Validation of the Raman lidar algorithm for quantifying

aerosol extinction

Felicita Russo, David N. Whiteman, Belay Demoz, and Raymond M. Hoff

To calculate aerosol extinction from Raman lidar data, it is necessary to evaluate the derivative of a
molecular Raman signal with respect to range. The typical approach taken in the lidar community is
to make an a priori assumption about the functional behavior of the data to calculate the derivative.
It has previously been shown that the use of the chi-squared technique to determine the most likely
functional behavior of the data prior to actually calculating the derivative eliminates the need for
making a priori assumptions. Here that technique is validated through numerical simulation and by
application to a significant body of Raman lidar measurements. In general, we show that the chi-
squared approach for evaluating extinction yields lower extinction uncertainty than traditional
techniques. We also use the technique to study the feasibility of developing a general characterization
of the extinction uncertainty that could permit the uncertainty in Raman lidar aerosol extinction

measurements to be estimated accurately without the need of the chi-squared technique.
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1. Introduction

The aerosol extinction coefficient is an important
quantity in the study of the influence of aerosols on
climate. At present, there is a large uncertainty in the
globally averaged forcing due to the aerosol indirect
effect,! which is estimated to be between 0 and
—2 W m 2 This uncertainty is related mainly to the
poor understanding of cloud microphysics together
with the fact that aerosols have very inhomogeneous
distributions in the atmosphere that can significantly
change with time. One of the important capabilities
of Raman lidar systems is the ability to retrieve
range-resolved profiles of aerosol extinction.2 This,
together with the possibility of long-term monitoring
of aerosols can help improve the current knowledge of
the influence of aerosols on climate. The European
aerosol research lidar network3 (EARLINET) is a net-
work of lidars on a continental scale that provides
useful information to satisfy these needs. Raman li-
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dar systems involved in EARLINET are located in
nine different geographic locations over the European
continent. The Raman lidar stations in EARLINET
use various different techniques to calculate aerosol
extinction. Particular attention has been given to the
relative precision of the calculation of the aerosol
extinction from each lidar station. To validate all of
the algorithms, extinction comparison efforts have
been performed.* As we will show, in such compari-
sons, the use of different algorithms can lead to large
differences in the resulting extinction random uncer-
tainties. Moreover, the a priori choice of the model
itself can result in larger uncertainties in aerosol ex-
tinction as compared to the method that is validated
here. We will refer to the frequently used technique of
evaluating the aerosol extinction using a linear least-
squares fit* as the traditional technique. We will show
that, for the cases studied here, the linear model upon
which the traditional technique is based is the least
probable model to fit Raman lidar data for the
purposes of evaluating aerosol extinction, and conse-
quently gives, on the average, a larger random uncer-
tainty than the technique described here.

The paper is organized in the following way: In
Section 2, the equations to be used will be pre-
sented. In Section 3, the principles of the simula-
tions studied will be described together with the
description of the chi-squared technique and a de-
scription of the simulation data set and findings.
Section 4 will present the results obtained by ana-
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lyzing experimental data from the NASA/Goddard
Space Flight Center (GSFC) scanning Raman lidar
(SRL). These data were acquired during three mea-
surement campaigns where they were deployed at
the Department of Energy (DOE)-atmospheric ra-
diation measurement (ARM) site in Lamont, Okla-
homa. Section 5 will present the implications of the
results of this work on the measurement of the
average background aerosol content in the United
States, and finally Section 6 will provide a summary
of the study with conclusions. A series of appendices
presents the equations of the third-order regres-
sion, describes the details of the chi-squared test,
the justification for using a set of models as large as
possible, and the calculation of the effective spatial
resolution of the sliding least-squares fit.

2. The Equations

The aerosol extinction coefficient is usually calculated
from the Raman lidar N, signal with the equation25:

0(za\er()\L> Z) =
d Ny(z)
s n[mmz)] = Aol(AL, 2) — Apal(Ay, 2)

A \F® ’
1+ (M)

where o, (\;, 2) is the aerosol extinction at the wave-
length of the laser \;, \y is the wavelength of the
molecular N, channel, o,,(\;, 2) and a,(\y, 2) are
the molecular extinctions, respectively, at the laser
wavelength (\;) and at the N, Raman wavelength
(A\w), Ny(2) is the number density of molecular N,, and
2°P(\y, 2) is the range-squared-corrected Raman N,
lidar signal. Here a scaling has been assumed for the
aerosol extinction with wavelength denoted by the
Angstrom coefficient k(z) that is, in general, a func-
tion of altitude, since it is a function of the kind of
aerosol present. For this study, the Angstrom coeffi-
cient is put equal to 1, since the effort here will focus
on the evaluation of the derivative and the influence
of that evaluation on random uncertainties in the
derived products. No efforts are made here to study
the influence of systematic errors on the calculation
of aerosol extinction.

To calculate the extinction in Eq. (1), it is necessary
to calculate a derivative, a quantity that is defined
only for continuous functions. Here the argument of
the derivative is not a continuous function but rather
the lidar signal strength in discrete range cells, so the
derivative must be calculated numerically. The tech-
nique traditionally used in this calculation is the slid-
ing linear least-squares fit.4

It has been shown® that the a priori assumption,
represented by the choice of one of the methods tra-
ditionally used, before executing the derivative is not
necessary and that, in fact, it goes against the rules of
statistics. The chi-squared test will, therefore be used
here as a tool for avoiding the a priori assumption,
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since it selects the model that is most likely to rep-
resent the parent population of the data.

