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[1] A global map of measurement uncertainties in satellite‐
based precipitation estimates has been produced by comput-
ing the variance from an ensemble of six different TRMM‐era
data sets at daily, 0.25° resolution. This analysis yields a
lower‐bound estimate of the uncertainties, and a consistent
global view of the error characteristics and their regional
and seasonal variations, and reveals many undocumented
error features over areas with no validation data available.
The uncertainties are relatively small (40–60%) over the
oceans, especially in the tropics, and over southern South
America. There are large uncertainties (100–140%) over
high latitudes (poleward of 40° latitude), especially during
the cold season. High relative uncertainties are also evident
through the seasons over complex terrain areas, including
the Tibetan Plateau, the Rockies and the Andes. Coastlines
and water bodies also indicate high measurement uncertainty.
The estimated global uncertainties also exhibit systematic
seasonal, regional as well as rain‐rate dependencies, with
lowest uncertainties over tropical oceanic regions with
strong, convective precipitation, and highest ones over
wintery, complex land surfaces with light precipitation.
Citation: Tian, Y., and C. D. Peters‐Lidard (2010), A global
map of uncertainties in satellite‐based precipitation measurements,
Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

1. Introduction

[2] Currently, satellite‐based remote sensing is the only
practical way to measure precipitation on the global scale.
Satellite sensors can cover vast, diverse areas of the Earth’s
surface such as oceans, deserts and high mountains, which
are infeasible to monitor with conventional rain gauges or
meteorological radars. Especially since the launch of the
Tropical Rainfall Measurement Mission (TRMM) satellite in
1997, we have entered an era to observe global precipitation
with an array of sensors aboard multiple satellite platforms,
and to produce globally consistent, high‐resolution precipi-
tation measurements from the synthesis of these sensors.
[3] Although many satellite‐based global precipitation

data sets are routinely produced, a quantitative, global picture
of their error characteristics is lacking. For example, it is
commonly believed that passivemicrowave (PMW) retrievals

of precipitation are more accurate over the ocean than over
the land, but global quantification of this hypothesis remains
a challenge. In addition, the heterogeneity of the land surface
itself also makes the performance of such retrievals vary
greatly from region to region, and such variation needs to be
determined as well.
[4] The difficulty in assembling a globally consistent error

map lies in the lack of gauge or radar coverage over most
areas of the Earth’s surface. Therefore existing studies have
focused on areas where reliable ground‐based measurements
are available [e.g., Gottschalck et al., 2005; Ebert et al.,
2007; Tian et al., 2009; Sapiano and Arkin, 2009; Vila et al.,
2009]. It is also possible to use the precipitation radar (PR)
aboard TRMM to validate other sensors [e.g., Lin and Hou,
2008], but PR’s coverage is still limited to the tropics and
to its narrow swaths.
[5] In this study, a global map of the error uncertainties

in satellite‐based measurements has been produced. The
uncertainties have been estimated as the measurement
spread of coincidental and collocated estimates from an
ensemble of six different satellite‐based data sets, thus
providing a globally consistent estimate methodology that
does not require surface‐based validation data. This approach
was proposed by Adler et al. [2001] and has recently been
used by Adler et al. [2009] to produce a tropical rainfall
climatology from a three‐member ensemble. Many of the
global error features we produced are consistent with
existing studies over areas with validation data available,
while many other features have not been documented
before. In addition, the regional, seasonal and rain‐rate
dependencies of the uncertainties are analyzed. These results
can serve not only as estimates of the random errors in these
data sets, but also as a measure of the “difficulty” in mea-
suring precipitation by space‐borne sensors over various
areas of the Earth’s surface.

2. Data and Methods

[6] Six high‐resolution precipitation data sets were used
in this study. They are commonly referred to as 3B42,
3B42RT [Huffman et al., 2007], CMORPH [Joyce et al.,
2004; Janowiak et al., 2005], GSMaP [Okamoto et al.,
2005; Kubota et al., 2007], PERSIANN [Hsu et al., 1997]
and NRL‐blended, or NRL for short [Turk and Miller,
2005]. Table 1 provides a concise summary of these data
sets, including their full names, native spatial and temporal
resolutions for the versions used, and the major sensor types
that comprise each product.
[7] We selected these data sets because they are all pro-

