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A dual-photoelastic-modulator- (PEM-) based spectropolarimetric camera concept is presented as an
approach for global aerosol monitoring from space. The most challenging performance objective is to
measure degree of linear polarization (DOLP) with an uncertainty of less than 0.5% in multiple spectral
bands, at moderately high spatial resolution, over a wide field of view, and for the duration of a multiyear
mission. To achieve this, the tandem PEMs are operated as an electro-optic circular retardance modulator
within a high-performance reflective imaging system. Operating the PEMs at slightly different resonant
frequencies generates a beat signal that modulates the polarized component of the incident light at a
much lower heterodyne frequency. The Stokes parameter ratio ¢ = @/I is obtained from measurements
acquired from each pixel during a single frame, providing insensitivity to pixel responsivity drift and
minimizing polarization artifacts that conventionally arise when this quantity is derived from differences
in the signals from separate detectors. Similarly, u = U/I is obtained from a different pixel; ¢ and u are
then combined to form the DOLP. A detailed accuracy and tolerance analysis for this polarimeter is

presented. © 2007 Optical Society of America
OCIS codes: 120.5410, 230.2090, 280.1100.

1. Introduction

Aerosols, tiny particles suspended in the air, have
profound and myriad influences on the Earth’s cli-
mate, hydrological cycle, air quality, and human
health. Climate and environmental policies require
reliable models of aerosol impacts, and these models
can only be validated and constrained by accurate
measurements. Satellite remote sensing, with its
global perspective, has a key role in measuring the
distribution, radiative impact, and microphysical
properties of aerosol-laden air masses. However, pa-
rameters such as aerosol optical depth (AOD), single-
scattering albedo (SSA), particle size distribution,
particle shape, refractive index, and vertical distri-
bution jointly govern backscattered radiances; and as
a consequence, remote sensing retrievals are typi-
cally underconstrained.
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Recent remote sensing advances have used a vari-
ety of approaches to deal with this indeterminacy,
each sensitive to different aspects of aerosol micro-
physics [1]. Multispectral techniques, e.g., from the
Moderate Resolution Imaging Spectroradiometer
(MODIS) on the Terra and Aqua satellites, make use
of spectral scattering efficiency to provide sensitivity
to particle size along with AOD [2,3]. Inclusion of
bands in the visible and shortwave infrared (SWIR),
in particular, provides discrimination between fine
and coarse size modes. Near-ultraviolet mapping
from the Earth Probe Total Ozone Mapping Spec-
trometer (TOMS) and the Ozone Monitoring Instru-
ment (OMI) on Aura is beneficial because most
surfaces are dark at these wavelengths, and the in-
teraction between aerosol and Rayleigh scattering
provides enhanced sensitivity to aerosol absorption
and height [4,5].

Multiangle intensity imaging, e.g., from the Envi-
sat Advanced Along-Track Scanning Radiometer
(AATSR and its precursors), and the Terra Multi-



Table 1. Salient Aerosol Sensor Characteristics

Spatial Spectral Global Coverage
Resolution Along-Track Range Polarimetric Time
Instrument (km) Angular Range (nm) Uncertainty (days)
MISR 0.275-1.1 70° fore-70° aft 446-866 NA 9
MODIS 0.250-1.0 NA* 469-2130 NA 2
AATSR 1-2 0°, 55° fore 550-1610 NA 5
TOMS/OMI 20-40 NA 270-500 NA 1
POLDER 6-7 60° fore—60° aft 443-910 2% 2
APS 6-20 60° fore—60° aft 412-2250 0.2% NA
MSPI 0.275-1.1 70° fore-70° aft 355-1610 0.5% 4

“NA = not applicable.

angle Imaging SpectroRadiometer (MISR), take ad-
vantage of differences in the spatial and angular
reflectance signatures of the surface and atmosphere
to retrieve AOD over a wide variety of surfaces [6-9].
Multiangle radiometry also provides constraints on
particle size and sphericity by sampling the particle
scattering phase function [10,11]. Oblique slant
paths through the atmosphere enhance sensitivity to
aerosols and thin cirrus, and stereoscopy makes pos-
sible the geometric retrieval of aerosol plume-top
heights when sufficient spatial contrast is present to
facilitate pattern matching [12].

Multiangle polarimetric data at visible and short-
wave infrared wavelengths provide compositional
proxy information through retrieval of the real part of
the aerosol refractive index, n,, and particle size mode
variances, each with greater sensitivity than inten-
sity measurements alone. These capabilities have
been demonstrated experimentally with the air-
borne Research Scanning Polarimeter (RSP) [13,14],
through theoretical sensitivity studies [15], and with
the spaceborne Polarization and Directionality of
Earth’s Reflectances (POLDER) instrument [16].
POLDER spatial resolution is 67 km, with degree of
linear polarization (DOLP) uncertainty of ~2% [17].
The Aerosol Polarimeter Sensor (APS) instrument for
NASA’s Glory mission, using similar design concepts
as the airborne RSP, will provide very accurate mul-
tiangle polarimetric measurements (linear polariza-
tion uncertainty ~0.2%), but in a coarse resolution
(6—20 km, depending on view angle), nonimaging
mode [18]. APS spatial coverage is limited to a single
along-track scan over a swath measuring ~6 km in
width in the nadir.

Integration of multispectral, multiangular, and po-
larimetric sensing approaches into a single instru-
ment enables a synergistic reduction in retrieval
indeterminacies [19], providing the best chance of
meeting the requirements for climate studies (equiv-
alent to radiative forcing uncertainty less than
1 W m ?), and air quality studies, for which moder-
ately high spatial resolution improves aerosol-cloud
discrimination and makes possible measurement of
urban aerosol gradients. Imaging over a broad swath
provides global coverage within a matter of days,
encompassing the typical residence time of aerosols
and providing sampling on temporal scales valuable

for data assimilation. A broad swath also makes pos-
sible the capture of unusual events, and enables fre-
quent sampling of validation and field campaign
sites. An integrated imager is one component of a
future mission concept endorsed by the National Re-
search Council Decadal Survey for Earth Sciences
[20]. Our approach, the Multiangle SpectroPolari-
metric Imager (MSPI), brings together key attributes
of the instruments cited above (see Table 1).

The most difficult requirement for MSPI, given the
current state of technology, is the 0.5% DOLP toler-
ance. This requirement allows for the accurate simul-
taneous retrieval of AOD and particle size when
combined with accurate multiangle-multispectral
radiance measurements. The polarization measure-
ments provide particular sensitivity, of =0.01, to n,,
thus providing information regarding particle compo-
sition. Polarimetry acts synergistically with intensity
measurements to reduce the level of indeterminacy in
the retrieval of aerosol properties, and also has the
potential to reduce uncertainties in AOD retrievals
by about a factor of 2 relative to intensity-only mul-
tiangle measurements.

2. Instrument Architecture

A. Predecessor Instrument Configuration

The MISR instrument [21] provides the starting
point for definition of the MSPI instrument architec-
ture. MISR acquires multiangle radiance imagery
from a set of nine pushbroom cameras, with the for-
ward and backward viewing cameras paired in a sym-
metrical arrangement at a fixed set of view angles.
Relative to the Earth’s surface, the along-track an-
gles are nominally 0° (nadir) and 26.1°, 45.6°, 60.0°,
and 70.5° forward and backward of nadir. During a 7
min interval, each point within the instrument swath
is viewed in succession by the nine cameras as the
spacecraft flies overhead.

