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[1] Linear Vlasov theory and one-dimensional hybrid simulations are used to study the
parametric instabilities of a circularly polarized parallel propagating Alfvén wave in a
homogeneous, magnetized, and collisionless plasma. We discuss the linear and the
weakly nonlinear development of the instabilities of the Alfvén waves, including kinetic
effects, and investigate the structure, the growth, and the damping of the driven ion
acoustic-like waves. The dispersion relation reproduces the fluid characteristics of the
instabilities in the case that protons are cold but contains an infinite number of roots in

the general case. We show that at low proton plasma 3, (3, ~ 0.1), kinetic effects
break the degeneracy of the mode-coupling solutions of the fluid theory, and we
unambiguously identify the growing and the damped modes. We find that contrary to
traditional thought, kinetic effects are important even for very low-£3, in the late
stages of the linear evolution, leading to a dephasing effect between the plasma pressure
and the density fluctuations. The relevance of the results to the experimental
identification of the instabilities, to the generation of local turbulence, and to the
reduction of cross helicity in the solar wind are pointed out.
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1. Introduction

[2] The nonlinear stability of finite-amplitude circularly
polarized Alfvén waves propagating along a background
magnetic field has been a matter of continuous research in
the last 30 years [e.g., Derby, 1978; Goldstein, 1978;
Longtin and Sonnerup, 1986; Wong and Goldstein, 1986;
Brodin and Stenflo, 1988; Viiias and Goldstein, 1991a,
1991b; Ghosh et al., 1993; Hollweg, 1994; Ruderman and
Simpson, 2004]. The interest in this subject is based on a
remarkable property of Alfvén waves, namely that they are
nonlinear eigenmodes of the magnetohydrodynamic (MHD)
equations. These waves have also received much attention
in the plasma literature because they occur ubiquitously in
space plasmas Belcher and Davis [1971] and the interstellar
medium Minter and Spangler [1997]. They are believed to
play an important role in coronal heating, solar wind
acceleration and the development of the turbulent structure
of the solar wind plasma [e.g., Tu and Marsch, 1995, 2001;
Bruno and Carbone, 2005; Wang et al., 2006]. However,
finite-amplitude Alfvén waves are unstable to parametric
decay in which the energy of the parent wave is gradually
transferred to compressible acoustic-like waves and other
fluctuations. Since compressive fluctuations can be damped
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through kinetic effects, an understanding of the relationship
between Alfvén wave activity and density fluctuations is of
great interest, not only in basic plasma physics but also in
application to space and astrophysical plasmas.

[3] A two-fluid analysis of the stability of a circularly
polarized Alfvén (pump) wave propagating with wave
number ky parallel to a mean field By shows that the pump
wave is unstable to the growth of several parametric
instabilities. The excitation of a compressional (acoustic-
like) daughter wave with k < k, generates a modulational
instability. The modulation wave is characterized by a
longer wavelength than that of the pump wave. This
instability occurs only in the presence of ion wave disper-
sion and usually involves an interaction of two forward
propagating Alfvén waves with wave numbers ky, — & and
ko + k (lower and upper sidebands, respectively). Another
instability that also arises for k < ky but does not extend
down to k£ = 0 was found by Hollweg [1994]. It is due to an
interaction between a forward propagating lower sideband
(—f) and a forward propagating acoustic-like (+s) wave.
Two more parametric processes are known to occur, the
beat and decay instabilities, which involve density fluctua-
tions with k& > ky. The beat instability arises from the
interaction of a forward propagating upper sideband (+f)
and a backward propagating lower sideband (—b) wave. An
analogous nonlinear coupling occurs also for two high-
frequency electromagnetic waves and electron-plasma
waves [Forslund et al., 1972]. The decay instability
involves the interaction between a +s and —b wave.

[4] Modulational instabilities and Alfvén solitons have
been studied, using the derivative nonlinear Schrédinger
(DNLS) equation in the work of Mjolhus [1976], Mio et al.
[1976], and Spangler and Sheerin [1982]. Fluid theory
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predicts a very strong dependence of the instability behavior
on 3, and on the pump polarization. However, it is known
that kinetic effects modify the DNLS equation and produce
a modulational instability independent of the plasma 3 and
the polarization mode [Mjolhus and Wyller, 1988; Spangler,
1989]. Furthermore, numerical solutions of the kinetically
modified DNLS equation show that the combined effects of
both wave nonlinearity and Landau damping result in the
formation of stationary S- and arc-polarized discontinuities
as observed in the solar wind plasma [Medvedev et al.,
1997].

[5] On the other hand, Inhester [1990], using the drift-
kinetic theory, showed that collisionless damping can sig-
nificantly reduce the growth rate of the decay instability and
enlarge the range of wave number over which the instability
exists. This result emphasizes the need for a fully kinetic
treatment of the problem. For 3 < 1, Terasawa et al. [1986],
using a hybrid code, also found a reduction of the growth
rates. However, the decrease was only slight when com-
pared with the rates predicted by fluid theory, while Vasquez
[1995] also using hybrid simulations, showed that even for
moderate amplitude (0B/B, < 1/2) their wave trains produce
instabilities and saturated states, which differ completely
from the fluid theory results if 5> 1.

[6] Although there has been much progress in charac-
terizing the instabilities of parallel propagating Alfvén
waves, a better understanding of the linear and nonlinear
kinetic behavior is clearly needed. Furthermore, since the
drift-kinetic approach is limited to the case of a large
wavelength of the pump wave and neglects dispersion, it
prevents the study of the beat and modulational instabil-
ities. On the other hand, the kinetic DNLS equation
excludes the decay instability.

[7] The aim of this paper is to carry out a systematic
study of both the linear and weakly nonlinear regime of
parametric instabilities of parallel propagating Alfvén
waves in an electron-proton plasma, including the effects
of collisionless damping, and to investigate the structure and
the growth and damping rate of the modes caused by the
coupling of the pump wave to the plasma.

