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[1] Cloud resolving model outputs are often used to build
databases for satellite microwave remote sensing of
precipitating clouds. A known problem of this approach is
that cloud resolving models tend to systematically produce
excessive amount of high density frozen hydrometeors,
causing the cloud/radiation model database to have stronger
scattering signatures at high microwave frequencies than
those observed by satellite or airborne sensors.
Consequently, it lowers the performance of the cloud and
precipitation retrieval algorithms that utilize the model
database. Since multi-frequency satellite observations
contain information on hydrometeors’ properties,
measured brightness temperatures can give guidance as to
how the modeled cloud database may be modified to better
mimic natural clouds. Following this philosophy, in this
study, we propose a method to adapt the modeled database
toward observations. The newly constructed database
results in a better match to the characteristics of the
satellite observed brightness temperatures. Citation: Seo,

E.-K., G. Liu, W.-K. Tao, and S.-O. Han (2007), Adaptation of a

model-generated cloud database to satellite observations,

Geophys. Res. Lett., 34, L03805, doi:10.1029/2006GL027857.

1. Introduction

[2] Retrieving precipitating cloud parameters from satel-
lite observations often relies on a cloud/radiation model-
generated database [Kummerow et al., 1996; Olson et al.,
1996, 1999]. Mismatch between the model-generated and
satellite measured radiances significantly affect the perfor-
mance of retrieval algorithms [Panegrossi et al., 1998;
Bauer, 2001; Seo and Biggerstaff, 2006]. The database,
commonly constructed by combining cloud-generating
models and radiative transfer models, relates cloud proper-
ties to their corresponding radiances, which are often
expressed by brightness temperatures (TBs) in microwave
frequencies. In order to obtain accurate cloud retrievals from
measured TBs, the database should consist of both cloud
structure and its corresponding TBs that are realistically
occurring in nature.
[3] In the context of replicating clouds in nature, cloud

models still have limitations especially due to imperfect
microphysical parameterizations, which commonly use bulk

schemes with several categories in representing liquid and
ice hydrometeors. These limitations, in turn, influence the
replication of TBs calculated by radiative transfer models.
In particular, cloud models are known to have a tendency
to produce excessive amount of high-density ice particles,
resulting in stronger microwave scattering signatures than
observations [Bauer, 2001; Biggerstaff et al., 2006;
McFarquhar et al., 2006]. Hence, multi-frequency TB

relations in the model-generated database often differ from
those of the observations. By changing microphysical,
macrophysical, and environmental factors individually in
the database, Panegrossi et al. [1998] explored the possi-
bility of mitigating the mismatch between measured and
modeled multi-frequency TB relations (i.e., manifolds).
With the same intention, we propose a new approach in
this study to mitigate the mismatch problem. However, our
approach seeks to ensure the statistical consistency between
satellite observations and hydrometeor profiles in the cloud
database, which does not ensure the consistency of physical
processes within the cloud resolving model. Since satellite
microwave TBs indirectly represent the various cloud sys-
tems occurring in nature, it might be possible to extract the
cloud structure information hidden in the measured TBs.
The idea of our approach is to use measured TBs to modify
cloud properties in the existing model-generated database.
The modified cloud properties then serve as new inputs to
the radiative transfer model to generate a new database,
which has been adapted to the characteristics of the satellite
measurements.

2. Data and Models

[4] Datasets used in this study include satellite data from
NOAA-15, -16, and -17 Advanced Microwave Sounding
Unit – B (AMSU-B) and hydrometeor structures from a
cloud-resolving model. The AMSU-B provides measure-
ments of scene radiance at five frequencies of 89-, 150-,
183.3 ± 1, ±3 and ±7 GHz, which are very useful in
estimating, especially, ice amounts in clouds from space.
The first two frequencies enable deeper penetration through
the atmosphere to the Earth’s surface. The radiances mea-
sured by the 89-GHz channel are mostly affected by the
surface and the lowest layer of atmosphere depending on
optical thickness of clouds. The highest three frequencies
span the strongly opaque water vapor absorption line at
183 GHz. The sensitivity of each channel to various clouds
has been discussed by Seo and Liu [2006]. AMSU-B TB

data used in this study are collected over the Atlantic ocean
in the longitudes 40� � 120�W and latitudes 0 � 40�N
during July in 2004.
[5] The Goddard Cumulus Ensemble model [Tao and