The MISR lenses are superachromatic, seven-
element, refractive f/5.5 telecentric designs, and the
focal lengths vary with view angle in order to pre-
serve cross-track sample spacing. A double-plate Lyot
depolarizer is incorporated into each of the cameras
to render them polarization insensitive. Focal lengths
range from 59 to 124 mm, keeping cross-track pixel
size and sample spacing to 250 m for the nadir cam-
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era and 275 m for the off-nadir cameras. Along-track
footprints depend on view angle, ranging from 214 m
in the nadir to 707 m at the most oblique angle.
However, sample spacing in the along-track direction
is 275 m in all cameras as a consequence of the 40.8
ms line repeat time of the charge-coupled device
(CCD) readouts. Each MISR camera contains four
CCD line arrays with 21 pm detector pitch, and a
focal plane filter assembly is mounted above the
CCDs to define the four optical bandpasses, centered
at 446, 558, 672, and 866 nm. Coregistration of the
data in both band and angle is accomplished in
ground data processing [22].

B. Incorporation of Polarimetric Imaging

The MISR optical design requires modification to ac-
commodate the MSPI spectral and polarimetric re-
quirements. A depolarizer cannot be used, and the
new design must have low polarization aberrations,
particularly low diattenuation, and must have high
transmittance from the ultraviolet (UV) to the SWIR.
To reduce the time it takes to cover the entire globe
from low Earth orbit, the MSPI cameras have twice
the cross-track field of view (FOV) of the MISR cam-
eras (approximately +31° for the shortest focal
length lens). In the along-track direction, a =1° FOV
accommodates the suite of detector lines filtered to
various spectral bands and polarimetric states.

The polarization state of light incident on an opti-
cal system can be represented by the four Stokes
parameters (I, @, U, V), where the component [ is the
total intensity; @ represents the excess of light at 0°
orientation to a specified plane relative to the inten-
sity at 90°; U is the excess of intensity at 45° relative
to 135°; and V is the excess of right-handed circular
polarization to left-handed circular polarization. In
terms of the Stokes parameters, the degree of linear
polarization, DOLP, is

DOLP = (Q/I)? + (U/T)? = \¢* + u?, (1)

which depends only on the relative ratios ¢ and u,
given by

q=Q/I, (2)
u=U/ (3)

For natural targets illuminated by sunlight, circular
polarization is anticipated to be less than 0.1% of the
total intensity. The MSPI instrument concept mea-
sures only the linear polarization components. None-
theless, the optical system is designed to minimize
instrumental circular polarization, as well as cross
talk of Vinto @ and U.

Many factors affect the polarimetric accuracy of an
imager [23], including polarization sensitivity of the
optics (termed instrumental polarization), requiring
accurate calibration; the use (in most design config-
urations) of different detectors whose signals are sub-
tracted to measure polarization (with implications for
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detector cross calibration); and spatial displacements
on the ground of the locations where different polar-
ization orientations are measured, giving rise to so-
called “false polarization” or “polarization artifacts.”
Spatial misregistration between the measurements
comprising a polarization measurement is particu-
larly problematic in the presence of scene gradients.

Snapshot or spectrum channeling imagers use
optical elements—gratings, prisms, or birefringent
crystals—to encode the polarization state within a
spatially or spectrally varying signal recorded on an
area array detector [24—28]. These approaches are
elegant but typically have high polarization uncer-
tainties, and can introduce errors in the presence of
rapid spatial or spectral variability. Other methods
include polarimeters that optically divide the in-
coming light using beam splitters; however, optical
aberrations and scattered light can be problem-
atic. Division-of-aperture polarimeters, which em-
ploy multiple analyzers operating side-by-side, have
fewer optical components, but their main drawback is
the use of different detectors to reconstruct the
Stokes vector. Small errors in calibration between the
detectors could make it difficult to achieve a verifiable
and reliable DOLP measurement uncertainty of
0.5%. For example, the MISR pushbroom cameras
acquire multispectral, nonpolarimetric observations
using adjacent line arrays overlain by filters passing
different wavelengths [21]. The analog of this mea-
surement approach for polarimetry would be to over-
lay different line arrays with analyzers in different
orientations. MISR experience shows that the data
from different lines within a single camera can be
digitally coregistered to better than 1/10 of a pixel;
however, even after extensive analysis of the in-flight
data, residual uncertainties in the radiometric cross
calibration between channels are of the order of
1%—2% [29]. Such an arrangement would by itself
risk violating the 0.5% DOLP requirement, and some
additional means of reducing errors is needed.

In scanning instruments detector cross calibration
can be achieved using a simple unpolarized calibra-
tion source that the detectors see through the same
optical path as when viewing the Earth. This ap-
proach is used for APS and a similar method has been
implemented in the RSP, which has demonstrated a
relative gain calibration of better than 0.05%. For a
nonscanning pushbroom imager such as MSPI, we
take advantage of the fact that only relative measure-
ments g and u are required. The detector cross-
calibration problem is circumvented by introducing a
time-variable retardance into the optical path to mod-
ulate the polarized component of the incoming light.
The unmodulated portion of the signal encodes in-
tensity; the modulated component encodes @ or U,
depending on the orientation of the polarization an-
alyzer overlaying the detector array. Both @ and I are
obtained from the same detector (similarly for U and
D), so the ratios ¢ = Q/I and u = U/I are independent
of system transmittance and detector gain variations
from pixel to pixel, or over time. If the modulation is
too slow, then for a changing scene (as is the case for



a moving space platform) the detector does not view
the same target as the different measurements are
acquired. This can be mitigated by rapidly modulat-
ing the signals with periods shorter than the line
repeat time (~40 ms from low Earth orbit, corre-
sponding to an along-track resolution of 275 m). Us-
ing the MISR architecture as a starting point for the
MSPI concept, spectral and polarimetric separation
is accomplished using filters and analyzers above the
individual line arrays. Modulation of the polarization
state at a frequency of 25 Hz results in a complete
cycle of the modulated waveform within each 40 ms
line repeat interval. Detector readout occurs at a rate
sufficient to sample the modulated signal, e.g., by
acquiring 32 samples of 1.25 ms duration each.

In principle, the required temporal retardance
modulation can be accomplished with a rotating wave
plate; however, vibrations at the required rotation
speeds (a few thousand revolutions per minute) and
bearing wear over multiyear operation could intro-
duce beam wobble and optical wavefront phase shifts.
Ferroelectric liquid crystal devices can provide a non-
mechanical solution with tuning speeds of 30-250 s
[30], however, the chromophores typically transmit
only over a limited spectral bandpass, e.g., 400—
700 nm, and the MSPI instrument must work over a
much broader range. Consequently, our preferred ap-
proach is to use photoelastic modulators (PEMs).

PEMs have been in use for over 25 years as a
method of polarization modulation in a variety of
research and industrial applications [31]. Their oper-
ation is based on the principle that uniform optical
materials such as glass become birefringent when
compressed along one axis. This is commonly referred
to as stress-induced birefringence, or the photoelastic
effect. A variable retarder can be constructed by com-
pressing optical glass but a large amount of power is
needed to slowly modulate the stress-induced bire-
fringence. Practical PEMs make use of mechanically
resonant oscillation at a high mechanical quality fac-
tor Q (not to be confused with the second Stokes
parameter @) of 10°~10*, reducing the power require-
ment to less than 0.5 W. By coupling a piezoelectric
transducer (PZT) to a glass or fused-silica bar, a
standing sound wave that oscillates at the bar’s fun-
damental frequency is induced, causing a rapid mod-
ulation of the birefringence. The benefits of PEMs
include low operating voltages, large apertures, and
wide angular acceptance [32]. Because PEMs are con-
structed from glass or fused silica, transmittance
over a wide spectral range is straightforward. Pola-
rimetric sensitivities (i.e., precision) of about three
parts in 10° have been obtained for solar astronomy
applications [33-35].

Typical PEM frequencies are in the tens of kilo-
hertz for glass elements several centimeters in size.
This is much higher than the 25 Hz modulation
rate MSPI requires. Our solution places two PEMs
oscillating at slightly different frequencies in se-
ries within the optical path. The result is a high-
frequency “carrier” waveform, modulated at the

much slower heterodyne, or beat frequency governed
by the small difference in resonant frequencies of
the two PEMs. A line readout integration time of
~1.25 ms is sufficiently long that the high-frequency
carrier signal is averaged out, but sufficiently fast
that dozens of samples of the modulated waveform
are acquired every image frame. Section 3 presents
the theory behind this approach.