[8] We propose to use a relatively simple method to
incorporate Landau damping into the fluid equations
[Araneda, 1998]. Instead of closing the fluid moment
equations by a polytropic closure equation (or by using a
fluid model for Landau damping), we determine the pressure-
density relation by a fully kinetic treatment of the ion-
acoustic-like wave dispersion relation, thus avoiding the
inadequacies of fluid models to describe resonant effects.
The outline of this paper is as follows. In section 2, the
physics of the model is presented and the dispersion relation
which includes Landau damping is derived. In section 3 we
carry out an analysis of the parametric instabilities. Computer
simulations supporting the analytical results of section 3 are
presented in section 4. A summary of the paper and
conclusions are given in section 5.

2. Basic Model and Dispersion Relation

[¢9] The present analysis assumes that a finite-amplitude
circularly polarized Alfvén parent (pump) wave propagates
along the background magnetic field By in a quasi-neutral
electron-proton plasma. We restrict ourselves to low-
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frequency (far below the electron cyclotron frequency)
electromagnetic fluctuations propagating parallel to a con-
stant magnetic field Byz in the +z direction, and adopt a
massless fluid-electron model. Furthermore, because the
purpose here is to study the effects of Landau damping on
the stability of Alfvén wave trains, we neglect heating in the
perpendicular direction. Vasquez [1995] has already shown
from hybrid simulations that the ion temperatures change
very slowly during the linear stage of the instabilities.
Therefore we assume that the distribution function (here
ng is the background density) of the proton component can
be represented by

F(Z7 v, l) = no(S(VL — VL)f(Zv Vz7t) 5 (1)

whereas the transverse bulk motion of protons is governed
by

av
nem,,TtL =n.eE| + (Jp X B)l , (2)

and quasi-neutrality, n, = n, is assumed. In this hybrid

kinetic-fluid model, the ion distribution function F(z, v, f)
evolves according to the Vlasov equation:

0 0 0
a+vza+(E+va)-E F(z,v,t)=0. (3)

The electric and magnetic field, E(z, /) and B(z, ¢), are
determined self-consistently from Maxwell’s equations,

OB
VXE—fa, (4)

VxB= .U'OJ ’ (5 )
where the total current density is
J=J.+7J,. (6)

The set of equations is completed by the inclusion of the
fluid equation for the warm massless electrons,

0=-neE+J, xB—-VP,. (7)

We have neglected the electron inertia force in equation (7),
which is equivalent to assuming that the wave frequencies
of interest are much less than the electron cyclotron
frequency. We have also neglected the displacement current
in equation (5). By eliminating the electron variables from
equations (5), (6), and (7), we obtain an expression
(generalized Ohm’s law in the so called Hall-MHD) for
the electric field,

_Jpr_'_(VxB)xB_E

nye Hohpe

E=—

; (8)

nee

where p, = nkgT,.
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[10] The system of nonlinear Vlasov-fluid equations (1)—
(7) permits the existence of circularly polarized Alfvén
waves of arbitrary amplitude,

1
B, = 7 [Bexpi(koz — wot)es + c.c.] 9)

where the amplitude B is real, and the polarization vector is
defined as

lectie], (e))] (10)
er = —— |, e, (e =e_
+ \/Z 2 Y +
and the plus (minus) denotes right-hand (left-hand) circular
polarization. In fact, integrating (3) over the transverse
velocity components v, and v,, it is straightforward to show
that incompressible eigenmodes exist with an ion fluid
velocity that is perpendicular to the magnetic field and has
the form

v, ___ Vi B,

(o /ko) B (11)

The frequency of the pump wave, wy, obeys the zeroth-
order dispersion relation,

%
1+£X

1 - (12)

where Yy = koVi/Q 0 Xo = wo/Q, Vi = Bo/(uon,my,)"?, and
2, = eBy/m,, is the proton cyclotron frequency.

[11] Perturbations are now considered about an equilibri-
um that is characterized by the circularly polarized pump
wave and a spatially uniform distribution function along the
constant magnetic field, which is written as

Fo(Z,V,I) :n()(s(VJ_ 7VJ_) O(Vz) s (13)
where the transverse fluid velocity components are given by
(11). The linearized Vlasov-fluid equation can thus be
expressed as

aai{ + vzaaﬁ + (8E + 6V, B, + Vi6B, — §V,,By — V,,6By)
- )
8f0("2) _
o 0. (14)

[12] To determine the linear growth or damping of the
unstable waves, we assume for simplicity that the perturba-
tion Of varies as exp(ikz — iwf), with a complex frequency w
and a real wave vector k, but in rigor we should use the
Landau procedure and take the Fourier-Laplace transform.
The expression for §f can be immediately obtained as

Ao (v2)/0v,
w—kv,

(15)

8f = —i(8E. + 6VB, + V6B, — 6V, B, — V,,6By)
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Following Hollweg et al. [1993] (see also Hollweg [1994]),
the perturbation fields can be expressed as follows:

OB, = by exp(ikyz — iwyt) + b_exp(ik_z —iw_t) ,  (16)

oV, = vy explikiz — iwyt) +v_exp(ik_z — iw_t) , (17)

OE, = Rele exp(ikz — iwt)] , (18)
where k. = ko + k, k_=ky — k*, v, =wot w, and w_ = wy —
w*. The parameter ¢ denotes the longitudinal electric field
amplitude. Linearizing the ion equation of motion (2) then
gives

€b+ Wy MBA
vi(Q-wy) = ——— =+ ——, 19
@ —w) = - S (19)
Q- )7_&&+”*BA (20)
v w-)= my, k_ 2

where A = (eQU/m,)(©2 — wy).

[13] For the purposes of the present work, we assume the
one-dimensional distribution function f, to be Maxwellian.
Consequently, from (15) we obtain for the density pertur-
bation the relation,

m= [t Blabe % —as® )] 2O

2 b
mp kv th

where 7' is the derivative of the plasma dispersion function
[Fried and Conte, 1961], with argument & = w/kv,,, and v,
denotes the parallel thermal speed v, = (2k3ﬂ|p/ml,)l/ 2 with
the parallel proton temperature 7). The factor o =V, o/B o
is defined by equation (11).

