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[1] Observing System Simulation Experiments (OSSEs) have been carried out for a
geomagnetic data assimilation system. The purpose of these experiments is to demonstrate
how new algorithms for assimilating geomagnetic observations into a geodynamo model
can be evaluated. A ‘‘nature’’ run is carried out to establish a ‘‘true’’ evolution of the
Earth’s core state, from which synthetic surface geomagnetic field observations are
created. These observations are then assimilated into the geodynamo model using an
optimal interpolation (OI) scheme. Model error is simulated by using a different Rayleigh
number in the nature and model runs. Because the true core state evolution is known
completely, the assimilation results can be evaluated in terms of any state variable and at
any point in the computational domain. In this work we focus on the poloidal (observed)
and toroidal (unobserved) components of the magnetic field throughout the outer core.
Experiments are carried out using observations of different degrees and varying forecast
error correlation length scales. We also investigate the impact of model error on the
assimilation and on the accuracy of geomagnetic forecasts. Assimilation runs lasting about
90% of the magnetic free decay time show a positive impact on both components of
magnetic field deep within the outer core. Forecasts of the surface magnetic field show
much lower error growth, indicating that the initial condition used for the forecasts has
been substantially improved through assimilation.
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1. Introduction

[2] The Earth has possessed an internal magnetic field
(geomagnetic field) through much of its history. This field is
believed to be generated and maintained by convection in
the iron-rich fluid outer core (geodynamo). Dynamo theory
first appeared nearly 90 years ago [Larmor, 1919], but
nonlinear, self-consistent numerical models have been suc-
cessful only in the past decade [Glatzmaier and Roberts,
1995; Kageyama and Sato, 1997; Kuang and Bloxham,
1997; Dormy et al., 2000]. Current numerical dynamo
models generate magnetic fields that are qualitatively sim-
ilar to the geomagnetic field observed at the surface of the
Earth, e.g., a dominantly axial dipole poloidal magnetic
field. However, the similarity between the model output and
the observation ends right at the dipole dominance.
[3] This raises several critical questions: Why the model

output differs significantly from observation? In other
words, in addition to the differences between the parameter
values used in numerical models and those appropriate for
the outer core, could other physical approximations play

major roles? Can we learn more about the true physical state
in the outer core via numerical modeling? Can and how we
use surface geomagnetic observation to constrain numerical
models? One approach to address these questions is data
assimilation, which can provide important knowledge on
the accuracy of the numerical estimations of the true state of
the core, and on possible improvement of such estimations
with geomagnetic observations.
[4] Data assimilation has been widely used in meteorol-

ogy and oceanography over the past half century. Numerical
weather prediction was in a significantly worse state
50 years ago, when numerical models were extremely crude
in terms of both resolution and the realism of the parame-
terized physics. Even so, early data assimilation methods
were being developed in order to combine model outputs
with the relatively few observations that were available at
the time (see Talagrand [1997] for a historical summary).
Since then, enormous improvements have been made in
modeling, observations, and assimilation methodology; and
the development of each of these fields was enhanced by
interactions with the others. For example, many new satel-
lite missions are designed specifically to be used in assim-
ilation systems in order to improve numerical weather
prediction. Thus it appears that data assimilation is an
appropriate and needed component that can help to improve
both geodynamo modeling and geomagnetic observations.
Recent investigations into the use of data assimilation in
simplified MHD systems [Fournier et al., 2007; Sun et al.,
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2007] have shown that magnetic field observations can be
used to improve velocity field estimates. The purpose of the
present work is to demonstrate how geomagnetic data
assimilation methods can be developed and tested, given
the current state of geodynamo modeling and the historical
record for geomagnetic observations.
[5] Data assimilation is a mathematical method for com-

bining model prediction (or forecast) with physical obser-
vations with the explicit goal of obtaining the best possible
estimate of the state of a system. If this combination is done
in a dynamically consistent way (e.g., without violating
conservation laws or creating nonphysical steep gradients),
this new estimate (called the analysis) can be used as an
initial condition for a model run that will forecast future
states of the system. Data Assimilation systems generally
use Bayesian estimation theory, and therefore require error
estimates of both the forecast and observations. These error
estimates are used in a cost function which is minimized so
as to obtain an analysis state with the minimum error
variance.
[6] In typical assimilation systems not all of the state

variables are observed, and measurements are often made in
only a small part of the domain. For example, in atmo-
spheric data assimilation, wind velocity is typically made
near the surface, but not high in the Stratosphere. Ocean
data assimilation systems have even more sparse observing
networks, being mostly at the surface. It is very common
that most of the state of the system is unobserved, and it is
difficult to know whether the assimilation of a particular set
of observations has had a positive impact (by reducing

errors) on the state estimate everywhere. Typical validation
experiments will use a second (unassimilated) data set to
characterize the assimilation success. However, this ap-
proach is only useful if the observations are both global
and have relatively small (unbiased) errors.
[7] Geomagnetic data assimilation faces far more chal-

lenges, largely due to the severe limitations on observable
variables (poloidal component of magnetic field only),
observation locations (Earth’s surface), and the relatively
low spatial and temporal resolution of the observed varia-
bles. For example, as shown in Figure 1, the fluid outer core
and the surface of the Earth are separated by a thick mantle,
which is nearly perfectly electrically insulating. The elec-
trical conductivity of the mantle is on average at least 4
orders of magnitude lower than that of the core [Shankland
et al., 1981]. Thus only large-spatial scale, low-frequency
signals of the poloidal magnetic field BP can be clearly
detected at the surface. In addition, near the surface, crustal
magnetism (via induction and magnetization of the crust)
contaminates the signals, further limiting the geomagnetic
observations.
[8] Through much of the mantle and at the Earth’s

surface, BP is a potential field, and thus described by a
scalar. If the potential scalar is expressed as a spherical
harmonic expansion series, the attenuation of the mantle and
the contamination of the crust magnetism limit the obser-
vations to the spectral coefficients up to degree Lobs, i.e.,
only the coefficients with the degree l � Lobs are observ-
ables. With the most advanced, near Earth satellite obser-
vation, Lobs � 14, [see, e.g., Macmillan and Quinn, 2000].