Before proceeding further, some considerations
have to be made about the term containing the
derivative in Eq. (1). This factor can be rewritten
aSG,7

d 1 NN(Z) _ 1 dNN(Z) 1
dz n[zzP()\N, z)] _NN(Z) = zZP()\N, z)
d
X 4, [P\, 2)]- (2)

The results presented in this paper are entirely ob-
tained expressing the derivative as in Eq. (2) for the
reason that will now be described. We consider the
lidar signal in each bin range to be determined by
a counting process according to Poisson statistics.
Since the number of accumulated counts required in
a given range cell for the Raman lidar signal to be
useful for deriving aerosol extinction is much greater
than 10, we can assume that the statistics pertaining
to each range cell is essentially Gaussian. However,
as has been described before,® the argument of the
derivative in Eq. (1) does not follow a Gaussian dis-
tribution. In fact, the ratio of two Gaussian variables
such as Ny(z) and 2?P(\y, 2), in general, does not pos-
sess Gaussian statistics and of particular interest
here, the distribution of the ratio Ny(2)/2*P(\y, 2) is
at best approximately Gaussian.8 The natural loga-
rithm modifies the statistics further and statistical
tests performed as a part of this effort but not shown
here, indicate that the argument of the derivative in
Eq. (1) does not possess Gaussian statistics in accor-
dance with the theory. The chi-squared test is derived
starting from the assumption that the data to be
regressed possess a Gaussian distribution. Therefore
it is not possible to meaningfully apply the chi-
squared test to the lidar data unless the aerosol
extinction is evaluated using Eq. (2). Since such a
calculation is straightforward, we suggest that this
expression be used to calculate aerosol extinction
instead of Eq. (1).

3. Simulation

To show how the algorithm used here works, a sim-
ulation was performed. A previously validated nu-
merical model® was used to simulate Raman N,
signals as would be measured by a lidar system
with the same operational characteristics as the
NASA/GSFC SRL during 1996-2000.1911 During
this period, the SRL participated in three field cam-
paigns at the DOE ARM site in Lamont, Oklahoma.
The experimental data that will be used in this
paper are from the water vapor intensive operation
period (WVIOP) held from 10 to 30 September 1996,
WVIOP2 held from 15 September to 5 October 1997,
and WVIOP3 held from 18 September to 8 October
2000.12 Each of these campaigns focused on quan-
tifying accuracies and determining limitations of
atmospheric water vapor measurement technolo-



Table 1. Configuration of SRL during the Campaigns WVIOP, WVIOP2,

and WVIOP3

SRL Configuration 1996-2000

Laser wavelength 351.1 nm
Raman wavelength 382.4 nm
Energy per pulse 65 md
Primary telescope 0.76 m
Secondary telescope 0.13 m
Telescope f number 5

Field of view 0.002 rad
Bin time 0.5 ps

Laser repetition rate 400 pulse/s

gies. To address these objectives, measurements of
atmospheric water vapor from different collocated
sensors, including the SRL, were performed. Be-
sides water vapor measurements, aerosol back-
scatter and extinction measurements were also
acquired by the SRL during the three campaigns
but were not previously analyzed. In Section 4, we
will study these data using the chi-squared tech-
nique described here.

The parameters that were used in the numerical
model are reported in Table 1. They were chosen to
simulate the nighttime measurement characteris-
tics of the SRL and were validated by selecting
efficiency terms that force the simulation to match
actual measurements.? Differences between simu-
lated and experimental lidar signals were reduced
to less than 1%.

To test the method in different conditions of extinc-
tion and signal uncertainty, two synthetic profiles of
extinction were created and are shown in Fig. 1. The
profile on the left represents an aerosol loading de-
creasing with altitude in the boundary layer (Ext1),
and the profile on the right simulates a lofted aerosol
layer (Ext2). In Fig. 2, an example of the simulated
Raman N, signal, for 600 s averaging time and cor-
responding to the two simulated extinction profiles, is
shown.

To calculate the derivative of the range-corrected
N, signal as a function of altitude, which is required
to calculate the extinction profile from a N, signal
profile, a window of five points was selected. The
five-point window slides one point along the lidar
profile for each successive determination of the ex-
tinction. A weighted least-squares fit is performed on
the five points in each cell (the weights are 1/0”
where ¢ is the statistical error in the data). For each
cell, one value of the extinction and the corresponding
uncertainty are calculated from the fit parameters. In
the cases discussed in this paper, three orders of
polynomials (linear, quadratic, and cubic) are consid-
ered, and three different weighted least-squares fits
are performed on each group of five points resulting
in three determinations of extinction and extinction
uncertainty with their corresponding chi-squared
probability. The weighted least-squares fit is per-
formed on both the quantities z°P(z) and N(z) in Eq.
(2). For this study, the uncertainty in the molecular

Extl
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(b
Fig. 1. Simulated extinction profiles that were used to simulate
N signals. (a) Extinction profile decreasing with altitude in the
boundary layer. (b) Lofted aerosol layer with increasing aerosol
content in the boundary layer.

number density, which is calculated from radiosonde
measurements, was considered constant with the al-
titude. Gradual changes in the uncertainty of the
radiosonde density data do not significantly affect the
results shown here. The equations for the linear and
quadratic regressions are shown in Whiteman.é The
equations for the third-order regression are shown in
Appendix A.

A. The Chi-Squared Test

The choice of the most probable model is dependent
on the chi-squared probability. The cumulative prob-
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Extl Simulated Signal 600s
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Fig. 2. Examples of simulated N, Raman signals with 600 s av-
eraging time acquired along the vertical direction. (a) Signal sim-

ulated with the aerosol extinction in Fig. 1(a) (Ext1). (b) Signal
simulated with the aerosol extinction in Fig. 1(b).
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ability, which is defined as the integral of the proba-
bility distribution function, is used to determine how
likely a given fit is and represents the probability of
obtaining a chi-squared smaller than that obtained in
the fitting exercise. The measured chi-squared value
will be reasonably close to its expectation value as
long as its cumulative probability is reasonably close
to 0.5.13 In our interpretation of this test applied to
the set of models used, which are first- to third-order
polynomials, the model that has a cumulative prob-
ability closest to 0.5 is considered the most probable.
The choice of a model as the most likely depends on
the underlying functional shape of the data points
being regressed and the magnitude of the uncertainty
on each data point. In Appendix B, a detailed example
illustrating the principle of selection of a particular
model for a simulated set of data points is presented. It
is important to note that the chi-squared test results
in a rejection of a particular model if it is either not
able to represent the shape of the data within their
uncertainty or if the model fits the data more exactly
than is consistent with the magnitude of the uncer-
tainty.

The selection of a set of three models is consistent
with a regression of five points. In Appendix C, an
example of cumulative probability obtained by using
a window of seven points is presented. This example
shows that, in general, the set of models on which the
chi-squared test is applied should be chosen accord-
ing to the number of points being regressed in order
to find the most probable fit function.