[14] We now evaluate the first velocity moment of
equation (14) and obtain the result:

Wi — al :i[i5+B(ab++vf—abf—v+)] .
myng  my,

(22)

From (14) and (21), and by help of the linearized continuity
equation for the density perturbation, we obtain the pressure
perturbation p; as

el 5]

[15] Note that by introducing the polytropic coefficient,
v, by means of the usual relation, ép/py = yon/ny, gives the
kinetic expression:

(23)

1
=2\ — —} . 24
v=2/¢ - 75 (24)
Since this + is a complex function of & [Belmont and
Mazelle, 1992], equations (23) and (24) indicate that density
and pressure fluctuations will not necessarily be in phase, in
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Figure 1. Phase speeds of the six standard ion acoustic-
like wave modes, obtained from the kinetic dispersion
relation for a left-hand parent wave, as a function of the
normalized wave number for 4 =0, X, = 0.35, 8,=0.2, and

B, = 0.

contrast with the phase-locking that results from the
constant value obtained in the fluid treatment. Furthermore,
the polytropic coefficient after (24) depends on the
dispersion properties of the plasma. Consequently, an
inverse Fourier transform of (23) implies an intricated
nonlocal real-space relation between pressure and density
(whereas in fluids the pressure is a local monomial of the
density). Thus kinetic theory introduces nonlocal effects
which ultimately control the transfer of energy between the
tranverse and longitudinal fluctuations [e.g., Rogister, 1971;
Mjolhus and Wyller, 1988; Spangler, 1989; Hammett and
Perkins, 1990; Medvedev and Diamond, 1996]. This
explains, in part, why it is not possible to find a reasonable
value for 7, when comparing the results from linearized
fluid theory with those of the hybrid simulations [Vasquez,
1995].

[16] Because we do retain the kinetic effects solely in ~,
the dispersion relation preserves the same structure as in the
fluid analysis [Hollweg et al., 1993; Hollweg, 1994].
Therefore after tedious but straightforward calculations,
the dispersion relation can be written in standard form as

L (LiD+R.B.)+L,R.B_=0, (25)
with the dispersion coefficients,
Ly =Y =X} /vy, (26)
YX? X, »
Ri=Y(Xo— 2 +—=](2 27
+ i(o YOX—"wi)(%) ) (27)
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D= %ﬁeYz XA, (28)
AXY, (Yarho X2 — Yot X?
B, -+ Vo (Yatb X5 0 X3) (29)

YoVs ’

and with the following definitions,

A=A+r(l—BY*/X?),
A= (B/By.),
=g,

oy =1-Xo; Yo =1-X,
Xe=Xo+X; Y=Yy +Y

Be = pe/ps = 2nksT./(myV3),
Br = B./2,
By =2/ Vi = (X/Y)=3,/Z,
ﬁp :pp/pB = V%h/Vj :

Here the quantities X and Y represent the normalized values
of w and £, as introduced previously. The above dispersion
relation has the same form as that obtained by Hollweg
[1994]. However, in our case it is not a polynomial
equation, and therefore its roots (an infinite number) will
not be complex conjugate pairs. Note also that the definition
of B( = B, + 3,) differs from the one used in pure fluid
theory 3 because we normalized the particle pressure to the
magnetic pressure, pz = B}2 Lo, associated with the constant
background field. Furthermore, in fluid theory there is no
distinction between the electron or proton (3, whereas here
both are separately considered and the kinetic §,x involves
the effective sound speed v, as obtained from (23).

[17] In the next section we shall solve this complex
dispersion relation numerically, in order to search for
damped and growing field-aligned wave modes in the
presence of pump waves with left-hand and right-hand
polarization.

2.1. Stability Analysis

[18] In order to facilitate the understanding of the kinetic
solutions of (25), we first consider a case similar to that
described in Figure 1 of Hollweg [1994], except that we
increased the pump frequency from X, = 0.25 to X, = 0.35.
Consequently, the pump wave number takes the value Y, =
0.434. Since 0= 0.1 in that work, we take 3= 0.2 in accord
with our definitions, where 3 = 3, + 3,. Figure 1 illustrates
the phase speed, Re(X)/Y, of the roots of the dispersion
relation (25) as function of wave number normalized by the
pump wave number /Y, for 4 =0, 3, = 0.2, and 3, = 0,
that is for the fluid case and no pump wave. In this case,
(25) attains the simple form, L, L_D = 0, and the dispersion
relation separates into three uncoupled branches.

[19] We show only the six standard modes of (25) (i.e.,
the two ion-acoustic modes and the four sideband-related
ion-acoustic-like modes) because the remaining modes are
severely damped. The symbols +s and —s correspond to
ion-acoustic modes propagating forward and backward
relative to the background magnetic field, respectively.
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Figure 2. (a) Same as in Figure 1 but now for the case of a

finite pump wave amplitude 4 = 0.2. The thick line indicates
instability. (b) Growth rate in units of the pump wave
frequency versus normalized wave number. Note the
appearance of a weakly unstable regime around Y/Y, =
2.0-2.5.

Those indicated by the symbols +f and +b denote the
forward and backward ion-acoustic-like modes driven by
the beating of the pump wave and the transverse modes
involving the upper sideband frequency and wave number,
(w4, ky), respectively. Similarly, the roots denoted by —fand
—b correspond to the forward and backward ion-acoustic-
like modes related to the transverse waves belonging to the
lower sideband, (w_, k_). As has been pointed out by
Goldstein [1978], it is relevant to recall here that for finite
amplitude pump waves the unstable waves will in general
not be normal modes of the plasma but driven oscillations
or ion quasi-modes.

[20] Figure 2a shows the phase speed, Re(X)/Y, of the
roots of (25), where A is increased to 0.2, whereas the other
parameters remain unchanged. As is clear from Figure 2a,
there are three unstable regions (as indicated by dark lines)
which can be recognized by the merging of two roots of the
dispersion equation. In this limit, the roots are complex
conjugate pairs and correspond to the decay, modulational,
and beat instabilities as indicated. Since 3,/2 — 1 +3X,> 0
and 3./2 — 1 + X, <0, this case corresponds, according to
the graphical summary of Hollweg [1994], to the situation
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shown in their Figure 18b. Note that the +b mode, because
of its uninteresting behavior, was not included in the plot.