Figure 1. Sketch of the Earth’s interior.
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Going back in time, the resolution is even poorer, e.g.
Lobs = 5 for archeo/paleomagnetic data. The potential scalar
can be continued downward to the top of the D00 layer, or to
the core-mantle boundary (CMB) (assuming no electrically
conducting layer at the bottom of the mantle). Assessing the
success of a geomagnetic data assimilation system is there-
fore rather challenging, and is in need of an approach that
can identify which variables in the state estimate have been
improved and whether this new estimate would make a
better initial condition for future forecasts of the magnetic
field.
[9] One solution to this problem is through the use of

synthetic observations, which are created by carrying out a
single model run which is defined as the ‘‘truth’’. Observa-
tions are then simulated by adding errors to state variables at
the locations and times where real observations would be
expected. In some cases the observations are not state
variables (e.g., rainfall, wind speed), so that an observation
model is needed to create these artificial measurements.
These synthetic observations are then assimilated into a
second model run that differs from the ‘‘truth’’ in the initial
state and/or some difference in the model itself. If the only
difference is the initial state, then the model is ‘‘perfect’’ and
the difference between the truth and forecast should de-
crease to the size of the observation errors after a sufficient
number of assimilation cycles. Model error can be simulated
in a number of ways, including the use of a different model,
decreasing numerical resolution or altering some parameter
in the model. With model error included in the assimilation,
errors will tend to grow between assimilation times.
[10] The most common application of synthetic observa-

tions is to carry out Observing System Simulation Experi-
ments (OSSEs) which are used to assess the value of a
proposed new observing network or test a new assimilation
algorithm. Because the ‘‘true’’ values for the entire state of
the system are known at every time step, a very detailed
analysis can be made on the impact of the assimilation
system. Thus not only can the decrease in errors for the
observed variables be assessed, but also those of nonob-
served variables. In addition, OSSEs allow for the calcula-
tion of an error growth rate for forecasts, which is an
important criterion for assessing the success of an assimi-
lation system. If the analysis state is drawn closer to the true
state in a dynamically consistent manner, then one could
expect that a forecast run which uses this analysis as an
initial condition to have slower error growth rate. Finally,
OSSEs have been instrumental in validation of new assim-
ilation algorithms. Most notable are the ensemble Kalman
filter systems [Evensen, 1994; Houtekamer and Mitchell,
1998] which evolve forecast error covariances using an
ensemble of model runs that start from perturbed initial
states. A complete description of OSSEs is given by Atlas
[1997].
[11] Data assimilation algorithms can generally be divided

into two main categories, sequential and variational. In
sequential methods, a numerical model is run until observa-
tions become available (even though the measurements are
made at different times), and these are then assimilated with
the forecast to create the analysis to be used as the new initial
state for the next forecast. Variational methods, in contrast,
adjust the model solution over an assimilation window so as
to best fit the available observations during this time period.

There are pros and cons for each approach, with the former
having the advantage of ease of implementation and the
latter can potentially help to correct initial state using
observations from a later time [Talagrand, 1997]. In this
paper, we describe a sequential geomagnetic data assimila-
tion system with two different Rayleigh numbers Rth: syn-
thetic observations are extracted from a single ‘‘true’’ run
with the Rayleigh number Rth

(1). The forecast run into which
the observations are assimilated is made with the Rayleigh
number Rth

(2). All other parameter values in these two runs are
kept the same. The purpose of the experiment is to under-
stand how corrections to the measured (poloidal) component
of the magnetic field will effect other components of the state
of the core. We have chosen the model and true Rayleigh
numbers to be very close so that the model error is small but
nonzero. This allows us to assess the success of the assim-
ilation through subtle improvements to the forecast error
growth rate. The experiment is carried out for a large number
of assimilation cycles (or analysis steps) and for a significant
fraction of the magnetic decay time unit. In section 2 we
describe the numerical model and assimilation algorithm,
and the experiments are outlined in section 3. Section 4
presents the results of the OSSEs, and the discussion is given
in section 5.

2. Mathematical Formulation

[12] The mathematical formulation for the OSSEs
includes the numerical geodynamo model and the optimal
interpolation algorithm for data assimilation.

2.1. Geodynamo Model

[13] The numerical dynamo model used in this study is
the MoSST (Modular Scalable Self-consistent Three-
dimensional) core dynamics model developed at Harvard
and GSFC. Here we only provide a brief summary of the
model. Details are given by Kuang and Bloxham [1999] and
Kuang and Chao [2003].
[14] The geometry of the numerical model is sketched in

Figure 1. The fluid outer core is defined as the region
between the radius ricb of the inner core boundary (ICB),
and the radius rcmb of the core-mantle boundary (CMB):

rcmb � r � ricb:

.It is electrically conducting, with a magnetic diffusivity ho.
The inner core r � ricb is an electrically conducting solid
sphere, with a magnetic diffusivity hi = ho. The D00 layer
rcmb � r � rdp (where rdp is the mean radius of the top of the
D00 layer) is also electrically conducting, but with a much
larger magnetic diffusivity, e.g., hd = 20 ho. We choose the
D00 layer thickness to be 20 km so that the total conductance
of the layer (multiplication of electrical conductivity by the
layer thickness) is 3 orders of magnitude smaller than that of
the core. Other choices of the D00 layer is possible. In
general, the lower the hd (i.e., the higher the electrical
conductivity), the thinner the layer. The whole system
rotates with a mean angular velocity