3. Polarimetry Using Photoelastic Modulators: Theory

A. Single Photoelastic Modulators

A PEM is constructed to vibrate in one of two
modes. For rectangular bars operating in the one-
dimensional mode, the modulation frequency o, is
[36]

L )
©= L\Jp(l - 0'2)’
where FE is the Young’s modulus, p is the density, o is
the Poisson’s ratio, and L is the length of the bar. For
fused-silica bars with L between 3 and 15 cm the
frequency ranges from 100 to 20 kHz. The stress-
induced retardance 8 is given by

d(x, t) =’ sin(mx/L)sin(wt — ¢), (5)

where 8’ is the amplitude of the retardance oscilla-
tion, ¢ is time, ¢ is the phase relative to an arbitrary
time origin, and the spatial variable x extends from 0
to L.

Square PEMs, which are constructed to vibrate in
the two-dimensional mode, have a modulation fre-
quency given by

s ‘J E
R APYG R )
and a stress-induced retardance given by
d(x, y, t) =98 sin(mx/L)sin(my/L)sin(owt — ¢), (7

where the spatial variables x and y extend from 0 to
L. The advantage of the two-dimensional mode is that
the amplitude of the retardance oscillation is doubled
for the same driving power. In practice, the corners of
the square PEM are cut to form an octagon. The PEM
is mounted at these trimmed corners, taking advan-
tage of the fact that these locations are vibrational-
displacement nodes. Because the amplitude of the
modulation peaks at the center of the element and
falls to zero at the edges, only the central portion is
used to attain maximum efficiency (e.g., the central
1.6 cm of a 6.4 cm square element). If the PEM is
placed in the pupil plane of an optical system, then
the effective amplitude reduces to

3(t) = 3 sin(wt — @), (8)

where §, is the retardance integrated spatially over
the area of the pupil.
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A PEM with its fast axis oriented at 0°, sandwiched
between two crossed quarter-wave-plates (QWPs),
one with its fast axis at —45° and the other at 45°
operates as a circular retarder that modulates both @
and U. (A linear retarder would modulate V and ei-
ther @ or U.) Since circular polarization of sunlight
scattered from the Earth is expected to be small, it is
not essential to measure the V component in flight.
Using the Mueller matrix of an ideal circular retarder
[37], a focal plane containing an analyzer at 0° fol-
lowed by a detector and, in parallel, another analyzer
at 45° followed by a detector will obtain two polariza-
tion measurements given by

1
I,= E[I + @ cos & + U sin 3], 9)

1
I45=§[I—Qsin8+Ucos 3]. (10)

Substituting Eq. (8) into Eqgs. (9) and (10) and using
the Bessel function expansions of the cosine and sine
of a sinusoid [38],

1 o
Iy = o[ +Jo(30)Q] + [kZl Jor(8o)cos 2k (wt — @)]Q

+ {§0J2k+1(80)sin(2k + 1) (ot - <p)]U, (11)

Lo = oI + To@U) + | 3 Tuoreos 2kt — ) |U

- LEO Tops1(50)sin(2k + 1)(wt — @)}Q, (12)

where J, is the nth-order Bessel function. Therefore,
I, is a signal whose unmodulated component is pro-
portional to I + J,(3,)@Q, plus a high-frequency com-
ponent with @ modulated at a frequency of 2w (and
higher even harmonics) and U modulated at » (and
higher odd harmonics) [31,33]. An analogous signal is
obtained from the measurement 1. Despite the com-
plexity of the modulation terms, the equations are
linear in I, @, and U.

An innovative approach to recovering the Stokes
components from Eqgs. (11) and (12) has been demon-
strated for solar astronomical polarimetry [33—-35,39].
The high-frequency time-varying signals are demod-
ulated by rapidly shifting charges within a CCD be-
tween optically unmasked and masked detector lines
at a frequency phase-locked to the PEM frequency.
Accumulated signals are then read out at the slower
frame rate and processed to give the components of
the Stokes vector. Synchronous charge shifting, or
shuffling, in CCDs has also been used in other astro-
nomical applications [40].

Because our application requires polarimetric mea-
surement in the SWIR as well as in the visible, a
complementary metal oxide semiconductor (CMOS)
readout architecture is more suitable than a CCD. An
approach in which charges are alternately shuttled to
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different caches designed into the CMOS multiplexer
has been described [41]. Construction of such a de-
tector appears to be within reach of CMOS technol-
ogy. However, since electronic noise can accumulate
after a large number of caching operations and given
the fact that our application does not require kilo-
hertz caching speeds, we developed a different ap-
proach. Equations (11) and (12) show that if the
scientific application can afford to integrate the sig-
nal over intervals long compared to the tens of kilo-
hertz frequency of the PEM, then the high-frequency
terms nearly average to zero and the time-averaged
portion of the signals are approximately given by

1

1

Aerosol imaging from space is just such an applica-
tion. In theory, by varying the voltage applied to the
PEM it is possible to vary the peak amplitude of the
retardance and therefore the value of the coefficient
Jo(dy) that multiplies @ and U. Such an approach
would permit solving Eqgs. (13) and (14) for I, ¢, and w.
However, a PEM is a resonant oscillator with a high
mechanical quality factor Q of the order of 10*, with
an inherent time constant equal to 2Q/f, where f
is the PEM resonant frequency. For Q ~ 10* and
f ~ 42 kHz, the time constant is ~0.5 s. One would
expect this to limit the ability to modulate the peak
retardance with low power consumption to about
1 Hz, which is too slow for our application. Labora-
tory experiments have confirmed this. Using a Hinds
Instruments, Inc. II/FS47 octagonal fused-silica
PEM system operating at a resonant frequency of
47 kHz, and alternately applying and removing the
PEM drive voltage, we found the ring down time to be
~300 ms. Conversely, it took ~400 ms to reach nom-
inal oscillation amplitude (ring up time) after the
drive voltage was connected. Thus the high Q was
confirmed. If the amplitude is modulated more
quickly, the PEM response is damped. This limits the
amplitude modulation frequency to ~1 Hz. We dem-
onstrated a reduced ring down time to ~40% of the
nominal by replacing the drive signal with a 180°
phase shifted drive signal of equal power. With
greater power, it should be possible to reduce this
further. Similarly, driving with a larger amplitude
could shorten the ring up time. Nonetheless, achiev-
ing an amplitude modulation that approaches the
desired 25 Hz rate is not possible with this approach.

B. Dual Photoelastic Modulators

Given that readout of the resonant frequency-
modulated signals from a single PEM is too rapid for
our application, and modulation of the amplitude
cannot be done rapidly enough, we developed a
method using two PEMs in tandem with their retar-
dance axes aligned, oscillating at slightly different
frequencies. Assuming for simplicity that the two



PEMs have the same peak retardance 3§, (see Subsec-
tion 4.G), the combined retardance of a dual-PEM
system is given by

3(t) =8, sin(wt — @) + dy sin(wyt — @3)

= 23, cos(w,t — M)sin(®t — @), (15)
where w; and w, are the resonant frequencies of
the two PEMs and ¢; and ¢, are the phases of the
oscillations relative to an arbitrary time origin. The
carrier frequency @ is the average of the two PEM
frequencies, and ¢ is the average of ¢; and ..
The relatively slow beat frequency w,, equal to
(wy — w1)/2, modulates this signal. The term m equals
(ps — @1)/2. As shown in Eq. (6), the resonant fre-
quency of a PEM is inversely proportional to the size
of the glass element. Thus, by sizing the two PEMs
differently, the beat frequency can be made to be a
nearly arbitrary value from a few hertz to a few hun-
dreds of hertz or higher.

