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[1] Exact nonsinusoidal plane wave solutions of the linearized equations of ideal
magnetohydrodynamics are used to develop a decomposition scheme for extracting the
forward and backward propagating components of the fast, slow, and Alfvén modes from
measured data. The decomposition technique is formulated in the space-time domain for
waves propagating in one direction. The different wave modes are extracted by means of
projection operators that are expressed in matrix form. Because the elements of these
matrices are constants, the same projection operators can be used to obtain the mode
decomposition in the frequency (Fourier) domain. The projection operators are identical to
those obtained by Glassmeier et al. (1995) although they are derived here by different
means. In the case of wave propagation parallel or perpendicular to the background
magnetic field the wave modes are degenerate and require separate treatment. These
special cases are included in the present analysis so the resulting decomposition scheme
encompasses all possible propagation directions.
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1. Introduction

[2] The purpose of this paper is to show that the decom-
position scheme for linear magnetohydrodynamic (MHD)
wavefields developed by Glassmeier et al. [1995] can be
formulated in the space-time domain rather than the
frequency-wave number domain (Fourier domain). The
decomposition of MHDwavefields into forward propagating
and backward propagating fast, slow, and Alfvén wave
components can be regarded as an eigenvalue problem in
the six-dimensional configuration space. The mode decom-
position is achieved by projecting the state vector onto each
of six linearly independent eigenvectors. Thus the method is
completely specified once these six projection operators are
defined.
[3] The advantage of the method developed here is that

the decomposition can be performed in real time using the
measured variables v(x, t), b(x, t), and r(x, t) so there is no
need to Fourier transform the data. Here, v(x, t) is the fluid
velocity, b(x, t) is the magnetic field vector, and r(x, t) is the
mass density. The primary disadvantage of the method is
that it only applies to wavefields having one direction of
propagation. Special attention is given to the degenerate
cases that occur when the propagation direction is either
parallel (q = 0) or perpendicular (jqj = p/2) to the back-
ground magnetic field B0. These special cases require a

different decomposition scheme than the one developed by
Glassmeier et al. [1995]. These results, therefore, are new.
To provide a complete decomposition algorithm, and be-
cause they are needed in some applications, all angles of
propagation in the range jqj < p are included in the present
treatment.
[4] The outline of this paper is as follows. The analysis of

waves propagating parallel to B0 is presented section 2. The
case of waves propagating at an arbitrary direction to B0 is
presented section 3. The analysis of waves propagating
perpendicular to B0 is presented section 4. The conclusions
are summarized in section 5.

2. Waves Propagating Parallel to B0

[5] Choose a system of orthogonal Cartesian coordinates
(x, y, z) such that the background magnetic field B0 is
aligned with the x-direction. Thus B0 = B0ex where B0 > 0
and ex is the unit vector in the x-direction. For plane waves
that propagate in the x-direction @/@y = @/@z = 0 and the
linearized equations of ideal MHD take the form

@vx
@t

¼ � c2s
r0

@r
@x

; ð1Þ

@vy
@t

¼ VA

@by
@x

; ð2Þ

@vz
@t

¼ VA

@bz
@x

; ð3Þ
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@by
@t

¼ VA

@vy
@x

; ð4Þ

@bz
@t

¼ VA

@vz
@x

ð5Þ

@r
@t

¼ �r0
@vx
@x

; ð6Þ

where b is expressed in velocity units by dividing by (r0m0)
1/2,

VA= B0/(r0 m0)
1/2 is the Alfvén speed, cs is the sound speed, m0

is the permeability of free space, and bx= 0. The parametersB0,
VA, cs, and r0 which characterize the ambient medium are all
constant. The condition r � b = 0 is identically satisfied. The
polytropic equation of state p/rg = const, where g is the ratio of
specific heats, has been used to rewrite the pressure gradient
term in equation (1). Note that the equations for vx and r are
decoupled from the other equations; these are equations for
sound waves propagating parallel to B0. The remaining four
equations describe Alfvén waves.