W ¼ W1z;
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where 1z is the unit vector along the z axis (the mean
rotation axis).
[15] In the reference frame corotating with the Earth,

convection in the outer core can be described by the
momentum equation, the induction equation and the energy
equation, which, after appropriate scaling [Kuang and
Bloxham, 1999], have the following nondimensional forms:

Ro

@

@t
þ v � rrrrr

� �
vþ 1z 	 v ¼ 
rrrrrpþ J 	 Bþ RthQrþ Errrrr2v;

ð1Þ

@B

@t
¼ rrrrr	 v	 Bð Þ þ r2B; ð2Þ

@Q
@t

¼ 
 v � rrrrrð ÞQ0 
 v � rrrrrð ÞQþ qkrrrrr2Q; ð3Þ

where v is the velocity field, J ( rrrrr 	 B) is the current
density,Q is the temperature perturbation (density anomaly),
Q0 describes the prevailing conducting state in the outer
core, r is the position vector. There are also several
parameters in (1)–(3) that result from the nondimensiona-
lization: the Rayleigh number Rth that measures the buoy-
ancy force, the magnetic Rossby number Ro that describes
the relative importance of the fluid inertia to the Coriolis
effect, the Ekman number E that describes the relative
importance of the fluid viscosity relative to the Coriolis
effect, and the modified Prandtl number qk is the ratio of the
thermal diffusivity to the magnetic diffusivity:

Rth 
aTg0hTr

2
cmb

2Wh
; Ro 

h
r2cmb

; E  v

r2cmb

; qk  k
h
; ð4Þ

where aT is the core fluid thermal expansion, g0 is the
gravitational acceleration at the CMB, hT is the negative
temperature gradient of the prevailing state Q0 at the ICB,
and k is the thermal conductivity of the core fluid.
[16] Both the velocity field v and the magnetic field B are

solenoidal, and thus described by the following poloidal and
toroidal decomposition:

v ¼ rrrrr	 Tvr̂ð Þ þ rrrrr	rrrrr	 Pvr̂ð Þ; ð5Þ

B ¼ rrrrr	 Tbr̂ð Þ þ rrrrr	rrrrr	 Pbr̂ð Þ; ð6Þ

where r̂ is the unit radial vector. P and T in the equations are
often called the poloidal and toroidal scalars, respectively.
They are approximated by spherical harmonic expansions
up to degree L and order M:

Pv

Tv
Pb

Tb

2
664

3
775 ¼

XM
m¼0

XL
l¼m

vml rð Þ
wm
l rð Þ

bml rð Þ
jml rð Þ

2
664

3
775Ym

l q;fð Þ þ CC; ð7Þ

where (r, q, f) are the spherical coordinates, Yl
m are the

spherical harmonic functions of degree l and order m, and

CC is the complex conjugate. The temperature perturbation
Q is expanded similarly.
[17] It should be noted that (1) and (5) imply that the

Boussinesq approximation is used in the dynamo model, in
which the fluid is assumed incompressible except for the
buoyancy effect (the term with the Rayleigh number Rth in
(1)).
[18] In the D00 layer, (2) is reduced to a simple diffusion

equation

@B

@t
¼ hdor2B; ð8Þ

where hdo  hd/ho. Above the D
00 layer, the magnetic field B

is a potential field, i.e.,

B ¼ 
rrrrrF; r2F ¼ 0: ð9Þ

The magnetic potential F can also be expanded in spherical
harmonics and this will be discussed further in section 2.2.
Finally, spatial discretization is carried out in the radial
direction using a fourth-order finite difference approxima-
tion, with Nr grid points. All of the experiments presented in
this paper use Nr = L = M = 40.

2.2. Geomagnetic Observations

[19] In field modeling, the magnetic potential F can be
expanded as

F ¼
Xl�Lobs

0�m�l

ym
l rð Þ Ym

l q;fð Þ þ CC; ð10Þ

where Lobs is the highest degree of the observable
coefficients.
[20] Surface geomagnetic observation is carried out by

measuring 3 components of the magnetic field B at ground
stations, via airborne or spaceborne instruments. From these
data, the spherical harmonic coefficients ysl

m  yl
m(rea) at the

surface rea of the Earth are derived from various field
models [e.g., Sabaka et al., 2002]. Because of the crustal
magnetization, Lobs � 14.
[21] By (9), one can find that

ym
l / 1

rlþ1
ð11Þ

to ensure F remains bounded at infinity. This can then be
used to obtain yl

m at the top of the D00 layer from those ysl
m at

the Earth’s surface. From (6), (7), (9) and (10), one can
obtain that

bml ¼ r

l
ym
l for r � rdp: ð12Þ

Together with (11), we have

bml rdp

 �

¼ rdp

l

rea

rdp

� �lþ1

ym
sl : ð13Þ

Equation (13) is generally referred to as the surface
observation being downward continued to the top of the
D00 layer, which can then used for assimilation.
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2.3. Assimilation Algorithm

[22] While geomagnetic data assimilation is a new area of
research, atmospheric and oceanic data assimilation have
longer histories, including an established notation to repre-
sent the different variable types, operators and errors. In
spite of the difference in application presented here we can
still follow this notation, as described by Ide et al. [1997],
fairly closely. A few changes have been made to avoid
conflicts with geomagnetic variables.
[23] We can represent the numerical model of equations