duced from the merging of multiple PMW and infrared (IR)
sensors. Such merged products maximize spatial and tem-
poral sampling over the globe, and exhibit higher accuracy
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due to the inter‐calibration among the diverse sensors [e.g.,
Adler et al., 1993]. Though they share many of the input
streams from the same sensors (e.g., TRMM), the methods
these products use to inter‐calibrate, interpolate and combine
these input streams vary greatly from product to product.
[8] A period of two years—from 2005 through 2006—

was used for this study, during which all the six data sets in
our archive overlapped. All the data sets were re‐projected
to the same 0.25° spatial resolution if needed and aggregated
to daily accumulation.
[9] Here uncertainties are defined as the standard devia-

tion among independent measurements of the same physical
quantity. The uncertainties in the precipitation measure-
ments were estimated by the following steps. First, we used
the six data sets to form an ensemble, and at each grid box
and time step we computed the six‐member ensemble mean.
Then we identified one outlier from the ensemble which

deviated most from the ensemble mean, and removed the
outlier from the ensemble. Subsequently the ensemble mean
was re‐computed with the five remaining members. The
outlier‐removal procedure is to prevent an anomalous
member from corrupting the ensemble, and it was performed
at each grid box and time step, therefore the outlier is not
necessarily always the same member. In practice, our test
showed the results thus obtained are not qualitatively dif-
ferent from those without the outlier‐removal step. Finally,
the standard deviation of the members from the ensemble
mean was calculated as an estimate of the measurement
uncertainties.
[10] We want to note that the ensemble spread thus deter-

mined reflects both systematic errors and random errors.
Also due to the small ensemble size and to the fact that the
ensemble members are not totally independent, such an
approach will underestimate the random errors. With this in

Table 1. Summary of Data Sets Used

Data Set Full Name
Spatial

Resolution
Temporal
Resolution Sensor Platforms References

3B42 TRMM Multi‐satellite Precipitation
Analysis research product 3B42 Version 6

0.25° 3 h IR, SSM/I, TRMM,
AMSU‐B, AMSR‐E, gauges

Huffman et al. [2007]

3B42RT TRMM Multi‐satellite Precipitation
Analysis Real‐time experimental

product 3B42RT

0.25° 3 h IR, SSM/I, TRMM,
AMSU‐B, AMSR‐E

Huffman et al. [2007]

CMORPH NOAA Climate Prediction Center (CPC)
MORPHing technique

0.25° 3 h IR, SSM/I, TRMM,
AMSU‐B, AMSR‐E

Joyce et al. [2004] and
Janowiak et al. [2005]

GSMaP Global Satellite Mapping of Precipitation
(GSMaP MVK+ Version 4.8.4)

0.1° 1h IR, SSM/I, TRMM,
AMSU‐B, AMSR‐E

Okamoto et al. [2005] and
Kubota et al. [2007]

PERSIANN Precipitation Estimation from Remotely
Sensed Information using Artificial

Neural Networks

0.25° 3 h IR, TRMM Hsu et al. [1997]

NRL Naval Research Laboratory’s
blended technique

0.25° 3 h IR, VIS, SSM/I, TRMM,
AMSU‐B, AMSR‐E

Turk and Miller [2005]

Figure 1. Mean daily precipitation (mm) of the six‐member ensemble for boreal (top) winter (DJF) and (bottom) summer
(JJA).
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mind, the results nevertheless provide meaningful insight,
particularly when we focus on the relative magnitude of the
uncertainties across the globe.

3. Results

[11] The mean state of the ensemble was produced and
examined first. Figure 1 shows the ensemble‐mean daily
precipitation, for both the boreal winter (December, January,
and February ‐ DJF) and summer (June, July, and August –
JJA). Prominent features, such as the precipitation areas
associated with the migration of the Inter‐tropical Conver-
gence Zone (ITCZ) over Africa, and the Asian Summer
Monsoon, are present as expected. The seasonal variation of

precipitation over the continental United States (CONUS) is
also consistent with surface observations, as shown in pre-
vious work cited above.
[12] Although we may place more confidence in the

ensemble mean of the global precipitation than in an indi-
vidual member, the current study does not quantify any
systematic errors in the ensemble mean, because no vali-
dation data were used. In fact, the systematic errors in the
ensemble mean, as well as in each individual member, could
be rather large, as seen from existing studies over areas with
surface validation data [e.g., Ebert et al., 2007]. Moreover,
the systematic errors in each of these satellite‐based data
sets tend to be similar for summer but differ considerably for

