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[1] We studied two recent high-resolution precipitation
datasets derived from satellite remote-sensing, TRMM 3B42
and CMORPH, and compared them with ground-based
radar and gauge measurements in the southeastern U. S..
We found there are systematic differences in rainfall
estimates between inland water-body pixels and land
pixels. On average, there are about twice as many raining
days over water bodies than over land pixels in the satellite
products, causing much higher false alarm rates over water
bodies. The increased false alarms occur mostly in the form
of light rain (<2 mm/day), and lead to significantly different
rain rate distributions between water-body and land pixels.
We speculate that this inconsistency is caused by
deficiencies in emissivity characterization for the passive
microwave-based rainfall retrievals that serve as input to
these merged products. Citation: Tian, Y., and C. D. Peters-

Lidard (2007), Systematic anomalies over inland water bodies in

satellite-based precipitation estimates, Geophys. Res. Lett., 34,

L14403, doi:10.1029/2007GL030787.

1. Introduction

[2] Recently, a few high-resolution precipitation datasets
based on satellite remote-sensing estimates have become
available [e.g., Sorooshian et al., 2000; Kidd et al., 2003;
Joyce et al., 2004; Turk and Miller, 2005; Huffman et al.,
2007]. These global products’ high spatial (0.25-degree or
higher) and temporal (3-hour or higher) resolutions make
them attractive for many hydrological applications such as
watershed modeling and flood prediction, as they can
resolve smaller watersheds and water bodies than their
precedent products (e.g., Global Precipitation Climatology
Project (GPCP) [Huffman et al., 1997]).
[3] These high-resolution products are primarily derived

from precipitation estimates from low-Earth-orbit satellites.
Today the satellites’ extensive spatial and temporal coverage
makes production of such measurements possible. In
particular, since the launch of the Tropical Rainfall Measur-
ing Mission (TRMM) satellite, the coverage of the Earth’s
surface by space-borne passive microwave (PMW) sensors
has increased significantly. Currently, over 80% of the
Earth’s surface is covered by at least one of the passive
microwave sensors in a 3-hour period [Huffman et al., 2007].
[4] The current practice of producing high resolution

multi-sensor precipitation estimates typically combines both

PMW-based and infrared (IR)-based retrievals, taking ad-
vantage of the more accurate rainfall rate retrievals from
PMW sensors and better spatial and temporal coverage from
IR-based retrievals [e.g., Adler et al., 1993; Sorooshian et
al., 2000; Kidd et al., 2003; Turk and Miller, 2005; Huffman
et al., 2007]. Alternatively, ‘‘morphed’’ time interpolation of
the PMW estimates can be used to provide estimates on a
uniform time/space grid [Joyce et al., 2004].
[5] Over land, the individual PMW-based precipitation

retrievals have some challenges. The heterogeneity of many
land surface parameters and poor characterization of surface
temperatures and emissivities make varying contributions to
the upwelling microwave radiation, creating background
signals similar to rainfall signatures over certain land
features [Grody, 1991; Ferraro et al., 1998]. Therefore,
screening strategies have to be developed to discriminate
land pixels with false rainfall signatures, such as snow, ice
and semiarid land, in scattering-based retrieval algorithms
[Ferraro et al., 1998]. In addition, coastlines usually require
special treatment to deal with the emmisivity contrast
between land and ocean [Adler et al., 1993]. In land areas
where these issues do not exist, such as the subtropical
inland southeastern United States (SEUS), it is reasonable to
expect the PMW-based rainfall retrievals to perform better.
[6] However, when applying two of the leading TRMM-