(1)–(3) as

xf tkþ1ð Þ ¼ M xf tkð Þ
� 

; ð14Þ

where x f(tk) represents the forecast of the state (which
includes velocity, magnetic field and temperature perturba-
tion) at time tk, and M( ) is the nonlinear numerical model
(or MoSST core dynamics). The state vector is therefore of
length 5LMNr, and for the computations in this paper, we
take L = M = Nr = 40.
[24] The true state is updated by

xtkþ1 ¼ M xt tkð Þ½ � þ �����m tkð Þ; ð15Þ

where xt(tk) is the true state at time tk and ����m(tk) represents
the model error, which is assumed to be a zero mean noise
process. The unbiased model assumption very often does
not hold, as in the present work. We discuss the implications
of this in section 5.
[25] The forecast calculation (14) is carried out until

observations are made at times (ta)j = (ta)j
1 + dta, where
dta is the time between analyses. The observing process is
given by

yok ¼ Hk x
t tkð Þ½ � þ �����ok ; ð16Þ

where Hk is called the observation operator and �����o is the
observation error, which is also generally assumed to be
zero mean noise process. �����o includes errors due to crust and
mantle losses, measurement errors, and field modeling
errors (when the spectral coefficients from field models are
used as observations). In general, Hk may be nonlinear and
time-dependent, but for the present work it is linear and
time-independent, and we write it as

yok ¼ Hxt tkð Þ þ �����ok : ð17Þ

It is convenient to carry out the assimilation in spectral
space because, as discussed in section 2.1, geomagnetic
field models provide spherical harmonic coefficients ysl

m of
the geomagnetic potential F at the surface of the Earth. In
the MoSST core dynamics model, the magnetic field B, and
all other variables are described by the same expansion (7).
[26] Because real geomagnetic observations, yo, are

restricted up to degree Lobs � 8, the H operator zeros
out the other variables and higher degree terms. In addition,
via (13), H transforms the poloidal scalar coefficients bl

m at

the top of the D00 layer into surface geopotential coefficients
ysl
m.
[27] We use an optimal interpolation (OI) sequential

assimilation framework [Lorenc, 1986] for this system.
The analysis step, carried out every dta time units, is

xa tkð Þ ¼ xf tkð Þ þKk yok 
Hxf tkð Þ
� 

; ð18Þ

where K is the gain matrix, which is given by

Kk ¼ P
f
k H

T HP
f
k H

T þ Rk

h i
1

: ð19Þ

In equation (19), Pk
f and Rk are the forecast error covariance

and the observation error covariance matrices, respectively.
Thus the gain matrix Kk is chosen so as to minimize the
analysis error variance (minimum variance estimate) and it
weights the forecast and the observations relative to their
respective error statistics.
[28] Very little is known about forecast error character-

istics for geodynamo models, so it is most sensible to keep
the estimate of Pk

f relatively simple. For example, cross
covariances between different state variables are not yet
well understood, and there are not any accurate estimates of
correlation length scales. Ideally, the forecast error covari-
ance would evolve in time according to the model dynamics
[see, e.g., Cohn, 1997], but the high computational cost
coupled with limited knowledge of model error make this
unworkable. For the present study we therefore assume that
the covariance is univariate (no cross variable correlations)
and that there is no coupling between spectral modes. The
error variance is assumed to be a constant function of radius
(so we can drop the subscript k here and for the gain matrix
K as well), and the error correlations decay linearly with
length scale rc. Thus the i, jth entry in P f can be written as

P
f
i; j ¼ sisjri;j ¼ s2ri;j; ð20Þ

where s2 is the forecast error variance, and the forecast error
correlation, ri,j is

ri;j ¼ 1

ri 
 rj
�� ��

rc
ri 
 rj
�� �� < rc ð21Þ

¼ 0 ri 
 rj
�� �� � rc: ð22Þ

[29] We assume that the observation errors are much
smaller than the forecast errors, so that Rk can be dropped
from equation (19). We will show in section 4 that this is a
reasonable assumption for this particular set of OSSEs. We
define the observation operator separately for each spherical
harmonic wave number, Hl, and it is restricted to just the
poloidal magnetic field (since it all the other variables are
unobserved),

Hl ¼
lrldp

rlþ1
ea

0 0 :: 0 0 1½ � l � 8

0 0 :: 0 0 0½ � l > 8

8<
: ð23Þ
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The quantity

lrldp

rlþ1
ea

results from the downward continuation of the surface
magnetic observation (equation (13)). Thus for each wave
number, Hl is simply a row vector with only the last entry
(corresponding to the grid point at the CMB) nonzero. In the
same way, the gain matrix Kl is also defined separately for

Table 1. The 12 OSSEs Carried Out in This Studya

No Model
Error (a)

With Model
Error (b)

xI xII xI xII

A, Lobs = 33, rc = 120 km AIa AIIa AIb AIIb
B, Lobs = 8, rc = 120 km BIa BIIa BIb BIIb
C, Lobs = 8, rc = 320 km CIa CIIa CIb CIIb

aAssimilation start times are xI and xII. With indices for the number of
observations and correlation length (A, B, C); the assimilation starting time
(1, 2) and whether the forecast includes just initial error or initial and model
error (a, b).

Figure 2. Time-averaged power spectra for the true solution as a function of l (summed over all m) for
(a) poloidal magnetic field at the CMB and (b) the velocity magnitude at the CMB.
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each wave number, so that for a given l, equation (19)
becomes

Kl ¼ rj;n
lrldp

rlþ1
ea

( )
; ð24Þ

where j is the radial component grid index, and j = n is the
grid point corresponding to the core mantle boundary. The
gain in equation (18) therefore varies from lrdp

l /rea
l+1 (rj,n = 1)

at rdp to 0 (rj,n = 0) at rdp 
 rc.

