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[1] The study examines the spatial variability of June–
September 2003 mean precipitation rates (Pr03) simulated
by a regional climate model on a horizontal grid with 0.5�
spacing. In particular, it evaluates the relative impact of
different initial conditions versus the influence of the lateral
boundary conditions (LBC), and it compares small spatial
scale distributions of modeled Pr03 to data from the
Tropical Rainfall Measuring Mission (TRMM) and the
NOAA Climate Prediction Center data for the African
Famine Early Warning System (FEWS). Simulations over
West Africa were made with the CCSR/GISS RM3, driven
by synchronous data from NCEP reanalysis. A five-member
ensemble for a single season was generated by staggering
the initial conditions of each member by 36 hr within the
period May 9–15, 2003. Results showed that the LBC
influence dominated over that of differing initial conditions,
implying that the precipitation simulations suffered little
contamination of random noise. In a second evaluation,
small spatial scale distributions of Pr03 were computed as
the difference between Pr03 and spatially smoothed fields.
Spatial correlations between the RM3 product versus the
TRMM and FEWS small-scale components of Pr03 were
highest using TRMM data provided at 1� elements. Results
suggest that the model may be challenged to simulate
realistic small-scale features of the seasonal mean
precipitation field, and/or that observational data sets
do not adequately capture these fine spatial features.
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1. Introduction

[2] Regional climate model (RCM) simulations are driven
by synchronous lateral boundary conditions (LBC) that
represent either observational analyses or model forecasts
within a larger domain. In the usual configuration of nested
RCM simulations, the RCM effectively downscales meteo-
rological fields to a higher spatial resolution than the
resolution of the forcing data. The goal is for the down-
scaling to add useful information about the spatial variability
of climatological fields, based on the integration of the
governing equations at the higher resolution and accounting
for a higher resolution specification of lower surface charac-

teristics, such as topography and vegetation. The null
hypothesis is that the RCM produces noisier meteorological
fields that are no more realistic than the driving data.
[3] Information about the evolving climate is conveyed to

the RCM via the LBC. Random noise, on the other hand,
can be added during each time step, beginning with the
initial conditions. Simulations driven by the same LBC, but
from different initial conditions, should diverge from one
another if random noise dominates, and they should con-
verge to a single solution if the LBC dominate. Conver-
gence of such simulations to a single solution determined by
the LBC indicates that the RCM produces a high-resolution
representation of the atmospheric evolution defined by the
driving analysis or prediction.
[4] This paper presents results of five parallel RCM

simulation experiments over West Africa on a 0.5� grid,
driven by NCEP reanalysis (NCPR) data gridded at 2.5�
during June–September (JJAS) 2003, that were begun from
different initial conditions (see below). In addition, in order
to demonstrate the value of spatial details in one simulation
field, the study compares small-scale RCM precipitation
patterns with validation data from the Tropical Rainfall
Measuring Mission (TRMM) gridded at 1� and 0.5�.
TRMM data are based on a modification of the Global
Precipitation Index (GPI) from geostationary satellite infra-
red measurements. TRMM microwave, radar, visible and IR
observations are observed at best only once per day, so to
form the final data set they are used in statistical relation-
ships to calibrate the GPI. They are not merged with any
rain gauge data. A second data set for precipitation valida-
tion is available from NOAA/CPC for the Famine Early
Warning System (FEWS). We use FEWS, version 2, gridded
estimates of precipitation rates for June–September 2003,
which are based on a combination of rain gauge and
METEOSAT remote radiometric measurements, which they
have in common with TRMM. Herman et al. [1997]
explained the methodology, although version 2 was only
implemented in 2000.

2. Description of the RCM

[5] Druyan et al. [2006] described the important compo-
nents of the third-generation RCM at the Goddard Institute
for Space Studies (GISS), the RM3, so only a brief
description is given here. The latest version of the RM3 is
integrated at 28 vertical levels and the domain for the
simulations described here is bounded by 35�N–20�S,
35�W–35�E. The RM3, driven by NCPR, has been shown
to faithfully simulate time-space patterns of westward-
propagating precipitation swaths that compare quite favorably
with daily estimates from TRMM satellite data, after an initial
spin-up of about six days [Druyan and Fulakeza, 2005].
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Model precipitation, even during four- month simulations, has
been shown to remain well correlated with TRMM and rain
gauge observations of daily accumulations.
[6] TheRM3uses the same land surface (LS) processmodel

used in the GISS GCM [Rosenzweig and Abramopoulos,
1997; Hansen et al., 2002]. The LS model consists of two
integrated parts, the soil and the canopy, and it conserves
water and heat while simulating their vertical fluxes. The
RM3 modeled soil is divided into six layers to a depth of
3.5 m, and the model distinguishes between five textures of
soil. The canopy, modeled as a separate layer located above
the soil, is responsible for the interception of precipitation,
evaporation of accumulated water and removal of soil water
through transpiration.
[7] The Del Genio and Yao [1993] moist convection