Previous applications of the chi-squared technique,®
using just the linear and quadratic models, showed
that differences in extinction on average smaller than
2% were made when using this technique as opposed
to the traditional technique. Moreover, differences up
to =40% were present among the corresponding un-
certainties.

1. Choice of the Model for Regressing N(z)

Since the quantities z°P(z) and N(z) are regressed
separately in the application of Eq. (2), and since the
uncertainty in N(z) is considered constant and taken
to be equal to 2%, the chi-squared test is applied to
the choice of the model only for z?P(z). Therefore some
considerations have to be made concerning the choice
of the model for N(z), which is retrieved typically from
a radiosonde density. The percentage differences be-
tween the retrieved extinction profiles and the simu-
lated profiles in the case of Ext1 have been calculated
using different orders of polynomials for the regres-
sion of N(z). The results are shown in Fig. 3 where, in
the panel of Fig. 3(a), the biases are shown corre-
sponding to a linear regression for N(z) and a linear,
quadratic, and cubic regression for z?P(z). Similarly
in Fig. 3(b), the polynomial for the regression for N(z)
was quadratic, while in Fig. 3(c), it was cubic. In
general, the retrieved extinction profiles depend on
the choice of the order of the fit on N(z). In case the
term 2z°P(2) is regressed using a linear or quadratic
model regression, the resulting extinction has a bias
of up to ~2% with respect to the simulated aerosol
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Fig. 3. Percentage differences between the simulated extinction and the retrieved extinctions calculated using different combinations of
order of polynomials for z2P(z) and N(z). The extinction profiles used here were generated simulating a N, Raman signal with 1200 s
averaging times and the simulated extinction Ext1. (a) The first order of polynomial is used for the regression of the term N(z) and linear
(Lin), quadratic (Quad), and cubic (Cub) polynomials are used for the term z?P(z). (b) The second-order model is used for the regression
of the term N(z) and the linear, quadratic, and cubic models are used for the term z?P(z). (¢) The third-order regression is used for the
regression of the term N(z). It is important to note that the combinations that result in lower random variability of the differences are those
in which the same order of regression is used for both the terms z°P(z) and N(z). Moreover, the order of regression of the term z*P(z) that

results in an unbiased retrieval is the third order.

extinction [for example, Fig. 3(a) Lin and Quad],
which is absent if the cubic regression is used [for
example, Fig. 3(b) Cub]. We attribute these biases to
the intrinsically less efficient ability of a lower degree
polynomial to describe the functional shape of the
decay with altitude of the Raman lidar signal. Fur-
thermore, the combination of models that results in
minimizing the random variability of the differences
between retrieved and simulated aerosol extinctions
is the one that uses the same order of polynomial to
regress both z22P(z) and N(z). The main reason is that
the aerosol extinction retrieval calculated by using
different orders of polynomials for the fit of the same
set of data points possesses different effective spatial
resolutions. The effective spatial resolution of the ex-
tinction retrieval using the three models was studied
using the Rayleigh criterion!4 and is presented in
detail in Appendix D. We show that when the cubic
model is used to regress five points separated by 75 m
each, the resulting effective spatial resolution of the
extinction retrieval is 160 m, while an effective spa-
tial resolution of 260 m is obtained using the linear
and quadratic models to regress the same data
points.

This example points toward the conclusion that (i)
the cubic model is the only one of the tested models
that gives an unbiased retrieved aerosol extinction
and (ii) the random variability of the extinction re-
trieval is reduced if the same order of regression is
used for regressing both z?P(z) and N(z2).

B. Simulation Data Set

For a given aerosol extinction profile in the atmo-
sphere, a particular lidar measurement of that
profile will be governed by the statistics of the
measurement process. Therefore a statistically
significant ensemble of simulations of a single at-

mospheric profile needs to be used if general con-
clusions are to be inferred from the results of such
simulations. For this reason, the statistical perfor-
mance of the algorithm was investigated using an
ensemble of 200 synthetic lidar profiles of Raman
N,. With all other parameters remaining constant,
the averaging times were selected so that a range of
random uncertainties in the lidar signal could be
included in the study. Three averaging times were
considered: 60, 600, and 6000 s. Therefore the en-
semble of lidar N, signals numbers 200 X 3 = 600
profiles for each of the two simulated extinction
profiles considered (Fig. 1) resulting in a total of
2 X 200 X 3 = 1200 simulated data profiles. For each
of these data profiles the extinction and extinction
uncertainty are calculated three times using linear,
quadratic, and cubic regressions resulting in 3600
extinction profiles and 3600 extinction uncertainty
profiles, three extinction profiles and three extinction
uncertainties for each simulated set of data. Finally,
the chi-squared test was used to choose the most
probable model at each altitude in each profile, re-
sulting in 2 X 200 X 3 = 1200 composite profiles of
extinction and corresponding uncertainty from the
chosen model.

In Fig. 4, the average retrieved extinction profiles,
their average biases, the corresponding average un-
certainties, and their standard deviations for the 200
profile ensemble and for a single averaging time
(600 s) are shown. The average retrieved extinctions
[Figs. 4(a) and 4(c)], the corresponding percentage
differences with the simulated extinctions [Figs. 4(b)
and 4(f)], their uncertainty [Figs. 4(c) and 4(g)], and
the corresponding standard deviations [Figs. 4(d) and
4(h)] are shown for the linear, quadratic, and cubic
models as well as for the model chosen by the chi-
squared technique (indicated by Chosen). Here the
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Fig. 4. Average results of the retrieval of the aerosol extinction from the statistical ensemble (200 profiles) of simulated data with a 600 s
averaging time. (a), (e) Average extinction profiles retrieved using the linear (Lin), quadratic (Quad), cubic (Cub) regression on z*P(z), and
the chi-squared technique (Chosen) for both (a) Ext1 and (e) Ext2. (b), (f) Average percentage differences between simulated and retrieved
extinction with the different orders of regression and the chi-squared technique. (¢), (g) Average extinction uncertainties calculated using
each different order of regression and the chi-squared technique. (d), (h) Standard deviations of the average uncertainties obtained using

different orders of polynomials and using the chi-squared technique.

same order of regression is used for both 2z°P(z)
and N(z).