3. Observing System Simulation Experiments

[30] As shown by (13), surface geomagnetic observations
can only provide spherical harmonic coefficients bl

m (up to
degree Lobs) for the poloidal scalar Pb of the magnetic field
at rdp the top of the D00 layer. Other state variables in the
core, such as the velocity field v, the temperature perturba-
tion Q and the toroidal scalar Tb of the magnetic field are
not observable at all. Furthermore, the available record
length for bl

m is approximately 7000 years [Korte and
Constable, 2005], much shorter than the history of the
Earth, and is only a fraction of the magnetic free decay
time td (td � 20,000 years for the Earth’s core). In addition,
the parameters appearing in (1) and (3) are either not well
known (the Rayleigh number Rth), or the values of the
parameters used in numerical model are much larger than
those appropriate to the Earth’s core (the Rossby number Ro

and the Ekman number E). Therefore one would not be
surprised if the numerical dynamo solutions are not close to
the dynamical processes in the outer core (the truth).
[31] To overcome these obstacles for geomagnetic data

assimilation, we need to have some basic understanding of
important issues such as the impact on the state vector in the
outer core by the observation qualities (e.g., the degree Lobs
and the time record length), the impact of parameter differ-
ences (model errors) on the model forecast and the impact
of the initial state on data assimilation (initial errors). We
use OSSEs to provide quantitative assessments of these
issues.
[32] To understand the impact of the parameter values, we

focus first on the Rayleigh number Rth in the OSSEs: Two
different Rayleigh numbers are used in our analysis

R
1ð Þ
th ¼ 15000 and R

2ð Þ
th ¼ 14500; ð25Þ

while other parameters remain unchanged:

Ro ¼ E ¼ 1:25	 10
6; qk ¼ 1:0: ð26Þ

The difference in Rayleigh numbers can be also explained as
the error between two models. The results can therefore be
used to examine the impact ofmodel errors on the assimilation.
[33] In the OSSEs, the sequential assimilations start from

t = ta
(0) with the time interval dta between the two consec-

utive analyses. To understand the information incorporated
into the state vector with respect to the assimilation history,
we consider two sequences:

Case I t 0ð Þ
a ¼ 0:10td ;

Case II t 0ð Þ
a ¼ 0:90td :

ð27Þ

In both cases, dta = 0.01td. Unless otherwise stated, in the rest
of the paper, results of case I will be noted by the subscript
‘‘I’’, and those of case II will be noted by the subscript ‘‘II.’’
To further simplify the discussion in the rest of the paper, we
use the time scaled by the magnetic free-decay time td. In this
convention, dta = 0.01. The time step dt in numerical
simulation is much smaller. Though it varies due the Courant-
Friedrichs-Lewy (CFL) condition, but for most of the
simulation, dt � 10
4td.
[34] To understand how much information from observa-

tions is incorporated into the state vector of the system by
the assimilation, one can compare unobserved variables of
the forecast and of the true state.
[35] It is also useful to determine whether the initial state

that is created by sequentially assimilating observations
over a very long time period (e.g., a significant fraction of
the magnetic free decay time) is more accurate than one
created from a much shorter sequence of assimilations. If an
initial state is closer to the true state in a dynamically
consistent manner (i.e., without introducing artificial oscil-
lations into the solution), then forecasts produced by run-
ning the model from this initial state should be more
accurate than those from other initial states.
[36] OSSEs have been carried out using a nature run

(truth) with Rth
(1). The assimilation is run with Rth

(2); and with
Rth
(1), but using an initial state different from that of the

nature run.
[37] We use an initial solution that is spun up with Rth

(2) so
that all of the assimilation runs starting at ta

(0) = 0.1 will have
the same initial error. We refer to this initial state as xI

i.
Starting with this initial state, we use model parameters that
are either identical to the true simulation (no model error) or
continue with Rth

(2) (nonzero model error). Assimilations that
start at a later time (ta

(0) = 0.95) use a continuation of the free

running model at Rth
(2) = 14,500 (referred to as xII

i ). We use
observing systems which contain either the full set of
spectral modes (Lobs = 33) or are restricted to Lobs = 8,
which is comparable to current field models accuracy for
temporal variations. The observations are obtained by add-

Figure 3. The coefficient b1
0 versus time for the poloidal magnetic field at r = rdp for experiments (a) AIb and AIIb, (b) AIa

and AIIa, (c) BIb and BIIb, (d) BIa and BIIa (e), CIb and CIIb, and (f) CIa and CIIa. The assimilations have either model
and initial error (Figures 3a, 3c, 3e); or initial error only (Figures 3b, 3d, and 3f). In each plot the true (nature) solution is
given by squares, and the free running model is given by a dotted line. The assimilation which starts at ta

(0) = 0.1 (xI) is
indicated by a solid line with triangles, and the assimilation that starts at ta

(0) = 0.95 (xII) is indicated by a dashed line with
circles.
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ing Gaussian distributed noise with standard deviation so =
1% of the poloidal field strength. Determining forecast error
correlations generally involves a certain amount of physical
reasoning and experimentation [Stajner et al., 2001] to
determine an optimal scale. Generally, flows with smaller-
scale structures will have shorter error correlation lengths. If
the length scale is allowed to become too long, observations
will be correcting in locations where the local errors are in
fact uncorrelated, and may also cause convergence prob-
lems. If they are too short, impact of the observations
becomes too small. In these experiments we allow the
forecast error correlation length take on values of rc = 120
and rc = 320 km in order to get an estimate of the optimal
distance. A complete set of all possible combinations of the
above parameter values would involve 24 separate assimi-
lation runs, so we restrict our discussion to the following
cases: experiment A, Lobs = 33, rc = 120 km; experiment B,
Lobs = 8, rc = 120 km; and experiment C, Lobs = 8, rc =
320 km. In each case the assimilation is carried out
with and without model error, and are started from both
xI
i and xII

i . The 12 experiments are summarized in Table 1,
which shows the labels for the experiments presented in
Figures 2–9.