parameterization and the Del Genio et al. [1996] scheme
for the effects of cloud liquid water and cloud ice have also
been incorporated into the RM3. These are components
originally developed for the GISS GCM, which itself has
been extensively applied to climate sensitivity studies [e.g.,
Hansen et al., 2002]. The cloud liquid water scheme allows
for life cycle effects in stratiform clouds and permits cloud
optical properties to be determined interactively. The appli-
cability of these schemes at RM3 horizontal resolutions
finer than 0.5� grid spacing has not yet been tested.

3. Ensemble Simulations for June–September
2003

3.1. Sensitivity to Initial Conditions

[8] The impact of differences in initial conditions on the
simulated seasonal rainfall was investigated by comparing
RM3 JJAS 2003 mean precipitation rates (Pr03) over the
part of the domain bounded by 5�S–20�N, 20�W–30�E
(hereafter Area A) from each member of a five-member
ensemble to each other, to the ensemble mean and to
TRMM data. This area encompasses the principal rain band
of the summer monsoon over West Africa. Ensemble
members were begun from NCPR initial conditions (includ-
ing soil moisture) spaced 36 h apart, beginning with 00 UT
on 9 May and until 00 UT on 15 May. NCPR LBC were
identical for each simulation, supplied four times per day.
Correlation coefficients between Pr03 of ensemble members
over Area Awere greater than 0.97, demonstrating that LBC
influences dominated while the different initial conditions
had almost no impact on the seasonal precipitation. The
correlation between the RM3 ensemble Pr03 (not shown)
versus TRMM estimates available on a 0.5� grid (not
shown) was 0.87 and against FEWS, 0.86. TRMM Pr03
at 0.5� resolution exhibits a higher spatial variability than
the modeled Pr03 distribution, while the TRMM Pr03 field
at 1� resolution (not shown) exhibits a spatial smoothness
comparable to model results. The correlation between the
RM3 ensemble Pr03 versus the corresponding TRMM Pr03
for 1� elements was 0.92. The correlation between TRMM
(0.5�) and FEWS (0.5�) Pr03 was 0.93.

3.2. Small-Scale Precipitation

[9] There have been efforts to evaluate how well meso-
scale regional model weather and climate simulations suc-
ceed in producing small spatial scale weather or climate
information.Denis et al. [2002] concluded that their regional

model weather simulations at 45 km grid spacing recovered
spatial details of weather systems that were not resolved by
the coarse-gridded driving analysis for which all disturban-
ces having wavelengths smaller than 500 km were filtered.
Herceg et al. [2006] reported mixed results regarding the
regional model simulated small-scale features of seasonal
mean precipitation rates. The relative success of the RM3 in
producing small-scale precipitation features that stand out
above the model’s random variability was also evaluated for
the RM3 Pr03 ensemble and compared to TRMM and
FEWS.
[10] Giorgi et al. [1994] separated MM4 precipitation

fields into large-scale (LgSc) and small-scale (SmSc) com-
ponents in order to examine mesoscale results of regional
model simulations. A similar approach was used here to
compute the SmSc signal of RM3 simulated precipitation
rates over Area A. For each ensemble member, the distri-
bution of Pr03 was first interpolated to a 2.5� grid, the
resolution of NCPR. Each coarse-grid distribution was then
interpolated back to the original 0.5� grid to form the LgSc
distribution, which filtered out small-scale features, reflect-
ing the smoothness of the NCPR gridded at 2.5�. To make
the SmSc distributions, residual values were computed at
each i-th grid element:

SmSci ¼ Pr03i � LgSci ð1Þ

where Pr03i represents the JJAS 2003 mean precipitation
rate at each i-th grid element.
[11] The SmSc therefore shows the spatial variability of

results on the 0.5� grid that is not captured by the NCPR
gridded at 2.5�.
[12] Figure 1a shows the SmSc distribution for the

ensemble mean Pr03 over the rain belt of West Africa. To
what extent is it a measure of the effects of the small-scale
forcing represented on the 0.5� grid, such as topography and
land surface characteristics, and to what extent is it con-
taminated by noise of the model system? Correlation
coefficients between the SmSc distributions of the ensemble
members all exceeded 0.90 (significant at the 99% confi-
dence interval). This demonstrates that RM3 simulations of
seasonal mean small-scale precipitation features are mostly
determined by the LBC and the topography (which were
common to all ensemble members), and that the small-scale
component of the simulated precipitation is also not sensi-
tive to differences between initial conditions; nor is it
contaminated by random model noise.
[13] The SmSc signal present in TRMM observations