For the case of Ext1 [Fig. 4(a)], the mean extinction
uncertainty corresponding to the linear model is up to
a factor of 4 larger than the uncertainty in the ex-
tinction obtained with either the quadratic or cubic
models, while the retrieved extinctions are within
1% of each other above 1 km. For the case of Ext2
[Fig. 4(d)], the behavior is similar to the case of Ext1,
with the exception of altitudes around 1 km.

In Fig. 4(f), the linear and quadratic models re-
sult in differences with the simulated extinction
larger than the cubic model at 1.5 and 2.5 km.
These altitudes correspond to the changes in the
slope of the simulated extinction in Fig. 1(b). This is
a clear indication that, as shown in Appendix D, the
effective spatial resolution of the linear and qua-
dratic models is lower than the resolution of the
cubic model.

1. Choice of the Model for Regressing z°P(z)

We will now illustrate the point that the choice of
the model depends on the uncertainty in the data
and that only with sufficiently noise-free data can
the underlying functional behavior of the data be
revealed.

In Fig. 5, the frequencies with which the models
are selected in the 200-profile ensemble are displayed
as a function of altitude and for different averaging
times. For example, in Fig. 5(a), corresponding to 60 s
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averaging time, at the altitude of 3 km, the linear
model (solid black curve), the quadratic model (dotted
curve), and the cubic model (dashed curve) were cho-
sen with similar frequencies (~33%). If we consider
the same point at 3 km, in the panel of Fig. 5(b)
(600 s averaging time), the linear model is chosen
with a frequency of ~20%, while the quadratic and
cubic models are chosen with frequencies of ~35%
and ~45%, respectively. In Fig. 5(c) (6000 s averag-
ing time) and still at 3 km altitude, the linear model
is chosen with a frequency of <20% and the quadratic
and cubic models are chosen with a frequency of
~20% and 70%. Similarly in Fig. 5(d), at the altitude
of 3.9 km, the three models were chosen with similar
frequencies (~33%). In Fig. 5(e) at the altitude of
3.9 km, the linear model is chosen <20% of the times,
while the quadratic and cubic models were chosen
with similar frequencies (~40%). In Fig. 5(f), the lin-
ear model is never chosen, while the quadratic and
cubic models are chosen with frequencies of ~50%.
This means that at the fixed altitude of 3 km for Ext1
and 3.9 km for Ext2, the linear functional form less
accurately describes the data with respect to the
other two proceeding from the plot in Figs. 5(a) to 5(c)
and Figs. 5(d) to 5(f). It is evident that the choice of
model depends on the noise in the lidar signal. The
results shown in Figs. 5(a) to 5(c) and 5(d) to 5(f) differ
only in the averaging time, and in particular Figs.
5(a) and 5(d) correspond to larger uncertainty in the
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Fig. 5. Frequencies of the chosen models for the 200 profiles simulated using Ext1 [(a)—(c)] and Ext2 [(d)—(f)] and 60 s [(a) and (d)], 600 s

[(b) and (e)], and 6000 s [(c) and (f)] averaging times.

signal than Figs. 5(c) and 5(f). The uncertainty in the
signal changes not only as a function of the averaging
time but also as a function of altitude. In fact, the
points that correspond to higher altitudes in a lidar
profile, in general, have larger uncertainty than those
at lower altitudes. It is shown in any of the panels in
Fig. 5 that above a certain altitude, which increases
as averaging time increases, the frequency of selec-
tion tends to be similar for the three models. Despite
the fact that for any given profile within the ensemble
of 200 there is a definite choice of the model, the vari-
ability of the data, determined by the noise level sim-
ulated, implies that all models are equally probable
above a certain altitude. This shows that, in general, as
the uncertainty in the lidar N, signal increases, the
underlying functional behavior of the data becomes
harder to reveal in a statistically significant way. This
will be emphasized more clearly in the next section. An
interesting result is that the linear model is never
chosen as the most probable outside of the portions of
profiles where the uncertainty in the lidar signal is too
large to allow for the underlying functional behavior to
be revealed [i.e., where all three models are chosen
approximately equally as, for example, above 3 km in
the panel of Fig. 5(b)].

2. Comparison of Uncertainties Between the
Linear and Chosen Models

We showed in Fig. 4 that the a priori choice of the
model results in larger uncertainties than the chosen
model. Here the same result is shown by considering
the difference in the extinction uncertainty between
the linear and chosen models as a function of the
simulated noise. Six points along the extinction pro-
files are chosen, three for each simulated extinction
profile [Figs. 6(a) and 6(b)], and the frequency of the
linear model having an uncertainty larger than the
chosen model are shown as a function of the averag-
ing time [Fig. 6(c)] based on the ensemble of 200
simulated lidar signals. The averaging times used
here are: 60, 300, 600, 1200, and 6000 s. For example,
in Fig. 6(c) with averaging times equal to 60 s, for the
altitudes corresponding to the point indicated with A,
the uncertainty in the extinction calculated with the
linear model is larger than the extinction uncertainty
calculated with the most probable model 100% of the
time. In the same way, corresponding to the altitude
in Fig. 6(a) indicated with B, the uncertainty calcu-
lated with the linear model is larger than the uncer-
tainty with the chosen model 96% of the time. In the
case of the 60 s averaging time only in two cases,
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Fig. 6. Comparison of extinction uncertainties obtained with
the linear and chosen models. (a), (b) Points selected for the
comparison. (c) Frequencies with which the linear model results
in extinction uncertainties higher than the chosen model as a
function of the averaging time on a logarithmic scale. The data
used for the comparison correspond to 60, 300, 600, 1200, and
6000 s averaging times. The linear model results in an extinction
uncertainty larger than the chosen model more than 90% of the
time except for points C and F with 60 s averaging times. For these
two points, that have higher noise, the linear model results in
extinction uncertainty larger than the chosen model more than
65% of the time.

corresponding to the points indicated with C and F, is
the linear model uncertainty larger than the chosen
model uncertainty less than 75% of the time. For
larger averaging times, that correspond to smaller
uncertainties in the lidar signal, the linear model
gives an uncertainty larger than the chosen model
more than 90% of the time.