Figure 2. (a–d) Standard deviation from the ensemble mean, as percentage of the mean daily precipitation, averaged for
the four seasons, respectively. Areas with mean daily precipitation less than 0.5 mm are shown as blank as they are deemed
unreliable. The boxes in Figure 2a delineate the five regions in subsequent studies.
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winter over U.S., for example [Tian et al., 2009], thus the
systematic errors in the ensemble mean for summer in such
cases are not necessarily much smaller from the averaging.
[13] The global uncertainty map for each of the four

seasons is shown in Figure 2. Instead of showing the
absolute values of the standard deviation from the ensemble
mean, we show the relative uncertainties as the ratios
between the standard deviation and the ensemble mean
precipitation over each grid box. An illustrative picture
emerges, giving a clear indication of where these satellite‐
based products are performing better or worse.
[14] Generally, one sees relatively lower uncertainties

over areas with stronger precipitation shown in Figure 1,
especially over the tropics. This indicates that the satellite‐
based retrievals tend to detect and measure strong events
better, partially due to the higher signal to noise ratio, and
partially due to the favorable convective precipitation
regimes for PMW‐based measurements. The performance at
higher latitudes degrades considerably, especially poleward
of 40° latitude. This can be attributed to coverage by fewer
sensors (e.g., lack of TRMM coverage), light precipitation
events, snowfall, and in the case of land surfaces, snow and
ice on the ground which produce a signal similar to pre-
cipitation (e.g., Figure 2a). It is also possible that at higher
latitudes the larger standard deviations reflect precipitation
algorithm differences, as discussed by Adler et al. [2001].
[15] In addition, one tends to see lower uncertainties over

the ocean than over the land, especially during the local
spring season (e.g., Figure 2b for CONUS and Eurasia and
Figure 2d for Australia). This is consistent with expecta-
tions. However, South America is an exception, especially
in its warm season when the uncertainties are comparable
with those over ocean surfaces, even at fairly high latitudes.
[16] This global uncertainty map also reveals many fine‐

scale error features. The Tibetan Plateau, the Rockies and
the Andes pose a constant challenge across all seasons,
likely due to the orographic precipitation associated with the
complex terrain and snow and ice covers on the ground
during cold seasons at higher elevations. There are also
consistently higher uncertainties along coastlines (e.g.,
Figure 2b) and over water bodies (e.g., the Great Lakes in
Figure 2c), which have been documented in previous studies
[e.g., McCollum and Ferraro, 2005]. Over Africa there are
also uncertainties associated with the ITCZ rainband, espe-
cially along its flanks, with amplitudes much higher than its
oceanic counterpart over the central Atlantic (Figure 2c).
[17] Uncertainties in the precipitation measurements

exhibit strong regional, seasonal, and rate‐rate dependencies.
To investigate these dependencies, we selected five regions
(CONUS, Europe, South America, Northern Atlantic and
Western Pacific) delineated in Figure 2a, and compared their
uncertainties across different rain rates and over the four
seasons (Figure 3). In each region the daily standard devi-
ation values were binned to their ensemble mean rain rates,
and the median of the standard deviation values for each bin
is plotted.
[18] First, with the land and ocean surfaces over the

Northern Hemisphere as two separate regions, Figures 3a
and 3b show that the land surfaces exhibit systematically
higher uncertainties than the ocean in winter (DJF), espe-
cially for light precipitation (<8 mm/d, Figure 3a). The gap
between the two surface types narrows down remarkably
in summer (JJA), though, except for heavier precipitation

(>8 mm/d). The uncertainties for heavier precipitation
(>8 mm/d) seem less affected by the season (Figures 3a
and 3b).
[19] Among the five regions, CONUS and Europe show

much higher uncertainties during winter (Figure 3c), while
the other three regions have similar uncertainty amplitudes.
However, during summer, the spread over CONUS and
Europe is comparable to that of the other three regions
(Figure 3d). The latter show very slight seasonal differences,
and South America exhibits surprisingly similar uncertainty
amplitudes to those of the two oceanic regions (Northern
Atlantic and Western Pacific).
[20] For all the regions shown in Figure 3, the relative