[21] Figure 2b shows the growth rate normalized by the
pump wave frequency Im(X7X;) versus the normalized wave
number Y/Y,. As already observed by Inhester [1990] in
the pure fluid limit of the decay instability, the roots of the
dispersion equation become identical at the edges of the
unstable wave number ranges, and consequently we cannot
determine which mode goes unstable and which one is
damped. Note, however, that due to the small, but otherwise
finite, value of 3, a weak unstable region has emerged in the
wave number region 2.0 < Y/Y, < 2.5, without the
symmetric damped counterpart.

[22] The degeneracy of the roots in the fluid case can be
completely removed if we include collisionless dissipation.
In fact, Figure 3a shows again the case with 3 = 0.2, but
now we have the situation where the electrons are cold,
B. =~ 0, so that only the ions contribute to the thermal
energy, i.e., 8, = 0.2. Note, first, that the mode structure is
completely different from the MHD solutions displayed in
Figure 2a. Here, the unstable branches can be clearly

1.5
1.0}

05

Im(X)/X,

020 N\ N
00 05 1.0 15 20 25
YIY,

Figure 3. Results as in Figure 2 and for the same total
plasma 3 but now for 3, ~ 0, and 3, = 0.2. (a) Phase speeds
of the ion acoustic-like modes as a function of the
normalized wave number. Note the completely different
mode structure and splitting. (b) Growth rate in units of the
pump wave frequency versus normalized wave number.
Note the extended range of the beat wave instability.
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Figure 4. Normalized growth/damping rates (top row) for the various ion acoustic-like modes as
function of the normalized wave number, and (bottom row) the corresponding phase speeds. The parent
Alfven wave is left-hand polarized with 4 = 0.045. From left to right the proton plasma beta is increased

from 3, = 0.08, to 3, = 0.18, and finally 3, = 0.5.

distinguished from the damped ones. In particular, we can
observe that the double root of the modulational instability
at Y/Yy < 1 in Figure 2a is now split into two roots, one of
which, the —f'mode, has a positive imaginary part, whereas
the +f mode is damped. Similarly, the unstable branch for
the decay instability is the —b mode, with decreasing phase
speed, and an additional destabilization occurs at Y/Y, > 2.0,
in agreement with Inhester’s [1990] results.

[23] Another interesting feature that appears clearly in
Figure 3a is the apparent extended range of the decay
instability for Y/Y, < 1.2, actually corresponding to the beat
instability arising from the coupling between the +fand —b
waves. The beat instability therefore corresponds to an extra
destabilization of the —b branch (see Figure 3b). Although
in this case the growth rate of the beat instability is
relatively small, we shall see that in cases where this
instability is dominant, the unstable branch will remain
the one of the —H mode. Consequently, and contrary to
the fluid results where the beat instability is dominated by
the +f sideband, with the wave energy going to high
frequencies and wave numbers [Hollweg, 1994], the colli-
sionless dissipation will convert the beat instability effec-
tively into a source of backward propagating transverse
waves. Qualitative similar results were found by Gomberoff
[2000] and Gomberoff et al. [2001], who introduced a
collision-like term in the longitudinal component of fluid
equations to simulate the Landau damping. However, a
finite set of fluid equations with dissipative terms represents
an approximation which may be inadequate for some

regimes and (3, ~ 1. This point has been emphasized by
several authors [e.g., Medvedev and Diamond, 1996; Passot
and Sulem, 2004, and references therein].

[24] Let us now discuss in more detail the nature of the
different kinetic solutions. Still considering a left-handed
pump wave, we again investigate the case with 3./2 — 1 +
3Xy>0and §./2 — 1 + Xy < 0; nevertheless, we choose to
start in the fluid regime where the decay instability can be
easily stabilized. For example, when taking 3./2 = 0.8, 3, ~
0, X, = 0.1, and 4 = 0.01, we obtain a situation where the
three instabilities, i.e., modulational, beat, and decay can
emerge together. However, if the pump amplitude 4 is
increased the decay mode will be stabilized (see
Figures 8a—8c of Hollweg [1994]). The modulational
instability resulting in this regime, now due to the coupling
between the —f and +s waves, might not exist if 5,/2 0.9.
Consequently, we calculate the roots of (25) with 4 = 0.045
and gradually increase (3, by varying (3, and maintaining (3,
fixed at 3./2 = 0.9. In this way, we can isolate the beat
instability in the fluid regime.

[25] Figure 4 examines the consequences of ion kinetics
for the above fluid picture. The upper and lower rows show,
respectively, the normalized growth rates and phase speeds
of the different modes as 3, is increased. The first upper and
lower panels of Figure 4 illustrate the case when 3, = 0.08,
so that the fluid plasma (r ~ (8. + (3,)/2 is approximately
0.94. In this parameter regime a relatively strong beat mode
emerges in a very narrow wave number range around
Y'Yy ~ 1.1. Note, nevertheless, the broadening of the
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Figure 5. As Figure 4 but for the R mode with 4 =
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0.2, Xo = 0.2, and 3, = 1.0. From left to right the

proton plasma beta take the values 3, ~ 0, 3, = 0.034, 3, = 0.18, and 3, = 1.0, respectively.

instability range, but at much smaller growth rates due to the
interaction of the wave with a small population of resonant
ions (the thermal speed is still too low, v, ~ 0.24V)).