In Fig. 7, we investigate the model selection as a
function of the signal uncertainty and the magnitude
of aerosol extinction. The frequency of selection of the
linear and cubic models is compared, since in Section
4, we will see that the cubic model is the most fre-
quently chosen over a significant body of experimen-
tal data. In Fig. 7(a), for example, the white pixels
indicate regions in which the frequency with which
the linear model is chosen is 30% less than the cubic,
gray pixels indicate when the linear and cubic fre-
quencies differ by less than 30%, and the black pixels
correspond to the lack of data. As noted already in
Fig. 5, as the signal random error decreases, the lin-

7080 APPLIED OPTICS / Vol. 45, No. 27 / 20 September 2006

Extinction 1

0.4
Cub-Lin > 30%
B Cub-Lin < 30%
TE 0.3 - No Data
£
8 02
-
[io]
0.1
0
0 0.1 0.2 0.3 0.4 0.5
Signal Uncertainty (%)
(a)
Extinction 2
0.4 Cub-Lin > 30%
M Cub-Lin <30%
TE 03 . No Data
=
2
E 0.2
&
0.1
0

0 0.2 0.4 0.6 0.8 1
Signal Uncertainty (%)

(b)

Fig. 7. Diagrams showing the ability of the chi-squared test to
distinguish the underlying functional form of the data as a func-
tion of the magnitude of aerosol extinction and signal random
error. (a) corresponds to the simulated data obtained using the
extinction profile Extl, (b) corresponds to the simulated data
obtained using the extinction profile Ext2. The white pixels in-
dicate values of extinction and signal random error for which the
difference between the frequency of choice of the cubic model as
the most probable by the chi-squared technique is more than
30% larger than the frequency of choice of the linear model. Here
the third-order model is chosen as a reference, since it will
be shown that it is the most chosen when the chi-squared tech-
nique is applied to the experimental data. The gray pixels indicate
the values of aerosol extinction and signal random error for which
the frequency of the cubic model was less than 30% larger than the
linear model. The white pixels indicate the values of the aerosol
extinction and signal uncertainty for which the chi-squared test
was able to clearly distinguish the underlying functional shape of
the data, while the gray pixel indicates confusion between linear
and cubic models.

ear model is chosen less often. In Fig. 7(a), when the
signal random error is less than 0.1% and the extinc-
tion is 0.05 km ™, the cubic model is chosen 30% more
frequently than the linear, but when the extinction
is larger, for example, 0.2 km ', even if the random
error in the signal is as much as 0.3%, the probability
of selection of the linear model is similar to the cubic
model. Figure 7(b) shows similar features. The image
can be divided in two broad regions. The upper left
region indicates combinations of the values of aerosol
extinction and signal random error for which the chi-
squared test is able to clearly identify the functional
shape of the Raman N, signal and for which the cubic
model is strongly preferred over the linear model. The
lower right region indicates combinations of extinc-



tion and signal uncertainty where the underlying
functional behavior of the data is more difficult to
reveal and where the linear and the cubic models are
chosen with approximately equal frequency.

Overall this simulation shows that, as anticipated,
the a priori choice of the linear model for the calcu-
lation of the aerosol extinction is generally unjusti-
fied and can have a strong influence on the estimate
of the extinction uncertainty. In particular, the
a priori choice results in larger uncertainties with
respect to the most probable model chosen based on
the chi-squared test.

4. Application to Experimental Data

The chi-squared technique was applied to experimen-
tal data collected with the SRL5 between 1996 and
2000. During that period, the SRL used a XeF laser,
which has an output spectrum centered at 351.1 nm.
The laser emitted 400 pulses per second with an av-
erage power that was adjusted between 12 and 26 W.
The receiver was a 0.76 m Dall-Kirkham telescope.
The scanning capability was made possible by the
presence of a mirror that could rotate on a single axis
allowing measurements along angles between 0° and
~90° from the vertical position. The advantage of
taking angle measurements is that it permits retriev-
ing data even below the minimum altitude defined in
the vertical position by the overlap function. Infor-
mation regarding the experimental configuration of
the SRL during the time of these measurements may
be found in Whiteman and Melfil® and Whiteman
et al.11

The data analyzed here are from three campaigns
between 1996 and 2000 during which the SRL was
deployed at the DOE/ARM site at the Southern Great
Plains in Oklahoma. Even though the principal focus
of these campaigns was the study and comparison of
water vapor measurements from different instru-
ments,’2 a large data set of aerosol backscatter and
extinction measurements was acquired by the SRL.
Various time series of data at different angles (from 0°
to 85° from the vertical position) were collected. This
allowed the individual extinction profiles to extend to
as low as 300 m. Approximately 150 h of extinction
profiles were analyzed using the chi-squared tech-
nique. Extinction retrievals were performed on night-
time lidar measurements that were acquired over
300 s. From these retrieved extinctions, data with
extinction uncertainties lower than 50% were se-
lected for use in the statistics presented here. This
process rejected portions of the data in which the
extinction was either very small and/or the uncer-
tainties very large and resulted in more than 55,000
individual extinction and corresponding uncertainty
values. The maximum altitude of the data included in
this study was 4 km. In Fig. 8(a), examples of the
aerosol extinction profiles from 1996 are shown.
Different layerings in the aerosol distribution were
present on different days. In particular, on 14
September, an aerosol layer was present above the

boundary layer with extinction reaching 0.4 km .
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Fig. 8. Example of aerosol extinction values included in the
statistics. (a) Three extinction profiles acquired by SRL on 13, 14,
and 18 September 1996. (b) Average extinction profile and
corresponding standard deviation of the data used for this
study.

Figure 8(b) shows the average extinction throughout
all the data set with the corresponding standard de-
viation of the retrieved extinction profiles. The large
values of the standard deviation indicate that differ-
ent layers of aerosol were present below 3 km on
different days.