We define an image frame to be the time it takes a
pushbroom imager to acquire a single line of data,
which for MSPI (and MISR) is of the order of 40 ms,
during which a spacecraft in low Earth orbit
traverses a ground distance of 275 m. In general, the
period of the high-frequency carrier wave will not be
synchronous with the image frame boundaries.
Therefore, if we define ¢ = 0 to be the starting time of
an arbitrary frame of image data, the phasing of the

-
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high-frequency oscillations of the two PEMs will be
different from one frame to another. We let ¢, be the
value that the mean phase ¢ takes at ¢ = 0 for that
frame. The combined retardance during the frame is
given by

3(t) = z(t)sin(ot — @), (16)

where

z(t) = 28, cos(wpt — ). 17

Comparison of Eq. (16) with Eq. (8) shows that the
expression z(t) takes the place of 8, and the terms @,
¢, replace o, ¢ in Egs. (11) and (12). That is,

. .
I = gl + =(O1R] + | 3 Jufz(t)los 26 (@t —00)|Q

+ Lﬁo Jop1[2()]sin(2k + 1) (&t — cpo)]U, (18)

Iy = %[I +Jo[z(t)]U] + LE; Jou[2(t)]cos 2k (ot — @O)}U
- [§0J2k+1[2(t)]sin(2k + 1) (ot — cpo)}Q. (19)

Because w, < ®, integration over subframe sam-
ple times long with respect to @ but short compared
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Fig. 1. Combined retardance of two PEMs with a small frequency difference as a function of time (over two 40 ms frame intervals). The
right-hand plots show instantaneous cosine of retardance (gray) and the approximate sampled signals obtained by averaging over 1.25 ms
intervals (black), thus filtering out the high frequency. The top plots are for §, = 2 and the bottom plots are for 3, = 5 rad.
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Fig. 2. Left, PEM test setup on an optical bench at JPL. Right, Schematic of the optical system.

to w, generates measured signals approximately
given by

1
Iy= Gl + J[28 cos(wpt —m)]Q], 20

1
Iy~ 5[[ + J[28, cos(wpt —M)]U]. (21)

A birefringent material having indices of refraction
n, and n, for the extraordinary and ordinary rays
has retardance well approximated by & = 2mu(n,
— n,)d/\, assuming material thickness d and wave-
length A. Operation of the dual-PEM system in mul-
tiple spectral bands in the visible and shortwave
infrared requires the approach to work over a wide
range of §,. The shape of the averaged periodic wave-
form depends on the magnitude of 3,, and is illus-
trated in Fig. 1 for 3, = 2 and 5 rad. Thus, our

T T T o T R R AN I ST P T

Fig. 3. Oscilloscope traces of measured signal as a function of time (left) compared with theoretical modulation curves (right) for a
dual-PEM system as a function of the maximum amplitude in each PEM. From top to bottom, the curves are for a maximum retardance
amplitude of 1/4 wave, 1/2 wave, and 1 wave.
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broadband polarimeter differs from other dual-PEM
concepts that have been optimized for monochro-
matic operation [39].

To demonstrate this dual-PEM concept, a benchtop
polarimeter was constructed as shown in Fig. 2. The
polarization state generator is a white light source
followed by a tiltable glass plate; this partially polar-
izes the beam as a function of the plate angle. A
rotatable polarization analyzer is used for the detec-
tion of @ and U, and is also used as the control mea-
surement of the polarization state. A red filter limits
the spectral bandpass. The final element is a photo-
diode detector. The dual-PEM system consists of
Hinds Instruments, Inc. II/IS42 fused-silica PEMs
with resonant frequencies near 42 kHz and a beat
frequency of 9 Hz. Figure 3 compares the shape of
oscilloscope traces of the resulting signal (left) with
theoretical predictions (right). The shapes of the
curves follow the theory described by Egs. (20) and
(21).



4. Achieving the Required DOLP Performance

A. Dual-Photoelastic-Modulator Implementation in a
Practical Optical System

The most difficult requirement for MSPI is the 0.5%
DOLP tolerance. As noted in Subsection 2.B, all po-
larimetric measurements require multiple radiomet-
ric measurements that are differenced or similarly
manipulated to calculate the polarimetric parame-
ters of interest. For a pushbroom imager, adjacent
rows of pixels with different analyzers can acquire
the necessary measurements. Experience with MISR
and other orbiting spectroradiometers has shown
that temporal drift of pixel responsivity and calibra-
tion errors can cause radiometric uncertainties of
1%—2%, making 0.5% DOLP measurements problem-
atic. The dual-PEM configuration overcomes these
limitations by deriving the inputs to DOLP without
the need to subtract measurements acquired from
different detectors.

A three-mirror reflective off-axis design suitable for
implementing the dual-PEM imaging approach is be-
ing prototyped. The effective focal length is 29 mm. A
ray-trace diagram of the f/5.6 optical design is shown
in Fig. 4. This system meets the +31° X =1° FOV
requirement discussed in Subsection 2.B. Chief rays
from all points in the field are telecentric in image
space. The system stop is located between mirror 2
(M2) and mirror 3 (M3). To use the tandem PEMs for
the measurement of I, @, and U (but not V), the
system is operated as a circular retardance modula-
tor by adding two QWPs. The first is placed before the
PEMs and has its fast axis oriented at —45°; the
second is placed after the PEMs and has its fast axis
oriented at 45°. When a linearly polarized beam is
incident on the circular retardance modulator, the
polarization of the exiting beam remains linear but
its orientation rocks back and forth as the PEMs
oscillate. The two PEMs and QWPs are placed on
either side of the system stop, thereby minimizing the
size of the beam traversing the dual-PEM assembly.

Because MSPI must work over a broad spectral
range, the QWPs need to be achromatized. Given that
the magnitude of V is expected to be <0.1% of the
intensity, we calculate that the retardance should be
within 20% of the ideal value (7/2) for circular polar-
ization to contribute at most 0.03% error to our 0.5%
DOLP error budget. Circular diattenuation, which
can occur through the interaction of sequences of lin-

FV_ 2x PEM

2x Qtr-Wave
Plate _\_1
f— A M3

FOV=t 31° , s /
\ \ A Focal plane

Fig. 4. Side view (left) and top view (right) of a three-mirror
camera design with an integrated dual-PEM circular retarder. The

PEMs have a small wedge angle between them to minimize ghost-
ing.
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ear diattenuations and linear retardances oriented at
45° to each other, is expected to be negligible. Devi-
ations of the alignments of the fast axes of the QWPs
and PEMs from their ideal values, along with static
retardance errors, will lead to a coupling of q into u
and vice versa. As with most polarimeters, errors of
this nature can be dealt with through preflight sys-
tem calibration. Therefore, in the following sections
we address errors peculiar to the dual-PEM system,
notably those concerned with uncertainty in PEM
retardance amplitudes and phases. Measurement
noise is addressed in Subsection 4.H.