[26] This instability should not be confused with the
decay instability which, as already shown by [Inhester
[1990] and at the beginning of this section, exhibits a
similar behavior. In fact, the —b mode in this case has a
monotonically decreasing phase speed, and the unstable
range, for 3, # 0, has an upper bound at Y/Y, ~ 2.0.
However, as we already know, this instability results from
the coupling of the —b and +f waves. The latter mode has a
relatively constant phase speed and exhibits an enhanced
Landau-damped rate in the coupling region, which resem-
bles the fluid symmetric solutions at 3, = 0. The ion quasi-
modes +s and —s have also a constant phase speed, but they
are only slightly damped. The diagrams in the middle panels
of Figure 4 display the case of 3, being increased to 3, =
0.18. The maximum growth rate of the beat instability is
now about 50% of the maximum in the first diagram (about
30% of the maximum growth rate in the fluid limit).
However, the —f mode now has become unstable, giving
rise to a modulational instability in the wave number range
Y'Yy =~ 0—1, with growth levels comparable to the broad-
ened unstable region of the beat mode, whereas the remain-
ing modes become progressively more Landau-damped.

[27] For 3, = 0.5, the last two panels show that the
modulational instability might even be the dominant insta-
bility, with the —f mode reaching larger growth rates on a
broader wave number range than the —b wave. This
modulational instability is in agreement with the one pre-
dicted by Mjolhus and Wyller [1988], Spangler [1989], and
Medvedev et al. [1997] using the kinetically modified
DNLS equation, and from numerical simulations based on
a dispersive Landau-fluid model [Bugnon et al., 2004].

[28] If A4 is increased further, the beat instability will be
enhanced (as it occurs in the fluid regime) so that both the

beat and modulational instabilities may be simultaneously
present in the system. However, the beat mode tends to have
a larger growth rate than the modulational instability, and it
is the dominant instability for large-amplitude pump waves.

[29] As previously mentioned, in the fluid regime the
modulational instability can also result from the coupling
between the —f and +s waves when B ~ 1 [Hollweg,
1994], in contrast to the usual situation where instability is
due to the interaction between the +f and —f modes. Here
again, kinetic effects break the degeneration of the coupled
modes. As a result, the —f mode becomes unstable whereas
the +s is damped. Therefore the conclusion drawn from all
these cases that refer to the left-handed pump wave is that
the only modes which can becomes unstable are the —f and
—b modes.

[30] We turn now our attention to the right-hand (R-
mode) pump wave. In the fluid regime a right-handed wave
can undergo either the beat, decay, and/or the modulational
instability, depending sensitively on the values of the
plasma [y and the pump amplitude. The beat and decay
instabilities cannot emerge together, and the beat exists only
when the pump amplitude exceeds a threshold value.
Furthermore, if S 2 1 the beat instability will be the only
remaining mode, if the pump amplitude is large enough to
quench the modulational instability [Hollweg, 1994].

[31] Figure 5 illustrates the case in the fluid regime where
the decay instability is more important than the beat
instability. Specifically, we choose the constraints, 3./2 —
1 —3Xg<0and B./2 — 1 — Xy <0, with 3./2 =0.5, X =
0.2, and 4 = 0.2, which correspond to the fluid conditions of
the graphical summary in Figure 18d of Hollweg [1994].
Note that we are using positive pump frequencies (and also
positive pump wave numbers) so that the above relations
have a negative sign in front of X; as compared with those
in Hollweg’s work.
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Figure 6. Time evolution of the power spectrum for the magnetic field fluctuations (gray line) and
density fluctuations (dark line) as function of the mode number for the L mode parent wave. The pump
amplitude B is 0.5, m = +32, 3, = 1.4, and 3, = 0.01.

[32] The first diagram shows the case when (3, ~ 0 so that
the fluid plasma beta is 37 ~ 0.5. The decay instability
appears, as expected from the chosen fluid regime, as a
consequence of the coupling between the +s and —b waves.
Note that the phase speeds of the +s modes are given
approximately by c., = 3?5 Again, a small increase of
the ion temperature (3, = 0.034) is enough to break the
symmetry in the complex plane, and to make the —b branch
recognizable as the unstable mode. As it follows from the
remaining diagrams of Figure 5, the effect of increasing
further the ion plasma (3, reflects in a significant reduction
of the growth rate of the decay instability but also in a
broadening of the instability wave number range.

[33] At 3, = 0.18, the third diagram shows that the —f
mode is just starting to be excited in the form of a modula-
tional instability (as indicated by the dark line on the phase
speed plot), whereas the ion quasi-modes +s become in-
creasingly Landau-damped. At thermal equilibrium between
protons and electrons, the phase speed of the —s mode is
slightly larger than that of the —f'mode but nevertheless, it is
strongly Landau-damped as well. The modulational insta-
bility reaches a larger growth rate than the decay instability;
however, the maximum is only at about 15% of the maxi-
mum growth rate of the decay instability in the first diagram.
At larger pump amplitude, however, the decay instability
tends to dominate the modulational instability so that only
under the condition 3, > (3, the modulational instability may
attain similar growth levels than the decay instability.

3. Hybrid Model

[34] In order to investigate the time evolution of the
instabilities and to verify the linear analysis described

above, we have performed a number of high-resolution
and low-noise simulations using a hybrid code that is one-
dimensional but retains all three vector components of the
magnetic field and particle velocities [e.g., Winske and
Leroy, 1984; Terasawa et al., 1986]. In the simulations,
electrons are considered as a massless and isothermal fluid,
whereas the protons are treated kinetically as discrete
particles representing a homogeneous, magnetized, colli-
sionless plasma. The particle equations are advanced in time
with a leapfrog method, and the moments are computed
with a second-order weighting scheme. The fields are
advanced in time explicitly, and their derivatives are com-
puted from a fourth-order finite difference scheme. For the
high-resolution studies, the simulation box length has been
chosen as 32 times the wavelength of the pump wave, with
2048 grid cells and 400 particles per cell. The time step used
is typically A, ' = 0.01-0.03, where 2, is the proton
gyrofrequency. The boundary conditions are periodic for
both particles and fields, and the background magnetic field
By is in the z direction.