era combined-sensor precipitation datasets for our hydro-
logical studies in SEUS, we identified systematic anomalies
of rainfall retrieval over inland pixels containing small
water bodies, such as rivers, lakes and reservoirs. Such
anomalies were not discovered in previous studies when the
rainfall data were analyzed with long-term averages or over
areas too large to reveal spatial details [e.g., Gottschalck et
al., 2005; Ebert et al., 2007], or when the datasets’ spatial
resolution itself is not enough to resolve small water bodies
(e.g., GPCP [Huffman et al., 1997]). The anomalies over
most sub-footprint-scale inland water bodies are evident
when inspected at a daily time scale, and significant on a
regional spatial scale such as SEUS. This suggests that at
high spatial resolutions, sub-footprint-scale water bodies
need separate and careful treatment in PMW-based algo-
rithms, in order to produce highly consistent rainfall esti-
mates even under favorable land surface conditions such as
in SEUS.

2. Data

[7] The two high resolution satellite-based combination
datasets we studied are the TRMM multi-satellite precipi-
tation analysis (TMPA) research dataset produced at
Goddard Space Flight Center, NASA (3B42, version 6)
[Huffman et al., 2007], and the NOAA Climate Prediction
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Center (CPC) Morphing technique product (CMORPH)
[Joyce et al., 2004].
[8] Both 3B42 and CMORPH derive their precipitation

estimates primarily by merging most PMW scans available
from the array of PMW sensors including TMI, SSM/I,
AMSU-B and the more recent AMSR-E. Both datasets use
infrared (IR) data from geostationary satellites as well, to
handle PMW coverage gaps in different ways. The TRMM
3B42 product uses PMW-calibrated IR-based rainfall esti-
mates directly, to fill PMW coverage gaps [Huffman et al.,
2007], whereas CMORPH uses the high resolution IR
imagery to infer the motion of rainfall patterns between
PMW scans, and use this advection information to obtain a
smooth ‘‘morphing’’ of PMW rain patterns between PMW
snapshots [Joyce et al., 2004]. In addition, 3B42 incorpo-
rates monthly surface gauge measurement information for
bias correction, while CMORPH is purely satellite-derived,
with no ground-based measurement incorporated. TRMM
3B42 collection starts from 1998, while CMORPH starts
from December 2002, both with a spatial resolution of 0.25
by 0.25 degree and a time resolution of 3 hours (although a
higher-resolution 8-km, 30-minute version is also available).
[9] We used two ground-based precipitation estimates as

reference data to evaluate the two satellite-based datasets.
One is the NCEP Stage IV data [Lin and Mitchell, 2005],
which are primarily based on the Next-Generation Weather
Radar (NEXRAD) measurements, optimally merged with

hourly gauge reports based on the Multi-sensor Precipita-
tion Estimator (MPE) [Seo, 1998] algorithm, and with
manual quality control. This hourly dataset has a spatial
resolution of approximately 4 km. The other is the NCEP
CPC near-real-time daily precipitation analysis [Higgins et
al., 2000], denoted here as ‘‘Higgins’’, which is a daily, 0.25
by 0.25-degree product. This dataset is mainly derived from
the daily reports of 6000–7000 rain gauges from NWS River
Forecast Centers over US, with quality control measures
including duplicate station checks, buddy checks and
standard deviation checks against climatology.
[10] We selected an overlapping time-span of three com-

plete years for CMORPH and 3B42, fromMarch 2003 through
February 2006, as our study period. All the datasets are re-
projected if necessary onto a common 0.25 by 0.25-degree
spatial grid and aggregated to daily accumulation.

3. Results

[11] The anomalous signature of rainfall estimates is
readily observable from the False Alarm Ratio (FAR)
analysis. A false alarm is a day on which a satellite-based
estimate reports rain while the ground reference does not,
and the false alarm ratio is the ratio between the total false
alarms and the total raining days detected by the satellite
data. The FAR for the last year (Mar. 2005–Feb. 2006) of
the study period is shown as an example in Figure 1.