2.1. Alfvén Waves

[6] Equations (2), (3), (4), and (5) describe Alfvén waves
propagating along the background magnetic field B0. The
wavefields v = (vy, vz) and b = (by, bz) are both polarized
perpendicular to B0. The general solution of the Alfvén
wave equations can be written

v x; tð Þ ¼ þf t � x

VA

� �
þ g t þ x

VA

� �
; ð7Þ

b x; tð Þ ¼ �f t � x

VA

� �
þ g t þ x

VA

� �
; ð8Þ

where f = (f1, f2), g = (g1, g2), and f1, f2, g1, and g2 are four
arbitrary functions. From inspection, it is obvious that the
forward (+x) propagating wave components are given by

vþ x; tð Þ ¼ þf t � x

VA

� �
; ð9Þ

bþ x; tð Þ ¼ �f t � x

VA

� �
; ð10Þ

and the backward (�x) propagating wave components are
given by

v� x; tð Þ ¼ g t þ x

VA

� �
; ð11Þ

b� x; tð Þ ¼ g t þ x

VA

� �
: ð12Þ

The solutions satisfy the well-known relation b+ = � v+ for
forward propagating Alfvén waves and b_ = +v_ for
backward propagating Alfvén waves.

[7] If the wavefields v and b are both measured at x = 0,
then the functions f and g can be derived from the relations

f tð Þ ¼ 1

2
v 0; tð Þ � b 0; tð Þ½ 
; ð13Þ

g tð Þ ¼ 1

2
v 0; tð Þ þ b 0; tð Þ½ 
: ð14Þ

The complete solutions can then be constructed for all x and
t from the formulas (7) and (8).
[8] If v and b are both measured at the point x as a

function of time t, then the forward propagating components
of the wavefields can be determined from the relations

vþ
bþ

� �
¼ 1

2

1 �1

�1 1

� �
v

b

� �
ð15Þ

or

vþ
bþ

� �
¼ Pþ v

b

� �
ð16Þ

where

Pþ ¼ 1

2

1 �1

�1 1

� �
ð17Þ

is the projection operator. The backward propagating
components of the wavefields can be determined from the
relations

v�
b�

� �
¼ 1

2

1 1

1 1

� �
v

b

� �
ð18Þ

or

v�
b�

� �
¼ P� v

b

� �
ð19Þ

where

P� ¼ 1

2

1 1

1 1

� �
ð20Þ

is the projection operator. These relations provide a real
time projection method for the decomposition of the Alfvén
wave fields into forward and backward travelling compo-
nents. In all of the above expressions the wavefields are
evaluated at (x, t) so that v = v(x, t), b = b(x, t), and so on.
[9] Analysis of the waves in the frequency domain are

achieved by means of the Fourier transform

F wð Þ ¼
Z þ1

�1
f tð Þeiwt dt: ð21Þ

For example, the Fourier transform of the forward wave
component v+(x, t) yields

Vþ x;wð Þ ¼ F wð Þeiwx=VA : ð22Þ
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The Fourier transform with respect to the spatial variable x
then yields

Vþ k;wð Þ ¼ 2pF wð Þd k � w=VAð Þ; ð23Þ

where d(k) is the Dirac delta function. Thus the wave
number spectrum is related to the frequency spectrum F(w)
by the substitution w = kVA. The backward propagating
wave component is

V� k;wð Þ ¼ 2pG wð Þd k þ w=VAð Þ ð24Þ

so that the wave number spectrum is related to the
frequency spectrum G(w) by the substitution w = �kVA.
The dispersion relations for the waves is enforced by the
delta function in wave number-frequency space.
[10] It is now shown that the decomposition into forward

and backward propagating wave components takes the same
form in the Fourier domain as in the space-time domain.
Suppose the fields v and b are measured as functions of time
at the point x = 0 and that the Fourier transform of the
measured fields is then computed. The Fourier transform of
equations (7) and (8) shows that

V 0;wð Þ ¼ þF wð Þ þ G wð Þ; ð25Þ

B 0;wð Þ ¼ �F wð Þ þ G wð Þ: ð26Þ

This can be inverted to obtain

F wð Þ ¼ 1

2
V 0;wð Þ � B 0;wð Þ½ 
; ð27Þ

G wð Þ ¼ 1

2
V 0;wð Þ þ B 0;wð Þ½ 
: ð28Þ

Likewise, the decomposition into forward and backward
propagating components are given by the Fourier trans-
forms (with respect to time) of equations (16) and (19)
evaluated at x = 0. This yields