[35] We initialize the simulations with a uniform wave
train so as to represent the parallel propagating circularly
polarized Alfvén pump wave (7) of a given polarization.
The initial velocities of the simulation particles are so
assigned that they have a given parallel thermal speed vy,
and a transverse bulk velocity V given by (11). In order
to facilitate the comparison with the fluid theory and
previous kinetic studies, we choose pump wave parameters
similar to those used by Terasawa et al [1986] and
Vasquez [1995]. Therefore the pump wave number is ky =
0.408 and consequently the L (R) mode has values wy =
0.333 (0.499).
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3.1. L-Mode Simulations

[36] The nature of the parametric instabilities in general
depends not only on the pump wave amplitude and on 3 but
also on the ratio (3,/8,, i.e., on the temperature ratio, 7,,/7..
In order to get further insight into the role of ion kinetics, it
is important to verify and make sure that instabilities in the
kinetic and fluid descriptions do substantially differ. As
mentioned in the previous sections, the fluid part of the
instabilities has, in general, a strong dependence on 3, and
thus, when comparing hybrid simulations with pure fluid
theory, the most appropriate beta value to use in the fluid
dispersion relation is not 8. Instead, 3, should be used. By
taking 8 = 1.5 and 7/7T, = 0.5 in his simulation of the L
mode, Vasquez [1995] concluded that the predominantly M-
type instability was not to be expected from pure fluids,
where only a beat instability occurs for 5 = 1.5. However, if
0. (actually Br = (B./2) is used in the fluid theory, a strong
modulational instability and much more weaker and nar-
rower-band beat and decay instabilities emerge. On the
other hand, increasing (3, from zero to (3, = 1/3 (note that
T; = 38,/2 in Vasquez’s work) in the kinetic dispersion
relation (25), the effect of Landau damping reduces the
growth rates and broadens the wave number range of the
beat instability (the decay will almost disappear). Conse-
quently, in order to isolate effectively the beat instability in
the fluid regime and to show the effects of ion kinetics, we
have chosen a larger pump wave B = 0.5B, and increased (3,
from G, = 1.0 to 1.4 [see Hollweg, 1994, Figure 18c].
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Therefore in our subsequent study, /3, is gradually increased
from 3, ~ 0 to finite values.

[37] Figure 6 shows a time sequence of the wave power in
the magnetic field fluctuations (gray line) and density
fluctuations (dark line) as a function of the mode number
m, for the fluid case (5, = 0.01). At relatively early times
(t~122Q7" ) the parent Alfvén wave is responsible for the
peak at mode m = +32, whereas the signal-to-noise ratio is
too small yet to allow one to distinguish a growing mode.
Around ¢ = 2459711,, the magnetic wave power residing at
modes m = —9 and m = +73 is apparent, corresponding to
the backward-lower and forward-upper sideband waves
(w_, k) and (w4, ky), respectively. The density fluctuation
power peaks at mode m,; = +41, indicating what could be
the growth of a beat instability. On the other hand, the
growth of high-order sidebands in the magnetic-field fluc-
tuation power at m = 32 £ m, and m = 32 £ 2 m,, and for the
density at m = 2 m,; and m = 3 m, in the weakly nonlinear
regime is evident in the last panel, in agreement with the
results from the weakly nonlinear fluid theory and the MHD
simulations by Hoshino and Goldstein [1989]. Furthermore,
note the preference for the generation of forward propagat-
ing transverse waves [Hollweg, 1994].

[38] Let us now consider in more details the mode
structure by examining the density fluctuations in frequency

2f

w/Q,
(@]

o g
~. OEF
3 &

Figure 8. w — k power spectra in the same format as
Figure 7, but from the simulations for the L mode with (top)
B, = 0.1, (middle) 3, = 0.22, and (bottom) 3, = 0.3.
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of the L mode parent wave.

as well as in the wave number space. Figure 7 displays the
dispersion relations as calculated from the simulation and
from the linear theory, and shows the w — k dispersion
relation obtained by Fourier-transforming, both in space and
time, the density fluctuations during the initial phase of the
instability. The gray scale denotes the wave power on a
logarithmic scale. It is clear that most of the wave power
resides at w ~ 0.23 and k£ ~ 0.52, corresponding to the
position where the +f and —b branches of the theoretical
dispersion curves intersects (Figure 7a). This confirms that
the matching conditions and dispersion properties for the
beat instability in the fluid regime are satisfied. Figure 7
also reveals that the linear prediction very well corresponds
to the spectrum observed in the simulation, allowing a
complete identification of the remaining modes. Further-
more, note that the +b mode is damped.

[39] Let us now investigate the effects of ion kinetics by
increasing (3,. Figure 8 displays the power spectrum of the
density fluctuations which were obtained from a set of three
simulations with the same plasma configuration as in
Figures 6 and 7, except that here (3, was gradually in-
creased. The top panel shows the result for 3, = 0.1.
Comparing with Figure 7 it is evident that even for a small
but finite value of 3,, the kinetic plasma response signifi-
cantly differs from the pure fluid behavior. The beat
instability is now localized on the —b branch, exhibits a
broad spectrum, and is shifted with respect to the maximum
of the fluid case (the type-D instability in Vasquez’s work).
Note that due to the higher thermal noise level, the har-

monic modes are blurred or Landau damped. The middle
panel shows the case for 3, = 0.22. We observe that the —f
branch is becoming unstable at k& < ky which, according to
with the kinetic theory, corresponds to the modulational
instability. The last panel shows that for 3, = 0.3 most of the
density wave power resides on the —f branch, indicating the
dominance of the modulational instability over the beat
instability. In the fluid regime, however, exactly the oppo-
site occurs for these parameters, while the beat instability
still has its peak in a narrow band around k ~ 0.52.

[40] When the pump amplitude is increased to B = 0.6, it is
observed that the beat instability can reach a growth rate that is
comparable to the modulational one. For B = 0.7, the modula-
tional instability is still present, but only by a significant
increase of the proton plasma (3, can the modulational
instability acquire a more prominent growth rate. For larger
pump amplitudes the beat instability becomes clearly domi-
nant, in agreement with the kinetic analysis of the previous
section. Since the modulational instability emerges only in the
presence of ion wave dispersion, Alfvén waves could be
modulationally unstable only for high-frequency waves, that
is to say, for the ion-cyclotron frequency regime and small-to-
moderate amplitude of the pump wave. However, for pump
frequencies lower than the ion-cyclotron frequency the kinetic
effects are, via Landau damping and particle trapping, still
operative, and the —b mode will remain unstable as described.