uncertainties decrease rapidly with the mean precipitation
rate, from over 100% at 1 mm/d to less than 30% at 32 mm/d
and higher. This is consistent with our observations and
explanations in Figures 1 and 2.
[21] Finally, Figures 3e and 3f illustrate the seasonal

variations in the uncertainties for two of the five regions.
CONUS and Europe show strong seasonal dependencies,
with the winter season producing the highest amplitudes and
summer the lowest, especially at lower rain rates (<8 mm/d).
However, there are significant differences between the two
regions: over CONUS the seasonal differences in uncertainties
largely disappear at higher rain rates (>8 mm/d, Figure 3e),
while over Europe they persist, and the uncertainties in winter
are much worse than the other three seasons (Figure 3f). We
also examined two other regions, Northern Atlantic and
South America, and interestingly, they did not show much
seasonal difference.

4. Summary and Discussions

[22] A globalmap ofmeasurement uncertainties in satellite‐
based precipitation estimates has been produced, by com-
puting the measurement spread within an ensemble of six
different TRMM‐era precipitation products (3B42, 3B42RT,
CMORPH, GSMaP, PERSIANN, and NRL; Table 1). Our
results show that the ensemble mean reproduced the major
features of global precipitation distribution consistent with
existing observations, such as the ITCZ and the Indian
summer Monsoon. This illustrates the promise of satellite‐
based global retrievals. The uncertainties among these dif-
ferent measurements are relatively small (40–60%) over the
oceans, especially in the tropics, and over the lower‐latitude
South America (Figure 2).
[23] Many error features were revealed from a global

perspective. For example, there are large uncertainties (100–
140%) over high latitude (poleward of 40° latitude), espe-
cially during the cold season (e.g., Figure 2a for Northern
and Figure 2c for Southern Hemisphere). High relative
uncertainties also persisted through the seasons over com-
plex terrains, including the Tibetan Plateau, the Rockies and
the Andes (Figure 2). Coastlines and water bodies also
clearly reflect large uncertainties (e.g., Figures 2b and 2c).
[24] The global relative uncertainties also exhibited fairly

systematic seasonal, regional as well as rain‐rate depen-
dencies (Figure 3). In general, the stronger the precipitation,
the lower are the uncertainties. Europe exhibits the largest
ensemble spread in winter among the five regions studied
(Figures 3c and 3f). The spread over land surfaces is close to
that over ocean in summer, but higher in winter (Figure 3).
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The seasonal variation over the ocean and South America is
weak.
[25] Synthesis of these results supports the belief that

current satellite‐based precipitation products are more reli-
able over areas with strong convective precipitation and flat
surfaces, such as the tropical oceans and, interestingly, South
America. On the other hand, complex terrains, coastlines

and inland water bodies, cold surfaces, high latitudes and
light precipitation emerge as areas with larger spreads and
by implication larger measurement uncertainties.
[26] We want to note that the approach used herein

produces only a relative estimation of the measurement
uncertainties in these data sets, because these data sets are not
entirely independent measurements, thus the uncertainties

Figure 3. Standard deviation from the ensemble mean, as percentage of the mean daily precipitation at each associated rain
rate bin, for Northern Hemisphere (a) winter (DJF) and (b) summer (JJA), for the five regions for (c) local winter and
(d) local summer, and for the four seasons over (e) CONUS and (f) Europe.
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obtained via analysis of the ensemble spread should be
viewed as lower‐bound estimates of the total uncertainty.
Nonetheless, the uncertainty map can serve as a quantitative
measure of the “difficulty” of measuring global precipitation
over various areas, because smaller variance among the
different products reflects less sensitivity to the particular
detection and rain‐rate blending algorithms. We also com-
pared our results with those of Adler et al. [2009] who used
a three‐member ensemble to derive a composite climatology
in the tropics, and their results showed much lower
uncertainties because of their much lower temporal and
spatial resolutions (monthly and 0.5°). Moreover, we exam-
ined Figure 3 against the analytically derived results of
Huffman [1997] and found the curves in Figure 3, when
plotted in the same linear scale (not shown), are very similar
to those of Huffman [1997], except that his values are sys-
tematically lower also due to the much coarser resolution
(2.5°).
[27] In addition, the ensemble membership is not large,

and each one of them is not bias‐free relative to the
ensemble mean. Therefore, some systematic errors may be
realized as the random errors in our approach. However, this
will not affect our conclusion because they only increase the
ensemble spread.
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