Vþ
Bþ

� �
¼ Pþ V

B

� �
ð29Þ

and

V�
B�

� �
¼ P� V

B

� �
ð30Þ

where the projection matrices are given by equations (17)
and (20). Hence the same projection method works in both
the space-time domain and the frequency domain. The
formulations in the two domains are, therefore, equivalent.
The advantages of operating in the space-time domain
instead of the frequency domain are that the decomposition
can be performed in real time and there is no need to Fourier
transform the measured signals prior to the mode decom-
position procedure. However, the method can only be
applied when the wave propagation is unidirectional.

[11] The mode decomposition framework can also be
applied to random signals (stochastic processes). In the
linear theory of wave propagation there is no mode coupling
and, therefore, it is logical to assume that forward and
backward propagating components f1, g1, f2, and g2 are
mutually stochastically independent or otherwise uncorre-
lated processes. As a consequence, the power spectrum of
the stationary process vy(x, t) is equal to the sum of the
power spectra of f1 and g1. The power spectra of the other
wave components are computed in the same way.

2.2. Sound Waves

[12] For plane wave propagation parallel to B0 there
exists only one acoustic mode that propagates at the sound
speed cs. The wave normal diagram (Friedrichs diagram)
shows that this is the slow MHD mode when VA > cs and the
fast MHD mode when VA < cs. The general solution of the
governing equations (1) and (6) takes the form

vx x; tð Þ ¼ f t � x

cs

� �
� g t þ x

cs

� �
; ð31Þ

csr x; tð Þ
r0

¼ f t � x

cs

� �
þ g t þ x

cs

� �
; ð32Þ

where f and g are arbitrary functions. By inspection, the
forward propagating wave components are given by

vþx x; tð Þ ¼ f t � x

cs

� �
; ð33Þ

csrþ x; tð Þ
r0

¼ f t � x

cs

� �
; ð34Þ

and the backward propagating wave components are given
by

v�x x; tð Þ ¼ �g t þ x

cs

� �
; ð35Þ

csr� x; tð Þ
r0

¼ þg t þ x

cs

� �
: ð36Þ

This observation is the key to the decomposition procedure.
[13] If the wavefields vx and r are both measured at x = 0,

then the functions f and g can be derived from the relations

f tð Þ ¼ 1

2
þvx 0; tð Þ þ csr 0; tð Þ

r0

� �
; ð37Þ

g tð Þ ¼ 1

2
�vx 0; tð Þ þ csr 0; tð Þ

r0

� �
: ð38Þ

The complete solutions can then be constructed for all x and
t from the formulas (31) and (32).
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[14] If vx and r are measured at the point x as a function
of time t, then the forward propagating components of the
wave fields can be determined from the relation

vþ ¼ Pþv ð39Þ

where

v ¼ vx
csr=r0

� �
ð40Þ

and

Pþ ¼ 1

2

1 1

1 1

� �
ð41Þ

is the projection operator. The backward propagating
components of the wavefields can be determined from the
relation

v� ¼ P�v ð42Þ

where

P� ¼ 1

2

1 �1

�1 1

� �
ð43Þ

These projection operators provide a real-time decomposi-
tion of the acoustic wavefields into forward and backward
travelling components.
[15] As shown for the Alfvén wave modes in the previous

subsection, the mode decomposition procedure in the Four-
ier domain takes the same form as in the space-time domain.
One can obtain the necessary relations by setting x = 0 and
then taking the Fourier transform of all the equations in this
subsection. The generalization to random fields is also
performed as described in the previous subsection.

3. Waves Propagating at an Arbitrary Angle
to B0

[16] Choose a coordinate system so that the background
magnetic field B0 lies in the xz-plane and makes an angle q
with the x-axis. Thus B0 = B0(cos q, 0, sin q), where B0 > 0
and jqj 6¼ 0, p, p/2. For plane wave propagation in the
±x-direction @/@y = @/@z = 0 and the linearized equations of
ideal MHD become

@vx
@t

¼ � c2s
r0

@r
@x

� VA sin q
@bz
@x

; ð44Þ

@vy
@t

¼ 0 þ VA cos q
@by
@x

; ð45Þ

@vz
@t

¼ 0 þ VA cos q
@bz
@x

; ð46Þ

@by
@t

¼ VA cos q
@vy
@x

; ð47Þ

@bz
@t

¼ VA

@

@x
vz cos q� vx sin qð Þ; ð48Þ

@r
@t

¼ �r0
@vx
@x

; ð49Þ

where b is expressed in Alfvén units and bx = 0. The
condition r � b = 0 is also satisfied.