B. Signal Integration and Sampling Effects

Equations (20) and (21) assume that the beat signal
is constant over multiple cycles of the high-frequency
carrier wave. This is the quasi-static approximation.
We now derive the more exact form of I,; a similar
result applies to I,;. We assume that each term on the
right-hand side of Eq. (18) is integrated over multiple
cycles of the high-frequency wave, each with period
T = 2w/®. The integration intervals are centered at
sample times denoted ¢, and we allow for the possi-
bility that the integration interval #;,, is not an exact
integer number of cycles by setting the integration
interval to [ — oT/2,t + «T/2], where o expresses
the integration time as multiples of 7' A second-order
Taylor expansion is used for the low-frequency term,
making use of the formula for the derivative of a
Bessel function [38]. A first-order Taylor series is
adequate for the high-frequency terms. The resulting
expression for the sampled beat signal is

1(®) = 5[1 + FO)Q]
i sin 2kmo ]Q

+ _kgl JZk[Z(E)]W cos 2/8(0_)2 - (.po)

[ Sy sin(wa - 'r])
0}

PNEG]

sin 2kmo

2/31’I‘O(:|Sin 2k((1_)2 - (PO)i|Q

X | cos 2kmo —

sin(2k + 1)ma

+ [;;:)JZHI[Z(Z)] (2k + 1)ma

X sin(2k + 1)(62 - cpo)]U

N [80031, Sin(wa - ”r])

53 Bi2(0)]
sin(2k + 1)’TFOL:|

X [cos(2k + )T — 2k + Tyma

X cos(2k + 1)(of — @0)]U, (22)

where
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tframe
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Fig. 5. Timing of sample and integration intervals during a
frame.
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and we have made use of the recursion relationship
for Bessel functions [38]. We define the time between
each measurement, ¢, such that the duration and
spacing between each sample is 7. We do not re-
quire the entire sample time to be used for integra-
tion; that is, we allow #,; < fsmple, OF equivalently,
a < B. The remaining time within the sample inter-

1.0
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0.8 term
0.6 | — —Second order
8 term (x10)
2 o4
£
H 0.2
% 0.0 |—————————f
2
(7]
-0.2
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Time (ms)
1.0
—— Zeroth order
0.8 term

| — —Second order
term (x10)

Signal amplitude

1] 5 10 15 20 25 30 35 40
Time (ms)

val, tyead = sample — tint 1S Used for detector readout. We
also permit the beginning of the first integration in-
terval to be offset from the start of the frame by a time
delay t, = yT. The timing diagram is shown in Fig. 5.

The right-hand side of Eq. (22) consists of five
terms. The first (low-frequency) term dominates, and
takes into account the variation of the low-frequency
signal during an integration interval. Figure 6 shows
the components of the modulation function F(#) for
various values of §,. In these examples, ® = 42 kHz,
wp = 12.5 Hz, o = 50, and m = 0. This value of the
beat frequency corresponds to repetition of the mod-
ulation pattern with a frequency of 25 Hz. The value
of a is derived from the assumption that over a 40 ms
interval, the modulation pattern is sampled 32 times
with 1.25 ms duration for each sample. This corre-
sponds to B = 52.5 for the sample duration, and a few
cycle periods are allocated to ¢,.,q. We find that @ is
underestimated by 1%—2% if the second-order term in
Eq. (23) is ignored in the system model. Thus, this
term must be included in order to meet our 0.5%
DOLP tolerance objective. The choice of N = 32 al-
lows (a) the modulation pattern to be oversampled,
(b) the signal-to-noise ratio (SNR) for each measure-
ment to be dominated by photon shot noise, and (c)
the maximum signal during each integration interval
to be within the detector full well capacity. A lower
bound on N is established by the requirement to re-
solve the peaks and minima of the modulation pat-
terns illustrated in Fig. 1. For &, = 5 rad, this

1.0

—— Zeroth order
0.8 term
0.6 | — —Second order

term (x10)

0.4

Signal amplitude
(-]
N

-0.4
-0.6
[} 5 10 15 20 25 30 35 40
Time (ms)
1.0
—— Zeroth order
0.8 term
0.6 | — —Second order

term (x10)

Signal amplitude

Time (ms)

Fig. 6. Relative magnitudes of the low-frequency terms modulating the Stokes components for the set of parameters described in the text.
The low-frequency terms are the zeroth- (J;) and second-order components of the expression F(#) in Eq. (23). The second-order term has
been multiplied by 10 to make its magnitude and shape more apparent. The four plots are for different values of the peak retardance §,:

upper left, 2; upper right, 3; lower left, 4; lower right, 5 rad.
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minimum N is ~8. However, sensitivity to errors in
the knowledge of 8, and to measurement noise (see
Subsections 4.D and 4.H) increases this value by
more than a factor of 2. Substantial margin is ob-
tained with N = 32. Provided that N is sufficiently
large, the results are not strongly dependent on the
exact value of N.

C. Minimization of High-Frequency Signal Residuals

We now examine the conditions under which the
high-frequency “noise” terms in Eq. (22) are mini-
mized. It is straightforward to see that terms 2 and 4
are identically zero if « is an integer. Figure 7 shows
the effect of changing « on the magnitude of the high-
frequency residual terms for 3, of 5 rad. To examine
the effect of these noise terms on DOLP accuracy,
simulated signals were calculated using Eq. (22), and
then least-squares analysis was used to solve for g,
ignoring the high-frequency terms. An analogous ex-
pression to Eq. (22) for I,5(¢) was used to solve for u.
To derive a worst-case error, DOLP was set to 1.0
with ¢ = u = 0.707,  and ¢, were allowed to vary
between —m and  in steps of w/4 rad, the beat fre-
quency was varied between 12.5 and 13.5 Hz in steps
of 0.5 Hz, and the average PEM frequency was varied
between 41,990 and 42,000 Hz in steps of 5 Hz. The
error in DOLP was typically ~0.10% for a = 49.0 or
49.5, and of the order of 0.35% for o« = 49.25 or 49.75.

We now show that by properly phasing the inte-
gration intervals relative to the high-frequency sig-
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0.003 Q _'se
— U noise
0.002
]
b1
_g 0.001
=
E o0.000
o
[}
2  -0.001
]
z
-0.002
-0.003
-0.004
V] 5 10 15 20 25 30 35 40
Time (ms)
0.004
—Q noise
0.003 Q i
— U noise
0.002
[}
°
_‘3 0.001
=
E o0.000
o
[}
2 -0.001
[}
z
-0.002
-0.003
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nal, terms 3 and 5 also become zero, effectively
eliminating the residual error sources illustrated in

Fig. 7. Referring to Fig. 5, the time #, of the nth
sample is

tint

o
t0+7+(n—1)tsample= y+§+(n— 1)B T
(26)

t,

Using knowledge of the phase ¢, at the start of the
frame, we set the time delay such that v = (¢,/27)
+ 1/4. By requiring B to be either an integer or half
integer, then at the start of each integration interval
the phase of the high-frequency signal is one-fourth of
a cycle after transitioning through zero. Under these
conditions,

®t, — Qo= g[l +2a +4(n — 1)B]. (27)

Remembering that « is an integer, the term inside
the square brackets in Eq. (27) is an odd integer,
with the consequence that sin 2k(at, — ¢,) = 0 and
cos(2k + 1)(&t, — ¢,) = 0, driving terms 3 and 5 in Eq.
(22) to zero, as required. The ability to do this pre-
cisely depends on the resolution of the master clock
used to drive the electronic circuitry. Numerical ex-
periments suggest that for PEM frequencies in the
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Fig. 7. Curves labeled “@ noise” correspond to the sum of high-frequency residual terms 2 and 3 in Eq. (22) and the curves labeled “U
noise” are the sum of terms 4 and 5. The upper left-hand plot is for a = 49.00; upper right, a = 49.25; lower left, « = 49.50; lower right,
a = 49.75. For these plots, 8, = 5 rad and ¢, = 1 rad. The other parameters are as in Fig. 6. Note the magnified scale of the y axis.
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Fig. 8. Weighting functions W, and W,, the first and second rows of the polarimetric data reduction matrix, derived from the two basis
functions 0.5 and 0.5J,. The left-hand plot is for §, = 2 and the right-hand plot is for §, = 5 rad.

ranges given above, DOLP errors are kept below
0.03% if the clock speed exceeds 20 MHz.