4. Results

[38] In this section we present the results to the assimi-
lation experiments previously outlined. One goal of these
experiments is to demonstrate how OSSEs can be used in
geomagnetic data assimilation to quantify the relative suc-
cess of an assimilation system. This approach also gives
some indication as to how a given algorithm might be
improved, by clearly showing whether unobserved fields
(e.g., toroidal magnetic field) respond to changes in meth-
odology, or whether the observable poloidal field can be
drawn closer to the true state deep inside the core. The tests
we propose here are comparison of time variation in spectral
coefficients at the CMB, poloidal field RMS error near the
CMB, forecast RMS errors for poloidal and toroidal fields
as a function of radius, and predicted surface magnetic field
morphology.
[39] Accurate observations of the entire spectrum could

only be made in the absence of crustal field interference,
and sufficiently sensitive instruments to overcome spatial
modulation across the mantle. However, assimilation of full
spectrum observations (Lobs = 33) is useful for since it gives
an upper limit on the impact of surface observations for a
given assimilation algorithm. Compared with assimilation
of observations up to degree Lobs = 8, we can also learn how
much the impact of observations on the analysis is reduced
by this more realistic limitation.
[40] Forecast error correlations of rc = 120 or 320 km

imply that the impact of observations will reach the top
5.5% to 14.5% of the outer core. The optimal value for this
distance is not currently known for geodynamo models, but

carrying out assimilation helps us gain some insight on the
range of possible values. If rc is too short, observation
impact will be limited to just the surface and the core state
will be essentially unaffected. If rc is set too long, correc-
tions to the magnetic field will be too strong, possibly
inducing nonphysical changes or even instabilities.
[41] Each experiment includes two sets of runs: one with

model error (i.e., different Rayleigh numbers) and the other
without.In both cases, the initial states for the experiments
are set differently by carrying out numerical simulations
with the two different Rayleigh numbers, each lasting for
many magnetic free-decay times so that the solutions are
well developed.
[42] In both sets (with and without model error), we

continue the free model runs (without assimilation) for
comparison with the assimilated solutions. These help us
determine the extent of the impact of assimilating poloidal
magnetic field observations on the estimate of the state of
the core.
[43] Because the geodynamo flows are fairly complex

and chaotic, it is useful to understand something of
their power spectra. Figure 2a shows the poloidal magnetic
power spectra and Figure 2b shows the total kinematic
power spectra at the CMB. The exponential decay with
wave number l indicates that the simulations are spatially
resolved.
[44] Figure 3 shows the dipole component b1

0 of the
poloidal magnetic field as a function of time for each of
the experiments. Experiment A (Lobs = 33 and rc = 120 km)
are shown in (a, b), experiment B (Lobs = 8 and rc = 120 km)
in (c, d) and experiment C (Lobs = 8 and rc = 320 km) in
(e, f). In each experiment Figures 3a, 3c, and 3e are the
assimilation results with model and initial errors, and
Figures 3b, 3d, and 3e are those with only the initial error.
The true coefficients are represented by squares while the
coefficients for the assimilation starting at ta

(0) = 0.1 (ta
(0) =

0.95) are given by triangles (circles) connected by a solid
(dashed) line. The free model run is represented by a dotted
line.
[45] In all experiments, the analysis times can be seen

where the coefficients for the assimilation are drawn closer
(but not exactly because of observation error) to the true
values. After assimilation, values of the coefficients are
shown for four different times of the forecast (triangles and
circles). The plots are drawn starting around t = 0.5 so as to
show the details of the assimilation cycles more clearly. The
most significant feature of these coefficient trajectories is
that rates of divergence (from the true state) are much
greater for the xII forecasts than for the xI forecasts, in spite
of the fact that the CMB coefficient values at the analysis
times are exactly the same for the two cases. This implies
that some improvement has been made to the estimate of the
core state at each analysis time by carrying out a long
assimilation run with observation information incorporated

Figure 4. Relative RMS error for the poloidal component of magnetic field in the D00 as a function of time. The
assimilations are for experiments (a) A1b and AIIb, (b) AIa and AIIa, (c) BIb and BIIb, (d) BIa and BIIa, (e) CIb and CIIb,
and (f) CIa and CIIa. Assimilations with both model and initial errors are shown in Figures 4a, 4c, and 4e and with the
initial error only in Figures 4b, 4d, and 4f. The assimilations starting at ta

(0) = 0.1 (xI) and ta
(0) = 0.95 (xII) are indicated by

triangles and squares, respectively. The error for the free running model is shown as a dotted line.
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over many assimilation cycles. For cases with model error,
the first few analysis cycles show very little decrease in
trajectory divergence, while this decrease is evident in the
case without model error. Again this shows that in the
absence of model error, the assimilation of observations is
starting to draw the analysis state closer to the true state.
This difference in error growth (or decay) between Figures
3a, 3c, and 3d and Figures 3b, 3d, and 3e is therefore an
indicator of how parameter differences affect error growth.
[46] The effect of the degree of observations assimilated

can be seen by comparing Figures 3b and 3d. During the
first few analysis cycles, there appears to be very little
difference in error growth between the xII forecasts in
Figures 3b and 3d. However, the xI forecasts show some
difference, with larger errors in the Lobs = 8 case than in the
Lobs = 33 case. This indicates that over short time periods,
the largest impact is from the low-degree (large-scale)
components (which contain the most energy), but over
longer time periods small-scale components begin to play
observable role in decreasing errors. The impact of the
forecast error correlation length can be seen by comparing
(c) and (e). The xII forecasts are much closer to the truth
with rc = 320 km than with rc = 120 km, indicating that
larger rc has a greater impact in the initial stages of the
assimilation. However, the xI forecasts show that after a
long period of time, the shorter rc results in smaller errors.
This implies that the forecast errors are correlated at length
scales shorter than 320 km, though further cases are needed
to come up with a more precise length.
[47] A more complete picture of the poloidal field error

growth at the CMB can be obtained by calculating a relative
RMS error summed over all of the coefficients:

RMSb rð Þ 

P1�l�L
0�m�l b

mf
l rð Þ 
 bmtl rð Þ

��� ���2P1�l�L
0�m�l bmtl rð Þ

�� ��2
2
64

3
75
1=2

: ð28Þ

Accumulation of RMS in the D00 layer

RMSD ¼
Z rdp

1

drRMSb rð Þ ð29Þ

deserves special attention. In (29), the nondimensional r = 1
is the CMB.
[48] Figure 4 shows RMSD for each of the cases de-

scribed in Figure 3. These verify that the conclusions made
from the dipole component trajectories can be extended to
the entire set of coefficients for the poloidal field at the
CMB. Again we see that compared to Lobs = 33, restricting
observation to Lobs = 8 does not dramatically increase
forecast errors, and that forecast error correlation length
scales are likely closer to rc = 120 km than to rc = 320 km.
Figure 4 also verifies that the assumption in section 2.2 that
at analysis times, the forecast errors are much larger than the
observation errors.