3.1. Alfvén Waves

[17] The equations for the y-components (45) and (47) are
decoupled from the other components and from the equa-
tions for the Alfvén waves. The general solution for the
Alfvén wave components takes the form

vy x; tð Þ ¼ þf t � x

VA cos q

� �
þ g t þ x

VA cos q

� �
; ð50Þ

by x; tð Þ ¼ �f t � x

VA cos q

� �
þ g t þ x

VA cos q

� �
; ð51Þ

where f and g are two arbitrary functions. The phase speed
of the waves f and g is vph = ±VA cos q, respectively. By
inspection of the general solution, the forward propagating
Alfvén wave component is obtained by setting g = 0 so that

vþy
bþy

� �
¼ 1

2

1 �1

�1 1

� �
vy
by

� �
 Pþ vy

by

� �
; ð52Þ

where P+ is the projection operator. The backward
propagating Alfvén wave component is obtained by setting
f = 0 so that

v�y
b�y

� �
¼ 1

2

1 1

1 1

� �
vy
by

� �
 P� vy

by

� �
: ð53Þ

Here the dependent variables are evaluated at the point (x, t).
This is the desired decomposition into forward and backward
propagating components.
[18] In terms of the unit vectors

e A
þ ¼ 1ffiffiffi

2
p 1

�1

� �
; eA� ¼ 1ffiffiffi

2
p 1

1

� �
; ð54Þ

the projection operators may be written

Pþ ¼ eþe
T
þ; P� ¼ e�e

T
�: ð55Þ

where the ‘T ’ indicates the vector transpose. These are
equivalent to the projection operators in the work of
Glassmeier et al. [1995] except that in the derivation
presented here these operators operate directly on space-
time functions rather than functions in the Fourier domain.
[19] The above results may also be expressed in the

frequency domain. From equations (50) and (51) the Fourier
transform of vy(x = 0, t) and by(x = 0, t) are

Vy x ¼ 0;wð Þ ¼ þF wð Þ þ G wð Þ; ð56Þ

By x ¼ 0;wð Þ ¼ �F wð Þ þ G wð Þ; ð57Þ
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where F(w) and G(w) are the Fourier transforms of f (t) and
g(t). Therefore if the frequency spectra Vy(x = 0,w) and
By(x = 0,w) are measured, then the spectra of the forward
and backward propagating components F(w) and G(w) can
be determined. In fact, the Fourier transformed quantities
obey the same projection relations (52) and (53) as the
space-time variables.
[20] In the case of random (stochastic) wavefields it is

consistent with linear wave theory to assume that the
forward and backward propagating signals are independent
processes (or uncorrelated). Thus the power spectrum of f (t) +
g(t) is equal to the sum of the power spectra of f and g.

3.2. Fast and Slow Waves

[21] The equations for the fast and slow waves (44), (46),
(48), and (49) form a linear system with constant coeffi-
cients that can be written

@v

@t
þ A

@v

@x
¼ 0; ð58Þ

where v = (vx, vz, bz, csr/r0)
T and

A ¼

0 0 VA sin q cs
0 0 �VA cos q 0

VA sin q �VA cos q 0 0

cs 0 0 0

2
664

3
775: ð59Þ

This linear system is solved using standard techniques, and
without the use of Fourier transforms, in the following way.
[22] The eigenvalues of the matrix A are written

l1;l2;l3;l4ð Þ ¼ þvf ;�vf ;þvs;�vs
 �

; ð60Þ

where vf > 0, vs > 0, and

v2f
v2s

� �
¼ V 2

A þ c2s
2

1� 1� 4V 2
Ac

2
s cos

2 q

V 2
A þ c2s

 �2
 !1=2

2
4

3
5: ð61Þ

Here the plus sign corresponds to vf
2 and the minus sign

corresponds to vs
2 and the subscripts f and s denote fast and

slow, respectively. Because jqj 6¼ 0, p, p/2 the eigenvalues
are all real, distinct, and nonzero so that the corresponding
eigenvectors e1, e2, e3, and e4 are linearly independent. If
these four column vectors are arranged into a matrix P = (e1,
e2, e3, e4), then