D. Sensitivity of DOLP Retrieval to Errors in Retardance

In Stokes polarimetry, the objective is to determine
the Stokes parameters from a series of radiometric
measurements. The data reduction is a linear esti-
mation process, and lends itself to efficient solution
using linear algebra, usually with a least-squares
estimator to find the best match to the data. In MSPI,
a vector of radiometric measurements, I, acquired by
the array with the 0° analyzer, is related to I and @ by
the polarimetric measurement matrix, B:

1o, 1 F[Z(Zl)]

AR L P

1 Fz()]

IO,N

where the columns of B describe the time-varying
modulation patterns created in the data by each of
the Stokes parameters, and are known as the basis
functions. The rows of B are known as the analyzer

vectors. The Stokes parameter estimates I and @ are
calculated from I, using a matrix inverse, the pola-
rimetric data reduction matrix. In general, the matrix
B is not square and its inverse is not unique. The
least-squares estimate is obtained with a particular
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matrix inverse, the pseudoinverse W:

W= (B'B) 'B’, (29)

from which the Stokes vector is determined from a set

of linear equations,
1
l ~ ] = W . I().
Q

The rows of W comprise a set of weighting functions
that generate estimates of the Stokes parameters
from weighted sums of the measurements. We let W,
and W, represent the first and second rows, respec-
tively. These functions are illustrated in Fig. 8, where
we have approximated the samples of the modulation
function F by their dominant, zeroth-order term,
Jolz(f,)]. In actual practice, the complete modulation
function would be used.

Construction of the polarimetric data reduction
matrix requires accurate estimates of the parameters
describing the dual PEM system, namely the retar-
dance 3, the phase m, and the beat frequency w,.
Because w, is derived from two resonant oscillators, it
will be known very accurately. The estimates of the
other two parameters are likely to have some amount
of uncertainty or error, leading to systematic errors
in the retrieval of q. For example, the left-hand plot in
Fig. 9 shows the error in g resulting from a 1% error
in §,, using the weighting functions shown in Fig. 8.

(30)

0.0020

—q=10 =---9q=03

-=--q=-03 ——q=-10

0.0015

0.0010

0.0005

Error in q (1% error in delta0)

delta0

Fig. 9. Left, Error in q resulting from a 1% error in 3, as a function of §, and g, using the weighting functions in Fig. 8. Right, Error in
q resulting from a 1% error in 3, using weighting functions that have been orthogonalized to first-order errors in §, (Fig. 10). Note the

change in the y-axis scale by a factor of 10.
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Fig. 10. Weighting functions W; and W, for 3, = 2 (left) and §, = 5 (right) for the case in which the polarimetric data reduction matrix

has been orthogonalized to first-order errors in retardance.

Errors increase significantly as the magnitude of ¢
increases, and also are a strong function of the spe-
cific value of §,. For a given PEM amplitude, retar-
dance is a strong function of wavelength. Thus, the
error sensitivity is wavelength dependent. Note that
the sensitivity of the I, measurement for a positive
value of ¢ is the same as the sensitivity of the Iy,
measurement (acquired with an analyzer at 90°) to
the corresponding negative value of q. Figure 9 shows
that there are regions of relative insensitivity to un-
certainty in §,. For example, with 3, in the range
3.0-3.5, the error in g is <0.1%, provided that ¢ is
negative.

Since there is no a priori way to guarantee the sign
of q, the above discussion suggests that there is ben-
efit in collecting data with both the I, and Iy, arrays.
At wavelengths where the error sensitivities of the I,
and Iy, arrays are different, the data can be combined
to minimize the effect of any error in 3,. A drawback
of this approach is that the I, and Iy, arrays are not
optically coregistered, and data resampling is neces-
sary to combine the results. On the other hand, it is
possible to overcome the sensitivity of the I, measure-
ments to errors in §, by orthogonalizing the weighting
functions used in the retrieval of ¢ to first-order er-
rors in PEM retardance. If the assumed retardance,
S, is close to the true value, §,, then

1 1 oF A
I =4[l +F(z)Q]= 2[1 HFE@Q+ 350‘ (o= SO)Q}’

(31)

where 2 is calculated using 8,. We can therefore mod-
ify Eq. (28) by adding a third basis function. In this
three-parameter formulation, the first two rows of
the new pseudoinverse W, i.e., the weighting func-
tions W, and W,, are both orthogonal to the third
basis function, rendering the resulting estimates of 1
and @ insensitive to first-order errors in retardance.
These new weighting functions are shown in Fig. 10
for 8§, = 2 (left) and 5 (right), again assuming for
purposes of illustration that F' is approximated by
Jo(2), such that

(30 — &)

1
In=5|1+Jy(2)Q —2J(2)—5 QRl|l. 32
2 S0

Using these weighting functions to retrieve g results
in the sensitivity to errors in 3, shown on the right-
hand side of Fig. 9. Relative to the two-parameter
formulation, the errors in g for a 1% error in §, have
been reduced by about an order of magnitude, and are
~0.15% in the worst case (¢ = 1) and more typically,
substantially lower.

In practice, the estimate &, can be obtained from an
optical probe that passes a polarized beam generated
by a LED and a linear polarizer through a portion of
the dual-PEM assembly outside the area used for
imaging. Since retardance varies spatially across the
PEMs as shown in Eq. (7), preflight calibration will be
necessary to translate the retardance at the location
of the probe beam to the value within the imaging
aperture, as well as to the relevant wavelength. Be-
cause this calibration will not be perfect, orthogonal-
izing the weighting functions to first-order errors in
8o permits approximately a factor of 10 relaxation in
the allowable uncertainty in 8,. For completeness, we
must examine the performance of these estimators in
the presence of measurement noise. This topic is ex-
plored in Subsection 4.H. We also note that the or-
thogonalization process yields a weighting function,
W; (the third row of the polarimetric data reduction
matrix), which can be used to estimate the parameter
(8, — 8,)@. Since the weighting function W, provides
an estimate of @, the ratio of these parameters gives
an estimate of the retardance error. Because this is a
static, scene-independent value, data from many
measurements can be combined together to retrieve
it, allowing the estimate of PEM retardance ampli-
tude to be improved.

E. Effect of Finite Spectral Bandwidth

Obtaining adequate SNR requires the measurements
to be acquired over some finite bandwidth. If the
retardance at some reference wavelength A, is de-
noted J,,, then at any wavelength 8, = §,\./\. To
illustrate the effects of integrating the modulation
function over wavelength, we assume that I and @
are invariant over the spectral interval, and approx-
imate the modulation by the ¢/, Bessel function. The
average value over a finite spectral bandpass (as-
sumed to have uniform response with wavelength) is
given by
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A

where the additional multiplication by \ is included
in the integrand because the photodetectors respond
to photon flux, thus the conversion takes into account
the number of photons per unit of energy. We also
have let A = (\; + \y)/2 and AN = \, — \;. Equation
(33) can be evaluated analytically by expanding </, in
a first-order Taylor series in wavelength, from which
we derive

_ 1 /AN\2
Jo=Jo(2) + 12();) zdJ1(2), (34)

where z is defined at the band center. Comparison of
Eqgs. (32) and (34) shows that finite spectral band-
width acts like an offset in the retardance. Because
the terms resulting from a retardance error and a
finite spectral bandwidth have the same functional
form, orthogonalizing the retrieval basis functions as
discussed in the previous section desensitizes the re-
trievals to this effect.