was also computed according to equation (1), where Pr03i
represents the TRMM JJAS 2003 mean precipitation rates
for each 0.5� spatial element. The distribution of SmSc for
TRMM Pr03 (not shown) exhibited a higher spatial vari-
ability than the corresponding model distribution, consistent
with the high degree of spatial variability of the TRMM 0.5�
data. The correlation between the SmSc of the RM3
ensemble mean Pr03 versus the SmSc distribution based
on TRMM 0.5� gridded observations (over Area A) was
0.20, and similar between TRMM and each individual run.
While this is statistically significant, it means that the model
fields do not explain very much of the spatial variance of
SmSc estimated by TRMM data provided on the 0.5� grid.
Given the high spatial variability of the TRMM 0.5� data set
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and its SmSc component (not shown), an alternative TRMM
SmSc was constructed from the archived TRMM 1� Pr03
(Figure 1b). Its LgSc was made by interpolating to a 3� grid,
then interpolating back to the 1� grid. Equation (1) was
applied on the 1� grid to compute the SmSc distribution.
This SmSc was next interpolated to the 0.5� grid for the
comparison to model results. Figure 1b shows that this
version of the TRMM SmSc pattern has a spatial variability
comparable to that of Figure 1a. Indeed, correlations
between the RM3 SmSc distributions of Pr03 versus the
TRMM SmSc based on 1� TRMM data are 0.54, meaning
that model results explain 29% of the spatial variance of the
TRMM SmSc. The SmSc fields in Figures 1a and 1b have
matching positive swaths at 10�N along the ITCZ over West
Africa and positive centers over several orographic maxima:
5�N and 10�N at the coast, at 8�E, and over the Cameroon
Highlands. Several negative areas in Figure 1b are not

featured in the model results. Figure 1c shows the SmSc
distribution based on FEWS precipitation data for JJAS
2003, interpolated to the model’s 0.5� grid. The spatial
correlation between this FEWS SmSc versus the RM3
ensemble SmSc (Figure 1a), both for JJAS 2003, was
0.22, which is comparable to the correlation between
RM3 versus TRMM SmSc distributions. Note that the
FEWS SmSc pattern shows strong maxima similar to those
featured in Figures 1a and 1b.
[14] Druyan et al. [2007] showed that the RM3 computes

too few extreme precipitation rates- too few dry events and
too few heavy rain events. These discrepancies undoubtedly
lower the correlation between all of the components of
model versus TRMM seasonal mean rainfall rates. There is,
however, a rather wide gap in model versus TRMM
correlations between validations of the total Pr03 as
compared with the validations of the SmSc fields (0.87

Figure 1. Distributions of the small-scale component (see text) of June–September 2003 mean precipitation rates (mm/
day): (a) RM3, (b) TRMM (based on 1� grid), (c) NOAA/CPC FEWS (based on 0.5� grid).
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compared to 0.20). This gap implies that the RM3 is
challenged to reproduce very fine spatial features of the
seasonal precipitation field that are depicted by TRMM 0.5�
data. The possibility of noise contamination in the TRMM
and/or FEWS analyses (at 0.5�) is suggested by the finding
that the spatial correlation between the TRMM SmSc
distribution based on 1� data (Figure 1b) versus the SmSc
TRMM based on 0.5� data was only 0.19, and between
TRMM (0.5�) versus FEWS (0.5�) SmSc fields, only 0.36.

4. Conclusions

[15] Based on an ensemble of five simulations for one
season, the study found that RM3 spatial patterns of
precipitation within the main monsoon rain band over West
Africa are entirely determined by the lateral boundary
forcing and the fixed topography and other land surface
characteristics, so that different initial conditions do not
introduce noise into either the total fields or the smaller
spatial scales. Unrealistic features in lateral boundary data
can be expected to adversely affect regional model simu-
lations. The analysis suggests that even though the RM3 is
integrated on a 0.5� grid, its current configuration provides
meaningful spatial variability of simulated precipitation
more comparable to the TRMM 1� mapping, against which
the small-scale spatial correlations were about 0.54. The
small-scale precipitation patterns of the two observational
data sets considered here were only weakly correlated with
each other. Consequently, it is not yet clear how much of the
lack of correlation between the modeled versus ‘‘observed’’
small-scale patterns is due to RM3 deficiencies and how
much is due to the inability of TRMM and FEWS to map
the actual small-scale patterns. Increasing topographical
relief or decreasing internal smoothing could perhaps
improve RM3 generation of the SmSc signal, but the desta-
bilizing effect on simulations will have to be overcome.
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