AP ¼ PD ð62Þ

where D is a diagonal matrix with the eigenvalues (l1, l2,
l3, l4) along the main diagonal. The matrix P obtained
using the nonnormalized eigenvectors can be written

P ¼

1 1 1 1

�
v2f � c2s

v2f tan q
�
v2f � c2s

v2f tan q
�v2s � c2s
v2s tan q

�v2s � c2s
v2s tan q

v2f � c2s

vf VA sin q
�

v2f � c2s

vf VA sin q
v2s � c2s
vsVA sin q

� v2s � c2s
vsVA sin q

cs=vf �cs=vf cs=vs �cs=vs

2
66666664

3
77777775
: ð63Þ

[23] Introducing the new variable u = P�1v, the linear
system (58) takes the form

@u

@t
þ D

@u

@x
¼ 0: ð64Þ

This system of four decoupled equations has the general
solution

u x; tð Þ ¼

f1 t � x

vf

� �

g1 t þ x

vf

� �

f2 t � x

vs

� �

g2 t þ x

vs

� �

2
66666666664

3
77777777775
; ð65Þ

where f1, f2, g1, and g2 are arbitrary functions. Thus the
solution of the original system (58) is given by v = Pu or

vx x; tð Þ ¼ f1 þ g1 þ f2 þ g2; ð66Þ

vz x; tð Þ ¼ �
v2f � c2s

v2f tan q
f1 þ g1ð Þ � v2s � c2s

v2s tan q
f2 þ g2ð Þ; ð67Þ

bz x; tð Þ ¼
v2f � c2s

vf VA sin q
f1 � g1ð Þ þ v2s � c2s

vsVA sin q
f2 � g2ð Þ; ð68Þ

csr x; tð Þ
r0

¼ cs

vf
f1 � g1ð Þ þ cs

vs
f2 � g2ð Þ; ð69Þ

where the functions f1, f2, g1, and g2 have the arguments
shown in equation (65). By inspection, one can immediately
see that the forward propagating fast wave components are
given by the terms proportional to f1, the backward
propagating fast wave components are given by the terms
proportional to g1, etc.
[24] If the components vx, vz, bz, and r are all measured at

x = 0, say, then one may determine the functions fj and gj by
the relation

f1 tð Þ
g1 tð Þ
f2 tð Þ
g2 tð Þ

2
664

3
775 ¼ P�1

vx 0; tð Þ
vz 0; tð Þ
bz 0; tð Þ
csr 0; tð Þ

r0

2
66664

3
77775 ¼ P�1v 0; tð Þ: ð70Þ

The complete wavefield is then determined by simply
evaluating the functions f1, f2, g1, and g2 at the space-time
arguments shown in equation (65).
[25] In terms of the transformed variable u, the forward

propagating component of the fast wave is given by

uþ
f x; tð Þ ¼ M

f
þu x; tð Þ ¼

f1 t � x

vf

� �
0

0

0

2
66664

3
77775; ð71Þ
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where

M
f
þ ¼

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
664

3
775: ð72Þ

In terms of the original variables this becomes

v
f
þ x; tð Þ ¼ PM

f
þ P�1v x; tð Þ ¼ P

f
þ v x; tð Þ; ð73Þ

where P+
f = PM+

f P�1 is the projection operator. The
backward propagating component of the fast wave is given
by

u�
f x; tð Þ ¼ M�

f u x; tð Þ ¼

0

g1 t þ x

vf

� �
0

0

2
6664

3
7775; ð74Þ

where

M�
f ¼

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

2
664

3
775 ð75Þ

or, in terms of the original variables,

v f
� x; tð Þ ¼ PM�

f P�1v x; tð Þ ¼ P�
f v x; tð Þ; ð76Þ

where P_f = PM_fP�1 is the projection operator.
[26] The forward propagating component of the slow