[41] It is worthwhile to make a complementary examina-
tion, in order to appreciate when kinetic effects are expected
to be important. Figure 9 shows the auto-correlation of the
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pressure, C(6p), and cross-correlation between density and
parallel pressure fluctuations, C(ép, én), for early and late
stages of the linear evolution of the L-mode, for the cases
with 3,=0.01 and 3, = 0.2. As can be seen from Figure 9a,
during the early linear stage of the instability, the low-3,
case exhibits both C(6p) and C(dp,on) values which clearly
indicates coherent effects of periodic structures. When the
fluctuations have grown enough (as shown in Figure 9c),
the periodic structures are clearly visible but with a signif-
icant dephasing between the fluctuations in pressure and
density. This particular result clearly suggests that kinetic
effects cannot be ignored even within the fluid regime,
which is contrary to the traditional belief. For the case with
B, = 0.2, the thermal effects suppress the early formation of
such coherent correlations and manifest itself in a weak
dephasing between the density and pressure fluctuations in
the region of the largest pressure autocorrelation (Figure 9b).
Finally, in the later stage of this case (Figure 9d), we
observed that within the region where the pressure fluctua-
tions are strongly auto-correlated, the cross-correlation
exhibit sudden changes, between positive and negative
values, which indicates a significant decorrelation effect.
Thus we see clear evidence for the predictions of section 2
that density and pressure fluctuations will not necessarily be

ARANEDA ET AL.: LANDAU DAMPING OF ALFVEN WAVES

A04104

in phase, and for the idea that the polytropic index depends
on the instantaneous state of the plasma. Moreover, we have
observed that before saturation occurs, the distribution
function undergoes strong topological changes in velocity
space that cannot be accounted via a lineal treatment
because the interactions of the charged particles with the
growing ion-acoustic waves is actually a nonlinear problem.
These effects breakdown the symmetry of the distribution
function mainly in the direction parallel to the magnetic
field and they are even stronger for 3, < 1. Thus ironically
and in consequence, the regime just where the fluid theory
appears to be most appropriate, is also where the kinetic
effects play the most dominant role in the saturation
mechanism and determines the spectral energy transfer for
the postsaturation stage.

3.2. R-Mode Simulations

[42] Let us now describe the results of the simulations for
the right-hand polarized pump wave. According to the fluid
theory, if the parameter regime satisfies the constraints (3./2
— 1 —3Xy<0and 3,/2 — 1 — X, <0 the only instability is
the decay instability [see Hollweg, 1994, Figure 18d]. Thus
to examine the effects of ion kinetics on the decay, we
choose 3., = 2.0, a pump amplitude of 4 = 0.5, and gradually
increase (3, from zero, to finite values, but restricting 3 so
that the above conditions be still satisfied.

[43] Figure 10 shows the w — k dispersion relation of the
density fluctuations in the linear stage for the cases 3, = 0.1,
B, =10.2, and 3, = 0.3, respectively. As expected from the
linear theory for a finite-amplitude pump wave, the top
panel shows that in the low 3, regime (3, = 0.1), the decay
instability is dominant and leads to the generation of several
harmonics. Most of the power resides in w ~ 0.45 and k ~
0.45, corresponding to the region where the +s and —b
mode merge and therefore giving rise to the decay instability.
It is important to point out that for finite pump amplitude
the +s mode couples with the —f mode in the unstable
region (k/kg < 1). At large k, however, the —fmode is quickly
damped whereas the +s mode extends a little more
(although weakly). The reason for this behavior is that
the +s (and also the —s) wave, as normal modes, can get
slightly excited due to the thermal noise, however the —f'
mode cannot because it is an ion quasi-mode.

[44] The middle panel shows the result for 3, = 0.2. The
decay instability is still present but the peak intensity is
weaker compared with that of the first case. In addition, we
observe a destabilization of the —b mode at k/kq = 1.5 and
the quench of the harmonics, as also seen in the previous
section for the L-mode case. The last panel shows that for
B, = 0.3 most of the density wave power resides on the —b
mode and also at k& < k, indicating the presence of a
modulational instability. According to kinetic theory, this
destabilization occurs on the —f branch, whereas the +s
mode is damped (except for the weak excitation due to the
thermal noise). Note also that there is a broadening of the
unstable wave number ranges and no power on the original
position of the decay instability. In the fluid regime, the
modulational instability cannot emerge for these parameters
and the decay instability still exists around k ~ 0.45.

[45] Figure 11 shows a time sequence of the wave power
in the magnetic field fluctuations (gray line) and density
fluctuations (dark line) as a function of mode number m, for
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Figure 11. Plots similar to Figure 6 show the evolution of the R mode for the case with 3, = 0.3. The
parent Alfvén wave has m = —32 and is propagating forward.

the case (3, = 0.3). Since the pump wave is right-hand
polarized, magnetic wave power at m < 0 corresponds to
transverse fluctuations propagating forward. Thus the parent
Alfvén wave has m = —32. Around ¢ =~ 492 Q;l, magnetic
power residing at modes m ~ —9 and m ~ —55 is already
evident, corresponding to the forward-lower (—f) and for-
ward-upper (+f) sideband waves, respectively. Because
density fluctuation power peaks at m; ~ 23, the resonant
condition for a modulational instability is satisfied. On the
other hand, the growth of magnetic field fluctuation power
at m =~ 19, and for the density at m; ~ 50, indicates the
presence of the decay instability. At the end of the linear
stage (f = 655 Q! p»)» most of the magnetic power is seen at
m =~ —9 and m = 18. This confirms the predictions of the
kinetic theory, namely that the modulational and decay
instabilities are dominated by the —f and —b modes,
respectively.