With the purpose of investigating the relation-
ship between the most probable model, the aerosol
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Fig. 9. (a) The model chosen by the chi-squared technique as a
function of aerosol extinction and signal random error for all the
experimental data acquired during the WVIOPs and (b) the
corresponding average extinction uncertainties. The model that
is most frequently chosen as the most likely is the cubic model
(~80%).

extinction, and the signal uncertainty, the extinc-
tion and extinction uncertainty points were com-
bined. The more than 55,000 points in the data set
are displayed in Fig. 9(a), which shows the most
frequently chosen model as a function of the extinc-
tion and the signal uncertainty. The points in the
data set are displayed in 7 X 7 cells (note how the
cell size relates to both extinction and uncertainty)
and among the points in one cell the most fre-
quently chosen model is indicated. As for the case of
simulated data, the linear model is chosen the least
frequently in these experimental data. Moreover,
there is a strong preference for the cubic model
(~80% likelihood) in contrast to the single lidar pro-
file studied earlier.6

As stated in the abstract, one of the goals of this
research was to explore a general characterization of
the extinction uncertainty as a function of the magni-
tude of aerosol extinction and the random uncertainty
in the Raman lidar N, signal. This is attractive to
consider since, as we have shown, different methods of
retrieving extinction agree well on the magnitude of
the extinction but not on the extinction uncertainty.
For such a characterization to be generalized, large
data sets with measurements corresponding to differ-
ent aerosol and atmospheric conditions are necessary.
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The data set used in this paper corresponds to mea-
surements obtained in three field campaigns during
the same season (Fall) and in the same geographic
location, so they do not possess the characteristics nec-
essary to draw general conclusions. Nonetheless, these
results point toward the feasibility of generating such
a general relationship and may be taken as a prelim-
inary version of such a relationship. In Fig. 9(b), the
average extinction uncertainty is shown as a function
of aerosol extinction and signal uncertainty. We can
see that progressing toward the upper left, correspond-
ing to higher extinction and smaller signal uncer-
tainties, the average extinction uncertainty is always
below 20%, while, in general, it increases progressing
toward the lower right. Characterizations of the
extinction uncertainty by means of these diagrams
could allow evaluating the magnitude of the extinc-
tion uncertainty expected for different combinations
of aerosol extinction and signal uncertainty. For
example, if the magnitude of the aerosol extinction is
on average 0.1 km ' and the signal uncertainty is
<0.3%, then the uncertainty in the extinction will be
<10%. At the same time, if the signal random error is
1% for the same value of the extinction, the extinction
uncertainty should be 10%-20%.

5. Implications for the Continental U.S. Background
Aerosol Loading

In Section 4, we presented a general relationship
between aerosol extinction and lidar extinction un-
certainty. Reference diagrams like the one in Fig.
6(b) can be useful, for example, to understand with
which accuracy it is possible to measure the average
background aerosol extinction. In 1988, a monitoring
program was initiated called Interagency Monitor-
ing of Protected Visual Environments'¢ (IMPROVE)
with the objective to measure background visibility
levels. One of the main results of this program was
the calculation that the average background aero-
sol extinction over the entire U.S. territory was
~0.05 km ' based on three years of measurements
from stations distributed throughout the United
States. If a similar background value was to be mea-
sured with the SRL, according to the diagram in Fig.
6(b), it could be done with an uncertainty smaller
than 10% if the uncertainty in the lidar signal was
smaller or equal to 0.3%. Using the configuration of
the SRL as described, these measurements can be
made during the nighttime with 300 s of averaging
making the Raman lidar an attractive tool for quan-
tifying the background aerosol loading in North
America.

6. Summary and Conclusions

An improved algorithm to calculate the aerosol ex-
tinction coefficient from a Raman lidar N, signal
has been validated. This algorithm uses the chi-
squared test to choose the most probable least-
squares fit model as opposed to choosing one a
priori, which is the standard method of evaluating
aerosol extinction from Raman lidar data. To cor-



rectly apply the chi-squared test, the data need to
follow a Gaussian distribution. To guarantee this,
the traditional equation of the aerosol extinction
must be reformulated.

The chi-squared test increases the confidence pri-
marily on the accuracy of the aerosol extinction
uncertainty, since the different techniques agree on
average within ~2% on the magnitude of the extinc-
tion, although approximately half of this difference
could be due to a systematic bias. It was shown in a
simulated set of measurements that, in general, the
linear model is the least likely to fit the data. Conse-
quently, based on the results of numerical simula-
tions, the extinction uncertainty calculated with the
chi-squared method was found to be on average a
factor of 4 smaller than the uncertainty obtained with
the linear model, while differences in the estimate of
the extinction were smaller than 2%. All the simu-
lated signals possessed a spatial resolution of 75 m
and were analyzed using a sliding window of five
points for the regressions. Consequently, the effective
spatial resolution of the aerosol extinction retrieved
using three different orders of polynomial was inves-
tigated following the Rayleigh criterion, as explained
in Appendix D. The conclusion was that the extinc-
tion obtained using different orders of polynomials
possesses a different effective spatial resolution. In
particular, the extinction obtained with a linear or
quadratic fit of five points spaced 75 m apart has a
resolution of ~260 m, while the one obtained with a
cubic fit has a resolution of ~160 m.

The ability of the chi-squared test to reveal the
underlying functional behavior of the data, and
therefore, for this technique on average to yield
smaller uncertainties than choosing a model
a priori, depends on the uncertainty in the data
(Fig. 7). In particular, based on the simulations
shown here, for signal uncertainties smaller than
0.2% and aerosol extinction up to 0.4 km™*, the chi-
squared test was generally able to determine the
functional behavior in a useful manner, whereas for
signal uncertainties larger than 0.4% and aerosol ex-
tinction smaller than 0.2 km™?, the functional behav-
ior was not clearly determined. In the experimental
data shown here, a Raman lidar signal uncertainty of
0.2% is achieved at a range of approximately 4 km for
aerosol extinction values smaller than 0.4 km ™' using
an averaging time of 300 s. Since many Raman lidar
systems are capable of such measurements, the chi-
squared technique can be generally useful for a more
accurate estimate of tropospheric aerosol extinction
and its uncertainty.