wave is given by

uþ
s x; tð Þ ¼ Ms

þu x; tð Þ ¼

0

0

f2 t � x

vs

� �
0

2
6664

3
7775; ð77Þ

where

Ms
þ ¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

2
664

3
775 ð78Þ

or, in terms of the original variables,

v s
þ x; tð Þ ¼ PMs

þP
�1v x; tð Þ ¼ Ps

þv x; tð Þ; ð79Þ

where P+
s = PM+

s P�1 is the projection operator. The
backward propagating component of the slow wave is
given by

us� x; tð Þ ¼ Ms
�u x; tð Þ ¼

0

0

0

g2 t þ x

vs

� �
2
6664

3
7775; ð80Þ

where

Ms
� ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

2
664

3
775 ð81Þ

or, in terms of the original variables,

v s
� x; tð Þ ¼ PMs

�P
�1v x; tð Þ ¼ Ps

�v x; tð Þ; ð82Þ

where P_s = PM_sP�1 is the projection operator.
[27] It only remains to derive explicit forms for the

projection operators. Assume now that the eigenvectors
e1, e2, e3, e4 are normalized. Then P�1 = PT and one can
show by straightforward computation that

P
f
þ ¼ PM

f
þP

T ¼ e1e
T
1 ; ð83Þ

P f
� ¼ PM�

f PT ¼ e2e
T
2 ; ð84Þ

P s
þ ¼ PMs

þP
T ¼ e3e

T
3 ; ð85Þ

P s
� ¼ PMs

�P
T ¼ e4e

T
4 : ð86Þ

These are the same projection operators obtained by
Glassmeier et al. [1995]. However, the interpretation here
is different. The wave decomposition derived here holds
entirely in the space-time domain. Using this technique the
data may be processed without Fourier transforms. How-
ever, the method is restricted to plane wave propagation in
one direction only.
[28] The mode decomposition in the frequency domain is

easily obtained from the mode decomposition in the space-
time domain by Fourier transforming the various decompo-
sition formulas with respect to time t and setting x = 0. The
results can also be generalized to handle stochastic signals
by assuming that the four different forward and backward
propagating signal components are independent stochastic
processes (or at least uncorrelated). Thus the power spec-
trum of vx(x, t) is the sum of the power spectra of f1(t), g1(t),
f2(t), and g2(t); that is, the sum of the power spectrum of the
forward propagating fast wave component plus the power
spectrum of the backward propagating fast wave component
plus the power spectrum of the forward propagating slow
wave component plus the power spectrum of the backward
propagating slow wave component.

4. Waves Propagating Perpendicular to B0

[29] For wave propagation perpendicular to B0 (q = p/2),
the wave equations take the form

@vx
@t

¼ � c2s
r0

@r
@x

� VA

@bz
@x

; ð87Þ

@bz
@t

¼ �VA

@vx
@x

; ð88Þ

@r
@t

¼ �r0
@vx
@x

; ð89Þ
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where b is expressed in Alfvén units and bx = 0. The case q =
�p/2 is obtained by making the replacement VA!�VA. The
general solution is given by

vx x; tð Þ ¼ f t � x

l

� �
þ g t þ x

l

� �
; ð90Þ

bz x; tð Þ ¼ VA

l
f t � x

l

� �
� g t þ x

l

� �h i
; ð91Þ

csr x; tð Þ
r0

¼ cs

l
f t � x

l

� �
� g t þ x

l

� �h i
; ð92Þ

where f and g are arbitrary functions and l = (VA
2 + cs

2)1/2. By
inspection, the forward propagating wave components are
obtained by setting g = 0. The backward propagating wave
components are obtained by setting f = 0. The solution is a
fast wave because the slow wave and Alfvén wave are
nonpropagating in the case jqj = p/2.
[30] The forward propagating wave components are given

by

vþ x; tð Þ ¼ Pþv x; tð Þ; ð93Þ

where v = (vx, bz, csr/r0)
T and

Pþ ¼ 1

3

1 l=VA l=cs
VA=l 1 VA=cs
cs=l cs=VA 1

2
4

3
5: ð94Þ

The backward propagating wave components are given by

v� x; tð Þ ¼ P�v x; tð Þ; ð95Þ

where

P� ¼ 1

3

1 �l=VA �l=cs
�VA=l 1 VA=cs
�cs=l cs=VA 1

2
4

3
5: ð96Þ

These projection operators provide the desired decomposi-
tion. It should be mentioned that the projection operators are
not unique in this case as can be seen from the fact that
det(P ±) = 0.
[31] As shown for theAlfvénwavemodes in subsection 2.1,

