-degree pixels for comparison with
half-degree averaged ground data. The results are evaluated
using the Canadian in situ SWE measurements. Comparison
of open-loop and assimilated model SWE estimates were

made with the median in situ SWE value for pixels
containing five or more in situ stations. The following
statistical analysis has been performed using the median,
as the arithmetic average value is often misleading if there
are few outliers in the data.

5. Results and Discussion

[25] The median predicted and observed SWE estimates
for pixels with five or more in situ stations are shown in

Figure 11. Comparison of the median SWE value for all pixels including five or more stations and the
four representative pixels shown in Figure 1; ground observations (gray dots), SMMR observations
(plus), model forecasts (dotted lines) and model forecast with assimilation (solid lines) from July 1979 to
June 1987.
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Figure 9. For the simulations starting in the middle of
winter, it was found that assimilation run-II outperformed
both of the other snowpack simulations, with the results
from assimilation run-I approaching the unmasked SMMR
SWE values. This was expected, as erroneous SWE obser-
vations when not eliminated (as in run-I) or adequately
characterized by their error covariances act to degrade the
snowpack simulation through their assimilation. The
open-loop simulation significantly underestimates the snow-
pack SWE throughout the entire simulation due to the zero
snow initialization. The resulting medians from assimila-
tion run-II are in a close agreement with the ground
observations. Statistical analysis shows that bias error has
been largely reduced, and RMS error has been slightly
reduced (Experiment A1 in Table 1).
[26] For the simulations starting in the middle of summer,

the effects of initial SWE values were no longer important.
However, once again, the simulated SWE from assimilation
run-II showed the closest agreement with in situ SWE data,
while the simulated SWE from assimilation run-I closely
followed the unmasked SMMR SWE (also see Experiment
A2 in Table 1). Moreover, in this case, the open-loop
simulation overestimates the SWE.
[27] Given the success of the assimilation run-II algo-

rithm, it is used in all subsequent analysis. Figure 10 shows
the amount of SMMR data eliminated due to the application
of the mask. The figure shows the individual impacts of
the three mask criteria applied in the following order:
(1) distance to open water, (2) liquid snow water presence in
non coastal regions, and (3) snowpacks greater than 100-mm
SWE. First, omission of SMMR SWE retrievals for regions
within 200 km of significant open water bodies resulted in an
approximately 5% reduction of available SMMR data, with
varying fractions due to different snow-covered fractions
and satellite tracks on a given day. Second, omission of
SMMR SWE data due to liquid snow water presence
resulted in an approximately 15% reduction of available
SMMR data during autumn and spring months, with negli-
gible reduction during midwinter. Finally, omission of the
SMMR SWE for deep snowpacks resulted in an approxi-
mately 25% reduction of available SMMR data during
midwinter to late winter. The combined effect is an approx-
imately 20% elimination during early autumn, declining to
an approximately 5% elimination for late autumn to mid
winter, increasing linearly up to an approximately 50%
elimination in spring. The few large spikes, such as Julian

day 21 of the year 1979, result from the fact that most
SMMR snow-covered areas within the satellite track at that
day were located in the coastal areas. Conversely, the few
large dips, such as Julian day 59 in 1979, result from the fact
that few SMMR snow-covered areas are available within the
satellite tracks at that day, and these few snow-covered areas
are far from the coast with no liquid water presence or
snowpacks greater than 100-mm SWE.
[28] A multiyear model simulation and assimilation run

was performed for the entire SMMR duration from 1979 to
1987. Comparison of model simulation results was again
made with median statistics for pixels including five or
more in situ stations (Figure 11a). The model open-loop
simulation overestimates the SWE by about 50 mm, while
the unmasked satellite retrievals have an approximately
20 mm underestimation. Moreover, the assimilation simula-
tion is in good agreement with the ground observations not
only in the seasonal variations but also in the interannual
variations (also see Experiment A3 in Table 1). The only
exception is in 1981, with significant overestimation for both
the open-loop and assimilation simulations. This is a result
of significant atmospheric forcing errors in that year, with
model-predicted SWE rapidly passing through the 100-mm
cutoff, meaning that the simulation could not be constrained
by assimilation of remotely sensed SWE estimates. This is
also seen in Figure 11e.
[29] Two additional experiments, together with the above

multiyear assimilation run (Experiment A3), were per-
formed to test the sensitivity of the assimilation results to
the uncertainty of the observation and models (Table 2).
One experiment increased the observation error variance by
a factor of 2 and decreased the model error variance by a
factor of 2 (Experiment S1), with the other experiment
reversing these changes to the error variances (Experiment
S2). While Experiment S2 produced very similar results to
Experiment A3, which reduced the bias from 30 mm in the
open-loop run to about 9 mm and RMSE from 97 mm to
79 mm (77 mm for Experiment A3), Experiment S1 had a
much larger bias (15 mm) and RMSE error (87 mm). This
suggests that, in this case, the assimilation scheme is quite
sensitive to increases in observation error and concurrent
decreases in model error but insensitive to further reduc-
tions in observation error with a concurrent increase in
model error due to the quality-controlled SMMR data used
in all three experiments. Therefore the observation and
model error covariance estimates used in Experiment A3
are appropriate for this study. These sensitivity experiments
underscore the importance of obtaining accurate estimates
of model and observation errors to achieve a good analysis.
When the model error was erroneously underestimated in
Experiment S1, the results were much worse than Experi-
ments A3 and S2. Reducing model error in this study had a
significant degrading effect on the analysis due to the poor
model forecasts of SWE relative to the quality-controlled
SMMR-derived SWE. This demonstrates the importance of
validating analyses with independent data.
[30] To further evaluate the assimilation algorithm, com-