The chi-squared technique was applied to experi-
mental data from three field campaigns indicating
that the linear model was the least chosen by the
chi-squared test, and the cubic model was the most
frequently chosen (80%). These results agree with the
simulations and indicate further that it is likely that
the a priori selection of the linear model to calculate
the aerosol extinction leads to inaccurate assess-
ments of extinction uncertainty.

Finally, the extinction uncertainty resulting from
the chi-squared technique has been shown in 2D
diagrams as a function of the aerosol extinction and
the uncertainty in the Raman lidar N, signal. For
extinction values ranging from 0 to 0.5 km ' and
signal uncertainty ranging from 0% to 2%, the extinc-
tion uncertainty is on average smaller than 40%.
These diagrams can be considered preliminary
look-up tables for estimating the aerosol extinction
uncertainty given a previously calculated aerosol ex-
tinction using an a priori selection of model, since the
work here demonstrates that, in the mean, the dif-
ferent orders of regression differ systematically by
2% or less in their values of extinction. However,
based on the work presented here, previously deter-
mined aerosol extinction values using an a priori se-
lection of the linear model are likely to possess lower
vertical resolution than the technique presented
here.

An example referring to the aerosol background
averaged over the United States calculated during
the monitoring program IMPROVE16 of ~0.05 km *
was presented. If such an extinction is to be mea-
sured with a random uncertainty less than 10% using
Raman lidar, it is required that the random uncer-
tainties in the signal be at most 0.3%. On the other
hand, if the extinction uncertainty required is less
than 30%, the uncertainty in the lidar signal can be
as large as 1%. The conclusion is that the background
aerosol loading in the continental U.S. can be accu-
rately measured at night with a 5 min average using
Raman lidar systems with the characteristics of the
SRL.

The results presented here are based on simu-
lated retrievals of two extinction profiles and on
nighttime Raman lidar measurements during the
fall season at the same geographic location. There-
fore they do not constitute a comprehensive data-
base of either real or simulated Raman lidar aerosol
extinction measurements under the full range of
possible conditions. However, they nonetheless
point strongly toward the conclusions that a model
to fit the data should not be chosen a priori but
rather should be determined based on the results of
the chi-squared test since the traditional technique
of making an a priori selection of the linear model is
likely to both significantly increase the random un-
certainty and lower the vertical resolution of the
retrieved aerosol extinction.

Appendix A: Error Propagation for the Cubic
Regression

The error propagation formulas to calculate the un-
certainty on the aerosol extinction for the linear and
quadratic regression were reported in Whiteman.¢
The same treatment of Barlow!? is used here to
calculate the error propagation formula for the cu-
bic regression. In Eq. (2), the term N(z) is modeled
by g(z) = a + bz + cz* + d2°, and the term 2?P(z) is
modeled by 2(z) = e + fz + g2* + hz® the formulas for
the derivative and its variance, verified by symbolic
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evaluation in MATHEMATICA, are

8k W)  bt2cz+ 3dz*

fz)= g(z) h(@) a+bz+c®+d2?
f+ 2gz + 3hz*
e+fz+gz°+hz¥
2 1 2 2\2
Ofy. = ilo2(b + 2cz + 3d2?)

(a + bz + ¢z + d2°)
+ 0y’ (a — c2® — 2d2°)?

+ 0.%(2az + bz" — dz*)?

+ 0,%(3az” + 2b2° + cz*)’
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+ 0,7(3e2” + 22° + gz*)’?

+ 20,/ (—e + g2° + 2h2°)(f + 2gz + 3hz?)

+ 20,.°(—2ez — fz° + hz*)(f + 2gz + 3h2?)
+ 2047 (2ez + fz° — hz*)(e — g2° — 2h2°)
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Appendix B: Example of the Application of the
Chi-Squared Technique

To illustrate in detail how the chi-squared test
chooses the most probable model and the relationship
between the chi-squared cumulative probability and
the shape of the most probable model, an example is
presented here of a least-squares fit performed on a
set of five points as shown in Fig. 10. The signal was
generated using a numerical lidar model that simu-
lated an accumulation time of 40 s, so that the influ-
ence of random noise in the data could be easily seen.

In Fig. 10(a), the simulated signal together with the
best fits using linear, quadratic, and cubic regressions
are displayed. In Fig. 10(b), the percentage differences
between the simulated signal and each of the fit poly-
nomials are shown. The 1o lines (signal — ¢ and
signal + o) are also plotted, where o is the signal
random error. It is evident that the linear polynomial
fit is the one that deviates the most from the data
points. The quadratic and cubic polynomial fits ap-
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Fig. 10. An example of regression of five points using linear,
quadratic, and cubic polynomials. (a) Data points (Sim) simulated
with a lidar model using the parameters in Table 1 and 40 s
averaging time, the linear (Lin), quadratic (Quad), and cubic (Cub)
regression. (b) The deviations of each fit function from the data
points in terms of percentage difference. The lines labeled signal
— o and signal + ¢ indicate, respectively, the 1o range of random
error of the data points. The chi-squared cumulative probabilities
of the different models were, respectively, ~1, 0.69, and 0.47 for
the linear, quadratic, and cubic model. Therefore the cubic model
was chosen as the most likely model to represent the data.

pear to deviate from the simulated signal approxi-
mately equally and consistently with the uncertainty
of the data. The deviations of the linear model are less
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Fig. 11. Panels showing an example of regression of five points

using linear, quadratic, and cubic polynomials. (a) Data points
simulated with a lidar model using the parameters in Table 1 and
10 s averaging time, the linear, quadratic, and cubic regression. (b)
Deviations of each fit function from the data points in terms of
percentage difference. The lines labeled signal — o and signal
+ o indicate, respectively, the 1o range of random error of the data
points. The chi-squared cumulative probabilities of the different
models were, respectively, ~1, 0.9, and 0.003 for the linear, qua-
dratic, and cubic model. The quadratic model was chosen as the
most likely model to represent the data. The chi-squared cumula-
tive probability value for the cubic models is small with respect to
the expected value (0.5) because the cubic fit is reproducing the
data points too closely with respect to their uncertainty, as can be
seen in (b).

consistent with the uncertainty in the data. The chi-
squared values corresponding to each of the fits were,
respectively, 60 for the linear, 0.7 for the quadratic,
and 0.5 for the cubic. The least-squares fits performed
on five points with different orders of polynomials
possess different degrees of freedom, defined as the
difference between the number of points regressed
and the number of parameters to be determined by
the least-squares technique. In the case of five points
as used in this work, the linear, quadratic, and cubic
fits have, respectively, three, two, and one degree of
freedom. The chi-squared probability distribution
depends on the degrees of freedom. From the
chi-squared probability distribution, a cumulative
probability can be calculated for each model. In this
example, values of the cumulative probability cor-
responding to ~1 for the linear model, 0.69 for the
quadratic model, and 0.47 for the cubic model were
found. Therefore the chi-squared test selects the cu-
bic model as the most probable.