Figure 1. False alarm ratios (FAR) of (left) 3B42 and (right) CMORPH, computed against ground based (top) Stage IV
radar and (bottom) Higgins gauge data, for the last year of the 3-year study period, March 2005 through February 2006. A
threshold rain rate of 0.1 mm/day is used.
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[12] In the SEUS region shown, FAR shows exception-
ally high values over scattered land patches, especially in
the CMORPH data (Figures 1b and 1d). Such features are
also present in 3B42 (Figures 1a and 1c), but are less
pronounced and more confined in space. Such features are
present when evaluated against either Stage IV or Higgins
as the reference, with slight variations. Further inspection
reveals that most of these FAR anomalies are located over
pixels containing small water bodies. We illustrate in
Figure 2 the 0.25 by 0.25-degree pixels that contain more
than 10% of water surface area, determined from a much
higher resolution (1 km) land cover dataset [Hansen et al.,
2000]. If one compares Figures 1 and 2, the collocation of
high FAR pixels and water-body-containing ones is evi-
dent. For example, the pixels covering Walter F. George
Reservoir (on lower Alabama-Georgia border), Pickwick
Lake (northwest corner of Alabama), or Thurmond Lake
(near the middle of Georgia-South Carolina border), are

consistently associated with much higher FAR values (as
much as 40%) for both 3B42 and CMORPH. These FARs
are many times higher than the surrounding land-only
areas, mostly with FAR values of 10–20%. A pixel does
not need to contain a large percentage of water-body area:
10–15% of water surface in a pixel is enough to make a
big difference (e.g., Walter F. George Reservoir).
[13] TRMM 3B42 has slightly lower FAR values overall

in these water-body areas, with smaller spatial extent, yet
the FAR values are still significantly higher than their
surrounding areas. The FAR patterns for the other two years
of our study period show qualitatively similar features, with
smaller magnitudes. Further inspection of Figure 1 reveals
similar anomalies for pixels along coastlines, but this issue
is recognized and known to be related to joining the
retrievals from the different land-based and ocean-based
PMW algorithms [Adler et al., 1993].
[14] The anomalously high FAR values over water-body

pixels can be further diagnosed by computing the four
conventional event-based measures: hits, misses, zeros (also
called nulls) and false alarms, as shown in Table 1. For
comparison, we also randomly picked the same number
(118) of ‘‘land-only’’ pixels in the same SEUS region,
defined as pixels containing less than 10% of water-body
area. Table 1 shows there are no significant differences in
total number of hits and misses between land and water-
body pixels. However, over water body pixels, the number
of false alarms is consistently higher than its counterpart
over land pixels. Over the 3 years, 3B42 has more than
twice the false alarms over water body pixels as over land
pixels (95 vs. 38), and CMORPH has 50% more false
alarms. The difference in year 3 is most outstanding, with
31 vs. 10, and 60 vs. 26 false alarms for 3B42 and
CMORPH, respectively. The increased number of false
alarms over water bodies is compensated mostly by the
reduced number of zeros.
[15] The anomalous rainfall signature over water bodies

is inherent in the satellite estimates, independent of ground-
based reference data. Figure 3 shows the number of raining
days averaged over the total number of pixels (118), as a
function of rain rate. Both 3B42 and CMORPH exhibit

Figure 2. Pixels with 10% to 35% of total area covered by
water bodies. The color bar shows the fraction of water-
body area (percent). Pixels with over 35% of water-body
coverage are mostly over the ocean and a few along the
coast, and are masked out from the domain of our study as
ocean. There are a total of 118 such pixels in this region.