F. Effects of Phase Errors and Scene Gradients

We anticipate difficulty controlling the beat fre-
quency precisely over a long-duration satellite mis-
sion, and long-term drifts in the PEM resonant
frequencies will also make it difficult to control the
phase ¢,. Indeed, high-frequency phase stability of a
dual-PEM system has been extremely difficult to
achieve in practice [42], making such approaches
problematic when demodulation of the waveform at
the resonant frequencies is required. However, our
approach requires phase knowledge, not phase
stability. As shown in Subsection 4.C, synchroniza-
tion of the sample integration windows to the carrier
wave is needed to minimize high-frequency noise. In
this section, we derive the requirement on knowledge
of the beat signal phase in order to solve accurately
for ¢ and u. Because phase does not vary spatially
over the extent of a PEM, the optical probe mentioned
in the previous section can be used to provide a direct
measurement. We anticipate that the timing of the
peak of the modulation function can be determined to
within one high-frequency cycle period using a phase-
locked loop. Since a variation in m from —7/2 to +m/2
moves the peak of the modulation function from the
beginning to the end of a 40 ms frame, the duration of
1 cycle of a 42 kHz wave, or ~24 s, corresponds to
an error of 0.002 rad. In the absence of any gradients
in I and @, the resulting error in the data reduction
weighting functions causes an error in the retrieved
value of ¢ that is quadratic in the phase error and
increases roughly linearly with §,, reaching a value of
~0.0002 for 3, = 6 when g = 1 or —1. This negligible
error decreases proportionately as the magnitude of
q decreases.
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A more realistic scene model includes gradients in
I, @, and U, because the target area imaged by a given
pixel moves during a frame due to spacecraft motion.
Any spatial variation in the scene translates into a
temporal variation in the recorded signal, in addition
to that introduced by the PEM modulation. This in-
troduces an additional source of error. By synchro-
nizing the frame time to the beat frequency, however,
it is possible to center the modulation functions
within each frame. Since the modulation functions
are symmetric, this has the advantage of making
the polarization retrievals insensitive to linear
gradients—as well as any other odd function of
time—because the weighting functions are even and
therefore orthogonal to these scene variations. In
practice, however, this centering will not be perfect.
To explore the sensitivity to phase errors in the pres-
ence of gradients, we recall that the distance moved
in one sample time (~1.25 ms) is ~8 m for a space-
craft in low Earth orbit. With a ground footprint size
of ~275 m, high-frequency spatial variations will be
washed out. Thus, a scene model with linear gradi-
ents seems reasonable, and can be modeled during
the course of a frame as

I=1I(1+cpm), (35)

Q= j(q + cqT), (36)
where g = Q/I, I and @ are the frame-averaged val-
ues, c¢; and ¢, parameterize the magnitude of linear
gradients in / and @ as fractions of the mean inten-

sity I, and the dimensionless time parameter T is
defined as

r=[i—#]/[ix - 4] 37)
The overbar indicates the average over a frame, and
the denominator is the time difference between the
first and last sample. The parameter T varies linearly
from —0.5 to +0.5 and has zero mean.

Figure 11 (left) shows the retrieval error in g as a
function of §, for ¢ = 0.5 and various values of ¢; and
co- The modulation signal has a phase offset of
0.002 rad, and there is an additional phase knowl-
edge error of 0.002 rad (i.e., equivalent to an error
of one high-frequency cycle in each case). With
c; = 0.5 and ¢y = 1.0, q varies from 0.0 to 0.8 across
the frame, and with ¢; = 0.0, g varies from 0.0 to 1.0.
The resulting errors in g can exceed 0.001; how-
ever, the modeled gradients are probably larger than
are expected in practice, and the errors will decrease
with smaller g. Furthermore, we can eliminate the
dominant source of error by orthogonalizing the
weighting functions against linear gradients in I and
Q. This is accomplished by adding T and 7/ [z(})] to
the set of basis functions. As long as the phase offsets
are small, the weighting functions W; and W, change
only slightly. (In the examples shown in this section,
the weighting functions have already been orthogo-
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Fig.11. Left, Retrieval error in g as a function of 3, for ¢ = 0.5 and various values of the scene gradient coefficients. The modulation signal
has a phase offset of 0.002 rad, and a phase knowledge error of 0.002 rad. Right, Retrieval error in g for the same parameter values but
using weighting functions that have been orthogonalized against linear gradients in I and @. In this case there is no dependence on the
magnitude of the intensity gradient, and the @ gradient introduces an error only because of the phase error.

nalized against errors in §,, as described in Subsec-
tion 4.D.) Figure 11 (right) shows that the retrieval
error in g decreases significantly when this is done,
provided that 3, exceeds ~1.7. This approach elimi-
nates any dependence on the magnitude of the linear
intensity gradient, and the @ gradient introduces an
error only because the phase error results in the use
of an erroneous weighting function in the data reduc-
tion. Even for the large magnitude linear gradients
assumed in this illustration, retrieval error in g is
reduced to less than 0.0005.

G. Retardance Amplitude Mismatch between the Dual
Photoelastic Modulators

The above discussion incorporated the simplifying
assumption that the retardance amplitude of each
PEM is identical. As noted in Subsection 4.A, the
optical system results in slightly different effective
retardance for each PEM. Other factors, notably elec-
trical drive strength, could also cause the two PEMs
to have different retardance amplitudes. We now gen-
eralize the discussion to take this into account, by
modifying Eq. (15) as follows:

S(t) = 81 Sin((,l)lt - ‘Pl) + 82 Sin((ﬂzt - (.Pz),
= 23, cos(w,t — M)sin(dt — @)
+ 2A sin(w,t — m)cos(ot — @), (38)

where 8; and 9, are the retardance amplitudes of
the two PEMs, respectively; 3, = (3; + 3,)/2; and
A = (8, — 8;)/2. Again letting ¢, be the value that the
mean phase ¢ at the start of an image frame:

8(¢) =2/ (t)sin[@t — @0 + {(2)], (39)
where
tan {(t) = (A/3p)tan(w,t — M), (40)
2'(t) =2 sgn[z(4)][ 8" cos™ (et — m)
+ A sin®(wpt — )]V (41)

The sgn term in Eq. (41) ensures that z’' has the
proper sign. Equation (39) puts the total retardance

into a similar form as Eq. (16), resulting in a modified
form of Eq. (18):

Io= %[I +Jo[2'(1)]Q] + [él cai(t) cos 2k(ot — ‘P")}Q
_ { ,21 Sop(t)sin 2k (ot — @0)}Q

+ @0 Cops1(t)sin(2k + 1)(at — ‘Po)}U

+ :08

k}) arr1(t)cos(2k + 1) (ot — @0)}U,

{ (42)

where
eu(t) = J,[2' (t)]cos ni(t), (43)
su(t) = J[2' (t)Jsin n{(t). (44)

The functions ¢, and s, depend only on the beat fre-
quency. Using a similar methodology as above to in-
tegrate over time windows of duration o7, we find
that mismatch in retardance between the two PEMs
results in negligible high-frequency contribution.

For small A, analytic integration of the low-
frequency term in Eq. (42) results in a modified form
of the modulation function:

Ji[2(7)]
2(9)

where F(7) is from Eq. (23). The correction term for A
is referred to as the PEM amplitude mismatch term.
Unfortunately, the shape of this term closely matches
that of the zeroth-order (J,) function, particularly at
low values of §,, so we cannot simply orthogonalize
against it. An unmodeled mismatch masquerades as
a reduced value of @. Because A enters quadratically
into Eq. (45), an uncompensated amplitude mismatch
of 0.1 leads to approximately a 1% underestimation of
Q. Either the mismatch must be included in the data
processing model, or it must be reduced to a value

F'(f)~F(f) -2 A sin’(oyf — 1),  (45)
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Fig. 12. Left, Relative variation in retardance across the FOV in the cross-track direction, for a system with the exact on axis ray having
a retardance of 1.0 rad. Right, Relative retardance mismatch A between the two PEMs.

<0.03 so as to contribute no more than a 0.1% error
to the DOLP retrieval.

Making use of the optical design described in Sub-
section 4.A, we now evaluate the variation of §, across
the camera FOV and the expected magnitude of A.
The proximity of the PEMs to the system stop con-
fines the rays to the central regions of each PEM.
Along with the high degree of collimation, this helps
to ensure that all rays passing through the PEMs
receive very close to the same amplitude of retar-
dance modulation. Light is incident on the PEMs at
angles ranging from 0° to 21°, resulting in a variation
of retardance across the FOV. In addition, because
the beam is converging between M2 and M3, there is
a small mismatch in the spatially averaged retar-
dance between the two PEMs. To explore these ef-
fects, bundles of 81 rays were propagated for a set of
locations within the FOV. Assuming that the on-axis
ray sees a retardance of unity, the retardance for each
ray was obtained by numerical integration along its
path through the two PEMs, accounting for spatial
variations described by Eq. (7) and path-angle effects.
The increase in path length with angle is offset by the
decrease in the projection of the path on the stress
vector in the plane of the PEM. Weighted averages of
the results for the 81 rays were calculated, taking
into account the area within the pupil represented by
each ray.