The selection of the model based on the cumulative
probability of the chi-squared value closest to 0.5 al-
lows the rejection of models that are inconsistent
with the set of data points being regressed and their
associated errors. A rejection can occur if there are
large differences between the model and the data
points, or if the model fits the data better than the
uncertainty in the data would indicate as likely. Here
a similar simulation as in Fig. 10 is generated. For
illustration purposes, the averaging time was set to
10 s so that the noise level was higher than in Fig. 10.
In Fig. 11(b), the percentage difference between the
simulated signal and the regression polynomials is
displayed. The values of the chi-squared for each of
the regression were 24 for the linear, 4.7 for the
quadratic, and 1.6 X 107 for the cubic regression.
The corresponding cumulative probabilities were ~1,
0.9, and 0.003, respectively. Consequently, the chi-
squared test chooses the quadratic model as the most
probable for this case. It is important to note that the
cubic polynomial that is reproducing closely the sig-
nal is rejected because the differences from the sim-
ulated signal are improbably small compared with
the uncertainty in the signal.

Appendix C: Application of the Chi-Squared Test to
Windows of More than Five Points

The use of the chi-squared test to distinguish
among linear, quadratic, and cubic models, as done
here, is consistent with a regression of five points. If
more points need to be considered in the regression
to improve the uncertainty in the retrievals and the
same set of three models is used, the resulting cu-
mulative probability can be largely different from
the expected value of 0.5 with respect to the situa-
tion in which all possible orders of polynomials are
used. An example is shown in Fig. 12. Here the
extinction profile indicated in Fig. 1 as Extl was
used to simulate a signal with 600 s averaging time.
A sliding window of seven points was chosen for the
regression, and sets of three orders and five orders,
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Fig.12. Example selection of models by the chi-squared technique in case a seven-point window is used to regress the data. The N, Raman
signal used here was simulated with the aerosol extinction Ext1, using the parameters in Table 1 and an averaging time of 600 s. (a) and
(b) show, respectively, the chosen model as a function of altitude and the cumulative probability of the chosen model in case a window of
seven points is used for the regression and the linear, quadratic, and cubic models are tested. (¢) and (d) show, respectively, the chosen
model as a function of altitude and the cumulative probability of the chosen model in case the same window of seven points is used but
five models (linear, quadratic, cubic, fourth order, and fifth order) are used. The set of models that results in a cumulative probability closest
to 0.5 is that containing the maximum order possible of regression of the seven-point window, namely, the set composed by five models.

respectively, were used for the regression. Figures
12(a) and 12(b) show, respectively, the model cho-
sen as a function of altitude and the corresponding
chi-squared cumulative probability in the case in
which linear (model 1), quadratic (model 2), and
cubic (model 3) regressions are tested. Figures 12(c)
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and 12(d) show the chosen models and the corre-
sponding chi-squared cumulative probability in the
case in which, with the same Raman lidar signal
used in Figs. 12(a) and 12(b), the models that are
tested are linear (model 1), quadratic (model 2),
cubic (model 3), fourth-order (model 4), and fifth-
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Fig. 13. Calculation of the effective spatial resolution of the lin-
ear, quadratic, and cubic regression on a window of five points
spaced by 75 m following the Rayleigh criterion. (a) Simulated
peaked extinction profile with 160 m separation and the corre-
sponding retrieved extinction using the cubic regression. The re-
trieved extinction value in the center of the two peaks is ~62% of
the value of the extinction in the peaks. (b) Simulated peaked
extinction profile with 260 m separation and the corresponding
retrieved extinction using the linear and quadratic regressions.
Note that the linear and quadratic retrievals are almost identical.
The extinction value in the center of the two peaks is ~65% of the
value of the extinction in the peaks for both models.

order (model 5) regressions. The averaging time
used to simulate the Raman N, signal was 600 s.

The values of the cumulative probability in Fig.
12(d) are closer to 0.5 that the values shown in Fig.
12(b). This indicates that as the number of points
used in the regression is larger than five, the simple
set of three orders of polynomial is in general insuf-
ficient to describe the variation in the data and more
orders of polynomials are necessary. However, the
error propagation formulas for polynomials of degree
higher than 3 can be particularly complicated, and
their definitions are beyond the objective of this paper.
Therefore in case a window of more than five points is
used and three orders of polynomials are tested in the
regression, we suggest rebinning the data so that a
window of five points is used in the regression as was
done here.

The MATHEMATICA code that implements the re-
gression for three orders of polynomials and selects the
most probable model is available at http:/ramanlidar.
gsfc.nasa.gov or by contacting the authors.

Appendix D: Determination of the Effective Resolution
of the Retrievals

The effective spatial resolution of the retrievals ob-
tained here using different orders of polynomials has
been investigated following the Rayleigh criterion.414
Sharply peaked aerosol extinction profiles were sim-
ulated with different separation distances as shown
in Fig. 13. The retrieved extinction profiles were then
considered for the determination of the effective
resolution. Following the treatment in Pappalardo
et al.,** two peaks are considered resolved if the ex-
tinction between the peaks is <80% of the extinction
in the peaks. As shown in Fig. 13(a), the cubic fit on
the same points window has an effective resolution of
approximately 160 m, while in Fig. 13(b), the linear
and quadratic fit over a five-point window generates
extinction retrievals that have a resolution of approx-
imately 260 m. This agrees with the fact that, in
general, a higher-order polynomial has more degrees of
freedom to follow rapidly varying functional shapes.
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