the mode decomposition procedure takes the same form in the
Fourier domain as in the space-time domain. The projection
relations are obtained by setting x = 0 in equations (93) and
(95) and then taking the Fourier transformwith respect to time.
The generalization to random fields is accomplished as
described in subsection 2.1.

5. Conclusions

[32] For MHD wavefields propagating in one direction
only, it has been shown how the forward and backward
propagating components of the fast, slow, and Alfvén
modes can be extracted from measured data. The decom-
position technique is formulated in the space-time domain
and allows for real-time processing of the data without the

use of Fourier transforms. Because the projection operators
are matrices with elements that are all constants, the same
projection operators can also be used to obtain the mode
decomposition in the frequency domain. Therefore the
decomposition procedure is the same in both the space-time
domain and the frequency domain. The major limitation of
the technique is that it only applies to wavefields with a
unique propagation direction and, moreover, this direction
must be known to perform the analysis.
[33] Thus far there has been no discussion of the impor-

tant implementation issues that must be addressed before
the space-time decomposition technique can be successfully
implemented in practice. For example, it is necessary to
determine the sensitivity of the method to the level of noise
in the data and to quantify the error due to uncertainty in the
wave propagation direction. Such issues lie outside the
scope of this paper but should not present a significant
impediment to the practical realization of the technique.
[34] The implementation of the space-time decomposition

technique can in principle be applied to data from a single
spacecraft if the propagation direction is known, either from
a minimum variance analysis or by other means. However,
the determination of the propagation direction or k-vector is
more reliably obtained using data from multiple spacecraft.
The multiple spacecraft approach to finding the propagation
direction is called ‘‘k-filtering’’ or the ‘‘generalized mini-
mum variance analysis’’ and is based on the technique
developed by Pinçon and Lefeuvre [1991] and Motschmann
et al. [1995, 1996].
[35] The technique of k-filtering has been combined with

the mode decomposition technique developed byGlassmeier
et al. [1995] to implement the ‘‘wave telescope,’’ a novel
invention for identifying wave modes and propagation direc-
tions using data from fleets of multiple spacecraft such as
ESA’s Cluster mission [Escoubet et al., 2001]. The basic idea
of the wave telescope was developed byDunlop et al. [1988],
Neubauer and Glassmeier [1990], and Neubauer et al.
[1990]. The theoretical framework for the analysis and
interpretation of measurements from multiple spacecraft
was worked out by Pinçon and Lefeuvre [1991], Glassmeier
et al. [1995], and Motschmann et al. [1996]. Recent imple-
mentation of the k-filtering technique using multipoint space-
craft data has been reported by Glassmeier et al. [2001],
Narita et al. [2003, 2004, 2006], and Narita and Glassmeier
[2005]. In the special cases of wave propagation parallel and
perpendicular to the background magnetic field the mode
decompositions developed in this paper can usefully be
applied in the wave telescope.
[36] It is of interest to briefly compare the practical utility

of the space-time decomposition scheme presented here to
the frequency/wave vector decomposition scheme devel-
oped by Glassmeier and others. Both methods are linear and
apply only to linear (small-amplitude) wavefields. While the
frequency/wave vector decomposition scheme can be ap-
plied to wavefields possessing multiple wave vectors, the
space-time decomposition scheme cannot. This is the major
drawback of the space-time decomposition scheme in its
current form. The obvious advantage of the space-time
decomposition scheme is that it can be performed in real
time with a minimum of computational work, but for the
ULF-VLF range of frequencies encountered in space phys-
ics applications the computational work required to perform
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the Fourier transforms needed for the frequency/wave
vector decomposition scheme does not present a significant
drawback. Thus for space physics applications, the space-
time decomposition scheme is not as versatile as the
frequency/wave vector decomposition scheme. Neverthe-
less, it may still be useful in some niche applications.
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