parisons are made for four individual pixels, each including
five or more ground stations (Figures 11b–11e). The model
simulation significantly overestimated the SWE at pixel
number 1 (Alpine; 17 stations) and underestimated the
SWE at pixel number 2 (Prairie; five stations) for most

Table 2. Statistics of Bias and Root Mean Square Error (RMSE)

Between In situ Data and Assimilation Output for Pixels Including

Five or More Ground Stations and With an In situ SWE Value

Greater Than Zeroa

Experiment Samples Bias, mm RMSE, mm

A3 10962 8.66 76.77
S1 10962 15.29 87.43
S2 10962 9.03 78.85

aExperimentA3 represents the case shown in Figure 11a (July 1979 to June
1987), Experiment S1 represents the sensitivity run by decreasing the model
forecast error by a factor of 2 while increasing the observation error variance
by a factor of 2, and Experiment S2 represents the sensitivity run by
increasing the model forecast error by a factor of 2 while also decreasing the
observation error variance by a factor of 2.
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Figure 12. Difference between model forecast and model forecast with assimilation for monthly
averaged total runoff (left column), upward longwave radiation (middle column), and upward shortwave
radiation (right column) for winter months.
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years, while unmasked SMMR estimates were in close
agreements to the ground observations for both pixels. The
assimilated SWE tends to approach both the SMMR and
ground observations, as a result of the high-quality SMMR
observations used in the assimilation at those locations. At
pixel number 3 (Alpine; 11 stations), both SMMR and
model SWE estimates are underestimated in the middle of
the snow season of years 1986 and 1987. However, the
assimilated SWE is close to ground observations in both
these years because the assimilation algorithm optimally
assimilated the relatively accurate SMMR SWE observa-
tions into the model during the early part of the snow
season when the model performed most poorly. At pixel
number 4 (Maritime; 27 stations), the model typically
overestimated the SWE. Apart from 1981 and 1987, the
assimilation of SMMR observations resulted in SWE
estimates that closely followed the ground observations.
The reason for poor assimilation results in those 2 years is
a sudden erroneous transition by the model above the
100-mm SWE cutoff used to eliminate SMMR observations
(in 1980–1981, this is due to the use of poor forcing data,
and in 1986–1987, it is due to the assimilation of poor-
quality SWE data). Beyond that time, the assimilation
algorithm is no longer able to correct the model simulated
snow water equivalent.
[31] Accurate estimation of snow water equivalent has

important implications on climate forecasting through both
freshwater inputs to the ocean from springtime snowmelt and
upwelling radiation in response to surface albedo. Figure 12
shows the difference between the open-loop and assimilation
simulations of monthly averaged total runoff and upward
long and shortwave radiation. This comparison is for the
winter months of October to May averaged over the years
1979–1987. While it is not possible to say which is better,
there is a significant difference between the assimilation and
open-loop forecasts, particularly during early spring. Assi-
milation runs modify the model simulation by significantly
reducing runoff in the western mountainous area of Canada
and the eastern Canada in spring and slightly reducing runoff
in most regions of the eastern continent during the early snow
season (October to December). Assimilation increases the
upward longwave radiation for the whole snow season with
significant increases in May and significantly reduces the
upward shortwave radiation from February. Such large
energy and water cycle differences could lead to significant
climate model prediction differences. However, such
changes in water and energy balance terms have not been
verified as improvements using field measurements. Such
substantiation is beyond the scope of this paper.

6. Conclusions

[32] Spatially complete and temporally continuous uncer-
tainty maps for both remotely sensed and land surface
model SWE estimates have been generated and evaluated.
The remotely sensed SWE retrieval uncertainty is pres-
cribed by a spatially constant monthly varying value, with
data omitted under three considerations: (1) locations closer
than 200 km to significant open water, (2) presence of liquid
water in the snowpack, and (3) model SWE estimates
greater than 100 mm. Model SWE uncertainty has been
calibrated by tuning a spatially and temporally constant

model error term used in the error propagation equations to
the observed model error.
[33] A series of numerical experiments have demon-

strated that assimilation of remotely sensed SWE estimates
results in improved SWE estimates when compared to in
situ measurements. However, when poor-quality observa-
tions are assimilated or the model simulation transitions are
quickly beyond the 100-mm SWE cutoff, the assimilation
algorithm is no longer able to improve the snowpack
simulation. Comparison between the open-loop and assi-
milation simulations shows that runoff and upward short
and long wave radiation are also modified through assimi-
lation of remotely sensed SWE.
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