Simpson, 1993; Tao et al., 2003] outputs simulated for a
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5-day episode during 7–12 August 1999 are used as model-
generated hydrometeor structures. Cyclic lateral boundaries
are used. At the top of the model, a free-slip condition is
used for horizontal winds, temperature, and specific humid-
ity, and zero vertical velocity is applied. The horizontal
domain is 512 � 512 km2 with a horizontal grid resolution
of 2 km. For the present study, a stretched vertical coordi-
nate with 41 levels is used. The model has finer resolution
(about 80 meters) in the boundary layer and coarser reso-
lution (about 1000 meters) in the upper levels. The time step
is 10 s. Surface fluxes from the ocean and cloud-radiation
interactive processes are explicitly included. The observed
sea surface temperature (SST) was used for latent and
sensible heat flux calculations. The model is forced by
zonally-uniform vertical velocity, zonal wind, and thermal
and moisture advection based on 6-hourly KWAJEX obser-
vations. Kwajalein island is located at 8.44�N, 167.43�E
and has the area of 15 km2, which is the largest island in
Kwajalein Atoll (2200 km2). Shie et al. [2003] conducted
3D simulations and compared them with radar observations
during three active periods in KWAJEX. The simulation and
observation show reasonable agreement in rainfall, apparent
heat and moisture sources. The microphysical scheme has a
parameterized two-class liquid water (cloud water and rain)
and three-class ice-phase (cloud ice, snow and graupel)
hydrometeors. For rain, snow and graupel, an exponential
drop size distribution was used [Marshall and Palmer,
1948]. The densities of snow and graupel were 100 kg
m�3 and 400 kg m�3, respectively. The horizontal domain
size was 512 � 512 km�2. All model-generated variables
were archived every one hour. Further details about this
case are given by S. Gao et al. (Convective moist vorticity
vectors associated with tropical oceanic convection: A
three-dimensional cloud-resolving model simulation, sub-
mitted to Geophysical Research Letters, 2006).
[6] Model-generated data are used to compute TBs by a

radiative transfer model [Liu, 1998] to form a database
connecting hydrometeor profiles with TBs at AMSU-B
channels. One unique feature in the radiative transfer model
developed for this study is the inclusion of nonspherical
effect of snow particles in computing single scattering

properties [Liu, 2004]. The area ratio and equivalent density
of the ice particles used for designing the nonspherical ice
particles follows recent observational results of Heymsfield
and Miloshevich [2003] and Heymsfield et al. [2002]. The
usage of nonspherical ice scattering in radiative transfer
models results in more accurate brightness temperatures
than using spheres for ice particles [Liu, 2004]. The data-
base connecting cloud parameters and TBs consists of about
a half million data points.

3. Mismatch Between Measurement and Model
TBs in EOF Space

[7] Since all hydrometeors in the radiometer’s field of
view affect the upwelling radiation, the TBs at the five
AMSU-B frequencies should reflect the properties of the
hydrometeors. To show multivariate relations among TBs at
the five channels, EOF analysis was conducted. The EOF
analysis represents the correlative structure of the TB

variability at the AMSU-B channels. Let Ti represent a
column vector, which contains the depression (clear sky TB

minus cloudy sky TB) of TBs at the five AMSU-B channels
at the ith data point in the observations or the model
database. Clear sky background TBs are obtained by search-
ing the maximum occurrences of TBs with bin size of 1 K
over an area of 10� (latitude) by 10� (longitude) for every
10-day period. The difference between Ti and �T (mean TB

depression vector) defines the anomaly Ti
0. The anomalies

are then expanded with EOFs, 8j, so that Ti
0 =

PN
j¼1 ai,j 8j,

where ai,j and N represent coefficients for the jth EOF of the

ith data point and the number of EOFs, respectively.
[8] The EOF analysis for the measured and modeled