The relative retardance amplitude as a function of
cross-track location in the +31° FOV is shown in Fig.
12 (left) for a paraxial retardance of 1 rad. The finite
bundle size reduces the average retardance by less
than 1.5% at the center of the FOV and less than 2%
at the edges. Because these effects are fixed, the 0.4%
variation across the FOV can be calibrated and ac-
counted for in generating the basis functions for each
pixel. The variation in retardance in along-track
(+1°) dimension of the FOV is negligible.

A plot of the relative retardance mismatch between
the two PEMs is shown in Fig. 12 (right). Due to beam
convergence, A is slightly positive, with a negligible
variation with field angle. For an on-axis retardance
of 5.0 rad, for example, |A| < 0.004 rad. Equation
(45) shows that errors in DOLP are proportional to
A% implying that the degree of mismatch that could
affect DOLP accuracy is not determined by the opti-
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cal system, but rather by the accuracy with which the
two PEMs can be controlled to have the same retar-
dance. This can readily be done since the retardance
amplitude of each PEM is individually controllable.

H. Sensitivity to Measurement Noise

We now generalize the above discussion by supposing
that each sample measurement I, has a noise value

A

¢, added to it. The estimates I and @ have associated

errors given by
Al
~|=W-e&.
AQ

For a given set of measurements, the error in g is
therefore

(46)

N
AQ — qu ngl (W2,n - qWI,n)Sn
Ag=—7 = I

(47)

Making the simplifying assumption that the noise
in each measurement has constant variance &’
dominated by photon shot noise on the mean signal
(approximately equal to I/2), the statistical variance
in q is

2r N

&
Var(Q) = F E (W2,n - qWI,n)2 .

n=1

(48)

In addition to detector arrays with analyzers at 0°
and 45°, the MSPI design for each polarimetric band
includes an array with no analyzer. We define SNR to
be the signal-to-noise ratio in I for one frame of data
acquired by the nonpolarimetric detector. The SNR of
each individual measurement is equal to I'/* for a
shot noise limited system with I expressed in photon
counts, so for N such measurements, SNR = (NI)V/2.
The statistical uncertainty in the estimate of ¢ due to
noise is therefore equal to

1/2

NN
[2’;1 (WZ,rL - qWI,n)Z
SNR

unc(q) = = SNR- (49)
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Fig. 13. Left, Solid curves are the “noise sensitivity” factor s for the case where the retrieval weighting functions W; and W, are as in Fig.
8, under the simplifying assumption that noise variance is constant during a frame and dominated by photon shot noise. Right, Similar
to the left-hand plot except that the weighting functions for the retrieval ¢ are the orthogonalized forms of W, and W,, as in Fig. 10.

The parameter s expresses the uncertainty in g as
a multiple of the inverse of the SNR of a pure inten-
sity measurement, and thus can be thought of as a
“noise sensitivity” factor. Plots of this quantity as a
function of §, are shown in Fig. 13. The left-hand plot
assumes the weighting functions are as defined in
Fig. 8, and the right-hand plot uses the weighting
functions that have been orthogonalized against first-
order errors in §,, as in Fig. 10. Very similar results
are obtained when the weighting functions have also
been orthogonalized against linear gradients, as long
as the phase errors are small. Figure 13 shows that
for 8, = 2 there is very little noise penalty resulting
from orthogonalization of the weighting functions.
With a typical value s ~ 4, a SNR of 1000 causes an
uncertainty in ¢ due to shot noise of ~0.004.

5. Summary and Conclusions

This paper introduces a novel concept for spectropo-
larimetric imaging with high accuracy across a wide
field of view. The approach makes use of a circular
retardance modulator containing two PEMs with
slightly different resonant frequencies to generate a
beat signal that modulates the @ and U polarized
components of the incident light. The concept can be
adapted to applications where the frame rate is in the
few to hundreds of hertz range. Imaging over a broad
spectral range and with high accuracy in DOLP are
key performance requirements for the aerosol remote
sensing application that motivates the approach.
Many factors, including the performance of mirror
coatings, antireflection coatings, polarization analyz-
ers, and control of scattered light are essential to
meeting the challenge of 0.5% tolerance in DOLP for
a spaceborne imaging polarimeter. This paper con-
centrates on nonstatic error sources that are unique
to this dual-PEM system (see Table 2). We have fo-
cused on errors in the relative Stokes parameter g.
Making the reasonable assumption that o, the root-
mean-squared (rms) error in g is roughly equal to o,
the rms error in u, then error propagation shows that
the rms error in DOLP =~ g,.

The errors in Table 2 have been calculated assum-
ing high values of | g |, and will in practice be smaller
since the PEM retardance and phase errors are

roughly proportional to ¢q. Table 2 shows that after
measurement noise, the next most significant errors
result from uncertainties in average PEM retardance
and the mismatch in retardance between the two
PEMs. This indicates the need for a system within
the camera to monitor the PEM retardance ampli-
tudes accurately. Using the fact that spatial variation
in retardance across the PEM elements can be mea-
sured, an optical probe can be constructed to make
use of a portion of the PEM elements outside the
central area used for Earth imaging. As noted earlier,
a probe consisting of an LED, a set of linear polariz-
ers, and a photodetector can meet this objective.

As with MISR, which acquires multiangle images
by employing a set of cameras pointed at discrete
angles, the camera approach described in this paper
forms the fundamental “building block” for a full,
multiangle MSPI instrument. The pointing angles
are envisioned to be similar to the MISR suite, and
discrete spectral bands for aerosol studies range from
355 to 1610 nm, as indicated in Table 1. (A band near
2130 nm is under investigation.) Intensity imaging

Table 2. Requirements on the Dual-PEM System

Contribution to

DOLP Error
Error Source Budget
(Section Discussed) Requirement (%)
Residual high-frequency  Proper phasing 0.03
terms (Subsection 4.C) of integration
intervals; clock
speed > 20 MHz
Retardance amplitude 1% 0.15
knowledge
(Subsection 4.D)
Phase control and 0.002 rad 0.05
knowledge
(Subsection 4.E)
Retardance amplitude 0.03 rad 0.1
mismatch between the
PEMs (Subsection 4.G)
Measurement noise SNR = 1000 0.4
(Subsection 4.H)
Root-sum-square 0.44
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would be acquired in all channels, which places strict
requirements on allowable camera diattenuation in
order to meet an absolute radiometric uncertainty
requirement of =3% (similar to MISR). The subset of
bands for which polarimetry would be acquired is the
subject of ongoing study, and results from NASA’s
Glory mission later this decade, carrying the APS
sensor, will provide valuable insights in this regard.
At present, one polarization band in the blue, one in
the red, and one in the SWIR are envisioned.

To the best of our knowledge, PEMs have not flown
in space, and ruggedization and space qualification of
the PEM mounting scheme is an essential element of
a viable instrument concept. Current work in part-
nership with Hinds Instruments, Inc. under NASA
sponsorship is tackling this task. The novel concept
analyzed in this paper is applicable not only to high-
accuracy remote sensing of aerosols but potentially to
a host of other scientific endeavors.

We thank Yu Wang for suggesting the novel dual-
PEM approach and for performing the initial concept
verification experiments, and appreciate helpful dis-
cussions with Thomas Cunningham. We thank Neil
Beaudry for insightful theoretical analyses, and
Karlton Crabtree for performing PEM amplitude
modulation experiments using a single PEM. Jet Pro-
pulsion Laboratory (JPL) internal Research and
Technology Development and NASA Instrument In-
cubator Program support are gratefully acknowl-
edged. This research is being carried out at the JPL,
California Institute of Technology under contract
with NASA; at the University of Arizona College of
Optical Sciences under subcontract with JPL; and at
the Goddard Institute for Space Studies.
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