[49] Figure 5 shows the snapshots of RMSb(r) in radius at
a single time, t = 0.988. Here the immediate impact of the
observations can be seen from the xII forecast (circles),
which decrease to nearly zero at the CMB (r = 1) and
remain distinctly smaller than the free model errors (dotted
line) down to about r = 0.9 (which corresponds to the
nondimensional forecast correlation length, rc/rcmb). As
the assimilation proceeds in time, the improvement to the
poloidal field runs deeper into the core. The xI forecast
(triangles) shows a reduction in RMSb to at least r = 0.6 in
all cases. This is an indication that the assimilation of
observations into the geodynamo model can make accumu-
lative improvements to the state within the core, and far
from the actual observation locations. The improvements
run deeper in the absence of model error, and there is little
apparent advantage to assimilating the full spectrum of
observations.
[50] We next consider the RMS error of the completely

unobserved toroidal field coefficients jl
m,

RMSj rð Þ 

P1�l�L
0�m�l j

mf
l rð Þ 
 jmtl rð Þ

��� ���2P1�l�L
0�m�l jmtl rð Þ

�� ��2
2
64

3
75
1=2

; ð30Þ

shown in Figure 6. Here the reduction in RMSj is also clear,
particularly at longer assimilation times. There is a small
reduction in the xII forecast (only when there is model
error), and a larger reduction to about r = 0.7 in the xI
forecast. There is no advantage to assimilating the full
spectrum observations, and the shorter error correlation
length, rc = 120 km again results in a bigger drop in forecast
error.
[51] The reductions in RMS errors of the poloidal field

and toroidal field coefficients imply that after a long
assimilation time, forecast of the poloidal and toroidal fields
near the CMB improve significantly. This could lead to
additional geophysical applications, e.g., core-mantle inter-
actions where the toroidal field is critical for a finite Lorentz
torque.
[52] Figures 7 and 8 show the surface poloidal field

morphology at t = 0.988 and t = 0.992 from the true state
(Figures 7a and 8a), the free running model with no model
error (Figures 7b and 8b), the forecast xI (Figures 7c and
8c), and the forecast xII (Figures 7d and 8d) (both with no
model error). Correlations between the forecast states and
the true state, r(Dr) at each time are plotted in (e) and (f),
using

r DRð Þ ¼
Bf rþDrð Þ 
 Bf rþDrð Þ
h i

Bt rð Þ 
 Bt rð Þ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bf rþDrð Þ 
 Bf rþDrð Þ
h i2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bt rð Þ 
 Bt rð Þ
h i2r ;

ð31Þ

where the over bar indicates the mean of the variable.

Figure 5. RMSb(r) at t = 0.988 for experiments (a) AIa and AIIa, (b) AIb and AIIb (c), BIa and BIIa, (d) BIb and BIIb,
(e) CIa and CIIa, and (f) CIb and CIIb. Assimilations with both model and initial error are shown in Figures 5a, 5c, and 5e
and with initial error only in Figures 5b, 5d, and 5f. The assimilations starting at ta

(0) = 0.1 and ta
(0) = 0.95 (xI and xII) are

indicated by triangles and squares, respectively. The free running model error is shown as a dotted line.
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Figure 6. Similar to Figure 5, but for RMSj(r).
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Figure 7. Surface morphology of Br at t = 0.988, for (a) the true solution, (b) the free running model,
(c) BIa, (d) BIIa correlation distribution r(DR) between the fields in Figures 7c and 7d and the true field
(Figure 7a) are shown in Figures 7e and 7f, respectively. No model error is introduced in the free model
run and forecast.
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Figure 8. Similar to Figure 7, but at a later time t = 0.992.
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[53] At t = 0.988, the free running model and the true
field are very different (e.g., over North America and the
Pacific). Both the xI and the xII are very close to the true
field, with minor differences in intensity and no significant
phase difference. At a later time t = 0.992, the two forecasts
start to show increased errors, but the error growth rate is
significantly larger for the xII forecast. Comparisons be-
tween Figures 7b and 8b and Figures 7d and 8d show that
the latter is drawn toward the free running model as the
forecast progresses which is particularly noticeable over
southeast Asia and Australia. The correlation in Figures 7f
and 8f shows that the maximum correlation has dropped to
0.3 and the zonal lag is now nearly 10�. In contrast, xI
forecast retains much of the structure of the true state, but
with significant decay in magnitude. The correlation in
Figures 7e and 8e shows a maximum of 0.7 and no zonal
lag. There is very little movement of the forecast field
toward the free running model field.
[54] The impact of assimilating magnetic field observa-

tions on the velocity field is demonstrated in Figure 9,
which shows the radial component on a spherical shell
35 3 km below the CMB at t = 0.992. Because the velocity
field is only indirectly affected by the observations through
the J 	 B term in equation (1). Therefore any improvement
in the velocity field will occur gradually over a long time
rather than suddenly at analysis times. Figure 9a shows the
radial velocity field, while Figure 9b shows the free running
model (without imposed model error). While both the true
and free model states exhibit a similar equatorial wave
number, the true state has a well defined phase shift between
the equator and the poles, while the free model run is less
well organized near the poles. Figures 9c and 9d show
forecasts from the xI and xII assimilation runs respectively.
The longer running assimilation (Figure 9c) has begun to
organize very slightly with the same polar shift seen in the
true state, while the shorter run (Figure 9d), is essentially
identical to the free model run. The correlations between
Figures 9c and 9d and the true state (Figure 9a), shown in
Figures 9e and 9f, confirm that the xI run has a maximum
correlation of 0.19, while for xII it is only 0.03.