[46] Figure 12 shows the measured growth rates of the
unstable density fluctuation modes for the three cases
studied. For 3, = 0.1, the strong peak at k ~ 0.45 in the
top panel of Figure 11 corresponds to the growth rate of the
decay instability, while the secondary peaks correspond to
the growth curves of the compressional harmonic waves.
The growth rate of the decay instability is approximately at
75% of the calculated kinetic linear rate. When g3, is
increased to (3, = 0.2, the middle panel shows an abrupt
reduction of the growth rate of the decay instability. As
already noted in Figure 10, not only the harmonic waves are
damped but so is the background noise wave activity, which
notoriously is quenched at £ > 1. The growth rate of the
peak of the decay instability in this case is about 72%
smaller than in case a and amounts to about 45% of the
calculated linear rate.

[47] Another important feature of Figure 12 (middle) is
the growth at 0.5 < k& < 0.8, corresponding to the additional
destabilization of the —b mode. The linear kinetic theory
and simulations gives the same growth rates for this wave
number region. Finally, the growth rates for 3, = 0.3 are
shown in the bottom panel. Here, both kinetic instabilities,
decay and modulation, are present but the growth rate of the
modulational instability is slightly larger. The calculated
kinetic linear rates exhibit exactly the same behavior, but
the growth rate corresponding to the modulational instabil-
ity is about 50% larger than the one computed from the
simulation. Similar discrepancies for the modulational in-
stability appear for the growth rates for a pump wave with a
larger frequency (X, = 0.6). Nevertheless, the instabilities
can still be clearly identified. This discrepancy may be due
to the fact that our Vlasov-fluid model does not include ion-
cyclotron damping. In fact, the dispersive effects arising
from the cyclotron motion in our model partially retain the
fluid-like character of the MHD description. Furthermore,
finite-Larmor-radius (FLR) corrections were not included.
To properly incorporate the FLR effects would require that
the determination of the first-order distribution be obtained
by integrating the equilibrium distribution along the char-
acteristics (the unperturbed trajectories). In the presence of a
single monochromatic finite-amplitude Alfven wave, this is
a formidable task since the trajectory equations give rise to
elliptical integrals [Roberts and Buchsbaum, 1964] which
have to be incorporated in the linear analysis. In the case of
a small-amplitude pump waves, the method of Lee and
Kaw, [1995] could be adapted to obtain a solution that can
be compared with recent fluid-kinetic models that use more
sophisticated closure schemes. However, as remarked by
Vasquez, [1995], particle and even fluid simulation growth
rates are influenced by several effects, including weak
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Figure 12. Growth rates of the unstable density modes as
a function of the normalized wave number for the R mode.
The proton plasma beta is (top) 3, = 0.1, (middle) 3, = 0.2,
and (bottom) 3, = 0.3. Note the abrupt decrease of the main
peak of the MHD-decay instability’s growth rate for
increasing (3,,.

nonlinear couplings in the linear regime. Therefore simu-
lations and linear-mode calculations do not generally give
exactly the same growth rates.

4. Conclusions

[48] We derived from a Vlasov-fluid model a set of
equations that describe the parametric instabilities of circu-
larly polarized Alfvén waves of arbitrary amplitude in an
electron-proton plasma with kinetic effects. The dispersion
relation was numerically evaluated by using a self-consistent
distribution function. An examination of the mode structure
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of the ion acoustic-like waves for both left- and right-hand
polarized pump waves was presented. Our analysis and
simulations show that even at relative low 3, (3, ~ 0.1)
kinetic effects break the degeneracy of solutions as obtained
in the the standard picture of fluid-mode coupling, thus
allowing us to identify unambiguously the growing and
damped modes. Our linear-mode calculations complement
the drift-kinetic study of the decay instability by Inhester
[1990], who showed that a small amount of ion thermal
energy not only leads to a drastic reduction of the maximum
growth rates of the instability as compared to the fluid limit
but also shifts the wave number of the maximum growth
rate and broadens the unstable wave number range.

[49] We also found that the beat instability exhibits a
similar behavior, and that for both instabilities (i.e., the beat
and decay) the unstable branch is the —b mode. Although
an enhancement of (3; decreases the growth rates of these
instabilities, collisionless dissipation leads to the excitation
of ion quasi-modes and to the generation of backscattered
Alfvén waves. Since the condition 3, 2 0.1 is fulfilled most
of the time in the solar wind plasma, the beat and decay
instabilities may be an effective mechanism to generate
backward propagating Alfvén waves. They have been
invoked to play a key role in the local production of
turbulence and reduction of the cross helicity in the solar
wind, and in the pitch-angle diffusion [see Marsch and Tu,
2001] of the core protons in the velocity distributions of the
fast solar wind. We suggest that using high time resolution
solar wind plasma data of proton density and pressure, for
example as those in the 3DP plasma detector in the WIND
spacecraft which resolves the distribution function in 3 s
with a telemetry time of perhaps 12 s, a cross-correlation
between these quantities could be carried out to search for
events where the dephasing of density and pressure is
observed and if possible to examine the shape of the proton
distribution function during those times. Another observa-
tional signature for the presence of the ion acoustic-like
waves and the dephasing effect should be a quasi-
monochromatic bump in the density spectrum and its corre-
lation with the magnetic power spectrum as studied by Agim
et al. [1995] and Spangler et al. [1997]. On the basis of the
results of this paper the analysis carried out, for example, by
Spangler et al. [1997], should be performed using kinetic
theory. This will help to verify that kinetic effects are
certainly important even in low 3, plasmas. We speculate
that kinetic effects are also important in regions such as the
solar corona where (3, has been estimated to be very small
(~0.001) and where most of the studies has been carried out
using fluids models with little or no kinetic effects included.

[50] The results found in the present paper are limited to
the cases where strong nonlinearities could be neglected.
Thus the nonlinear saturation and long-time evolution of the
instabilities were not considered [Vasquez, 1995]. Our results
are also limited to one spatial dimension. The extension of
this study to a two-dimensional model would enlarge the
parameter space, and therefore allow more mode-couplings
and excited waves to be oblique [ Visias and Goldstein, 1991a,
1991b]. We are currently examining such scenarios, and a
detailed discussion will be presented in a separate article.
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