Table 1. Accuracy Measures of Event-Based Statistics: Total Annual Hits, Misses, Zeros and False Alarms, With

3B42 and CMORPH Evaluated Against Stage IVa

Surface
Type

Study
Period

Hits,
Days

Misses,
Days

Zeros,
Days

False Alarms,
Days

Total False Alarms,
Days

3B42
Land Year 1 102 45 205 13 38

Year 2 104 51 195 15
Year 3 90 55 211 10

Water-body Year 1 94 49 198 24 95
Year 2 106 46 173 40
Year 3 84 56 194 31

CMORPH
Land Year 1 122 25 194 24 78

Year 2 124 31 181 28
Year 3 107 37 195 26

Water-body Year 1 115 28 194 28 127
Year 2 121 31 174 39
Year 3 107 33 165 60

aA hit (zero) is a day when both a satellite estimate and its ground reference report a rain (no-rain) day. A miss (false alarm) is
a day when a satellite estimate reports a no-rain (rain) day while its ground reference reports otherwise. A threshold rain rate of
0.1 mm/day is used.
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remarkable differences in their raining-day distribution
between water-body (top) and land pixels (middle). In
particular, over water bodies, both 3B42 and CMORPH
show much broader distributions, with a much higher
number of raining days at lower daily rainfall intensities
(<2 mm/day) than the land pixels in this region. For
example, in the light rain range (0.1–1 mm/day), 3B42
has about 50% more raining days over water-bodies, and
CMORPH has about 75% more (Figure 3 (bottom)). At
higher rainfall intensities (>2 mm/day), the difference
becomes insignificant. For comparison, Stage IV distribu-
tions are also shown over the same sets of water-body and
land pixels, and they do not possess such dramatic differ-
ences (Figure 3 (right)).

4. Discussion

[16] We speculate that the systematic rainfall anomalies
over water bodies in the SEUS region are attributed to the
individual PMW-based input components in both datasets.
PMW-based retrievals are known to be sensitive to land
surface heterogeneity, including contrasts in temperature
and emissivity. Such anomalies are unlikely to result from
climatological differences over different land surface types,
because the water bodies in our study are relatively small-
scale (�10-km) features. In addition, the Stage IV radar data

do not show systematic differences over the same set of
water-body and land pixels in this region (Figure 3).
[17] It is more likely these anomalies are caused by the

poor characterization of the differences in emissivity and
temperature of water surfaces in the PMW frequencies used
by the retrievals. The water bodies produce a rainfall-like
signature when higher-frequency PMW channels are used
for scattering-based algorithms tuned to land surfaces [e.g.,
Grody, 1991]. We also examined rainfall distributions in the
merged products over ocean pixels around the SEUS region
(not shown here), and they do not have the anomalous light-
rain boost seen in Figure 3. That provides additional support
for our hypothesis that the PMW algorithms over land are
affected by the small inland water bodies shown in Figure 2.
Recently, we were informed of improvements to Version 6
of the GPROF algorithm [Kummerow et al., 2001] since
November 2006 (R. Joyce, personal communication, 2007),
and we therefore repeated the same analysis for the period
of November 2006 through March 2007. The anomalies still
exist with a similar magnitude. Further studies are needed to
trace the contribution of individual PMW sensors to these
errors contained in these multi-sensor products.
[18] Though our study is limited to the SEUS region, we

suspect other regions suffer this issue as well. However, in
most areas, other factors, such as topography, snow cover,
precipitation regimes (convective vs. stratiform), as well as
ground reference data quality, may mask this effect [Tian et

Figure 3. Rain rate distribution of the annual number of rain events, averaged over the total number (118) of (top) water-
body and (middle) land pixels for 3B42 and CMORPH, for the period of Mar. 2005 through Feb. 2006. Stage IV data are
also shown for comparison. (bottom) The differences in the distributions between water bodies and land are also shown as a
percentage of total averaged raining days over the land pixels. The 0.1–100 mm/day range on the abscissa is discretized
into 100 bins in a logarithmic scale for the accounting of the raining days.
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al., 2007]. In addition, since the anomalies are more apparent
over small water bodies and in light rain intensities, they will
usually have modest impact on large scale, low resolution
applications. But for small scale, high resolution applica-
tions, such as satellite algorithm validation, watershed
simulation, and river flow management, the issue docu-
mented in this study may not be ignored.
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