5. Discussion

[55] In this paper we have described the framework for
Observing System Simulation Experiments (OSSEs) devel-
oped with the purpose of demonstrating how it can be used
to assess the success of a geomagnetic data assimilation
system. To demonstrate its application, it has been used with
an Optimal Interpolation (OI) assimilation system in which
the parameters for the true and model states are close
together. Through this demonstration, we have shown
how OSSEs can be used to compare details of the state
vector that are unavailable when using real physical obser-
vations. This allows us to compare variables deep inside the
core to determine whether the impact of surface observa-
tions reaches them, and if so, when the impact is to draw the
model closer to the true state of the system. This is
important to understand whether and why the geomagnetic
field forecast improves with one approach over another, and
which variables or regions in the core are most sensitive to
the surface magnetic field observations.

[56] Although application of OSSEs in this paper is
mainly to demonstrate a systematic methodology for under-
standing and assessing the impact of surface observation on
model solution variation (and thus forecast), the results
shown in this paper represent the first detailed set of
geomagnetic data assimilation OSSE experiments, and
require further discussion.
[57] The OI algorithm employed here uses a univariate

error forecast covariance which decays linearly with dis-
tance. This means that changes to the poloidal component
beyond this correlation distance and to other state variables
at all locations, can only happen through the model, and not
through the analysis equations themselves. The experiments
demonstrate this in Figure 5 because the forecast generated
after just a few analysis cycles only shows corrections to the
poloidal magnetic field to depths less than the correlation
length, while the longer assimilation run shows improve-
ments to the same field about halfway into the outer core.
Experiments with a longer forecast error correlation length
demonstrate that the assimilation is actually a little less
accurate, which gives us some information on how errors
are correlated within the geodynamo model. This also
shows that the assimilation cannot be sped up by arbitrarily
increasing this length scale. The toroidal component of
magnetic field and the velocity field both show small but
measurable improvements after a long a long assimilation
run, as information from the poloidal magnetic field is
passed through the model equations to the other variables.
This implies that with a long enough assimilation, informa-
tion can be obtained on the unobserved core flow variables.
[58] Speeding up the assimilation convergence, or more

precisely, drawing the model solution closer to the true state
more rapidly, is of great importance in geomagnetic data
assimilation. Not only is the observation history short
relative to the geodynamo time scales, but the earliest
(and the longest) portion of the observation record is
accurate to Lobs � 5. However, this is where OSSEs can
be extremely valuable in creating and testing algorithms that
are optimal for the existing geomagnetic field models and
geodynamo models. An artificial observation record could
be created in which the degree of accuracy follows that of
the physical record, thereby creating a realistic means to
assess whether significant improvements can be made to
both the core state estimates and magnetic field forecasts.
This will allow us to focus on and test algorithms that can
make corrections to all of the state variables through a
multivariate error covariance. For example, Borovikov et al.
[2005] has developed an ocean data assimilation system in
which multivariate error covariances are calculated using a
Monte Carlo approach. A system of this type can directly be
tested using OSSEs to determine whether the assimilation
has improved the accuracy of the model state, relative to a
system using univariate error covariance.
[59] We must also address the issue of parameter values.

We have deliberately chosen to create a difference between
the true and model states through a small change in the
Rayleigh number. This has allowed us to focus on issue of
extracting information from the experiments, rather than the
parameter values themselves. In fact, some of the parame-
ters for the Earth’s core are not well known, while some
others have values too small to be implemented in numer-
ical geodynamo models. In other words, parameter values
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Figure 9. Radial Velocity Vr on a spherical shell 35 km below the CMB at t = 0.992, for (a) the true
solution, (b) the free running model, (c) BIa, (d) BIIa correlation distribution r(DR) between the fields in
Figures 9c and 9d and the true field (Figure 9a) are shown in Figures 9e and 9f, respectively. No model
error is introduced in the free model run and forecast. All units are nondimensional.
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used in numerical models are very different from those
appropriate for the Earth’s core. In addition, uncertainties
exist in other physical properties, such as the boundary
conditions (e.g., heterogeneity in the D00 layer or in the
lower mantle).
[60] The valid question arises: how then can OSSEs tell

us anything about how well a geomagnetic data assimilation
system can handle real data? Larger computing platforms
are becoming more generally available, allowing for in-
creasingly wider variations in parameter spaces that can be
computed with relative ease. Even though the geodynamo
will remain intractable for some time, an increasing numer-
ical parameter domain can tell more about how close we are
from the real Earth. For example, an approximation to this
problem can be made by creating a nature run with very
high resolution (and accordingly stiffer parameter values),
while the model used in the assimilation is designed to run
with substantially lower resolutions. Thus the nature run
parameters can be made beyond the capability of the
assimilation run, thereby adding this fundamental issue of
geomagnetic assimilation into the experiments.
[61] Finally, we return to the question of the impact of

model biases on the assimilation, and how they might be
overcome. Because most assimilation algorithms make the
assumption of unbiased Gaussian distributed forecast errors,
model bias will result in a less than optimal analysis. This
means that the analysis errors will be larger than predicted
by estimation theory. Recent work by Dee and Da Silva
[1998] describes a bias correction scheme that removes the
forecast bias in observed variables before assimilating
observations. In geomagnetic data assimilation this would
mean estimating and removing bias in the poloidal compo-
nent of the magnetic field. This is an area of future work.
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