TBs provides their EOFs (8j) and corresponding coeffi-
cients (ai,j). Figure 1 shows two dominant EOF patterns
for the TBs. The two EOFs explain about 93–97% of their
variances. The first EOF variability pattern of the modeled
TBs indicate strong scattering signature at both 89� and
150-GHz. On the other hand, the measurements yield weak
scattering signature at 89-GHz but strong scattering signa-
ture at 150-GHz. This implies that the model-generated
database has excessive amount of large frozen ice par-
ticles, which result in strong scattering at both frequencies
[Biggerstaff et al., 2006].
[9] Figure 2a shows the manifolds of the observation ai,j

(o) and the model-generated ai,j(m) in their first and second
EOF space. Their manifolds show relatively large overlap.
However, since their corresponding EOFs [8j(o) and 8j(m)]
are not exactly the same (Figure 1), the model-generated
ai,j(m) should be compared with the observation ai,j(o) in
the observational EOF space [8j(o)]. The frequency
distribution of the projected model generated ai,j(p) onto
8j(o) is plotted with that of ai,j(o) in the same EOF space
(Figure 2b). About 94% of the model-generated database is
overlapped with the observed TBs occurring over the
target ocean. However, their detailed probability density
functions show differences. The different manifolds
between the observations and model-generated database
can result in erroneous cloud retrievals, especially in
retrieval algorithms based on Bayesian theorem, in which
the retrieval algorithms depend heavily on a priori probabil-
ity [Seo and Liu, 2006]. Therefore, the similarity in the
manifolds of observations and model-generated database

Figure 1. (a) The first EOFs and (b) the second EOFs of
TBs at AMSU-B channels for the measurements (solid), the
model-generated database (dotted), and the adapted data-
base (dashed). The three numbers at bottom of the figures
represent eigenvalues for the measurements, the model-
generated database, and the adapted database, respectively.
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becomes a prerequisite for reliable performance of the
retrieval algorithms.

4. Adaptation of Model-Generated Clouds to
Measured TBs

[10] Because of the inherent mismatch between the
measured and model-generated TB manifolds, the model-
generated clouds need to be modified toward more realistic
clouds in nature. To achieve a better match between model-
generated TBs with observations, Bauer [2001] performed
subselection of the cloud resolving model hydrometeor
profiles, while keeping individual profiles unchanged. Our
approach is to modify hydrometeor profiles in the cloud
database so that TBs have better match with observations in
EOF space. By doing so, more realistic cloud structures can
be extracted from satellite microwave observations, and the
new database is adjusted more close toward the observed
cloud characteristics.
[11] To accomplish this goal, let us first conduct EOF

analysis for a long vector, that is, hydrometeor structure
(Q). The long vector contains vertical profiles of all
hydrometeor species, such as cloud liquid water (qc), rain
(qr), cloud ice water (qi), snow (qs), and graupel (qg) as its
components. Thus, the vector is defined as:

Q ¼

qc
qr
qi
qs
qg

2
66664

3
77775: ð1Þ

The long vector for the ith data point is the sum of mean

vector,�Q, and deviation vector, Q0
i. If the deviation vector is

decomposed with EOFs, the long vector can be written as:

Qi ¼�QþQ0
i ¼�Qþ

XN
k¼1

bi;kVk ; ð2Þ

where bi,k and Vk denote the kth EOF coefficient and EOF,

respectively, at the ith data point, and N denotes the number

of EOFs for the expression. The EOFs possess concurrent

multilayered and multivariate relations among hydrometer

species (Figure 3). The hydrometeor structure (Q) can be

related to TB vector (T) by various approaches, for instan-

ces, multivariate linear regression or Bayesian theorem. In

particular, the dimension reduction of Q and T is very

useful to multivariate linear regression, which relate the

hydrometeor EOF coefficients bi,k to the TB EOF coeffi-

cients ai,j. Multivariate linear regression has the benefit to

expand the relations outside the database boundary, but is

less suitable for highly nonlinear relations. On the other

hand, Bayesian method can hold for nonlinear relations

locally, but is limited by the boundary of its a priori

database. Therefore, both multivariate linear regression

and Bayesian theorem will be used in this study for deriving

the relations connecting hydrometeor profiles and TBs in the

model-generated database.
[12] Based on multivariate linear regression, the kth EOF

coefficients of a microphysical variable can be derived from
satellite AMSU-B TBs in a linear aspect as follows:

~bk ¼ c0 þ
X4
j¼1

cja0
j; ð3Þ

where~bk is the kth estimated EOF coefficient of the long
hydrometeor vector, a0

j represents the jth EOF coefficient
of observed TBs projected onto 8j(m), and cj is a
regression coefficient obtained from the multivariate linear
regression relating aj and bk in the model-generated
database. By doing so, new long hydrometeor vectors

were built using~Q =�Q +
P4
k¼1

~bk Vk.

[13] Based on Bayesian approach, the expected vector
Ê(Q) given a set of y0 (the observed state) is expressed in a
discrete form [Lorenc, 1986; Olson et al., 1996; Seo and
Liu, 2005] by

~
Q ¼ Ê Qð Þ

¼
X
j

Qj exp �0:5 y0 � ys Qj

	 
� �Tn

	 Oþ Sð Þ�1
y0 � ys Qj

	 
� �o
=Â; ð4Þ

where O and S are the observation and simulation error
covariance matrices, respectively; Â is a normalization factor
and ys is the radiative transfer model simulated brightness
temperature vector. Details on the Bayesian formulation
using AMSU-B data are given by Seo and Liu [2006].
[14] Using both multivariate linear regression and Bayes-

ian methods, new cloud structures ( ~Q) adjusted to satellite
measurements are derived, and then utilized by radiative
transfer model to calculate TBs. So, a new database having
relations between adjusted cloud structure and its
corresponding TBs was built.
[15] To examine the newly constructed database, the

mean and standard deviation of hydrometeor profiles were
compared with those for the original model-generated
database. The new database has less graupel and rain, more
cloud ice and snow, and smaller variability in rain and
graupel than the original model-generated database

Figure 2. (a) TB distribution of the measurements (blue
dots) and the model-generated database (green dots) in their
first and second EOF space. (b) TB manifolds of the
measurements (blue), the model-generated database (green),
and the adapted database (red) in observational EOF space.
Contours represent frequencies.
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(Figure 3). Producing more snow and less graupel is very
encouraging in light of the known problem that cloud
models tend to produce excessive graupels. Meanwhile,
the first EOF pattern of TBs in the new database lies
between the observation and model-generated database,
especially at 89-GHz (Figure 1), indicating that the adjusted
database has less scattering by large high-density ice par-
ticles than the model-generated database.
[16] As another indication of improvement of the data-

base, the occurrence frequency distribution of the EOF
coefficients (aj) of the new database was compared to the
observed ones in EOF space after projecting them onto
the observed EOFs (Figure 2b). For the original model-
generated TBs, about 94% of its total occurrences are
overlapped with the observations, while for the newly
adapted database about 99% are overlapped. For a more
quantitative comparison, we define a structural difference
between the two manifolds as:

diff ¼
X
i

X
j

fi;j mð Þ � fi;j oð Þ
� �2

�X
i

X
j

fi;j oð Þ
� �2

;

where fi,j(o) and fi,j(m) denote occurrences for the measure-
ments and another database, respectively, and i and j denote
the ith and jth pixel in the first and second EOF coefficient
axes, respectively. The structural difference of the occur-
rences of the newly adapted database from the observations
is about 5%, while that of the original model-generated
database is about 20%. Therefore, the new database truly
has been adjusted toward observations in terms of cloud
structures and TB signatures.

5. Conclusions

[17] It is known to be an inherent problem that cloud/
radiation model-generated database has colder TBs at
85 GHz microwave channel than observations because the
model database often possesses excessive amount of high-
density frozen particles. Hence, the objective of the study is

to modify the model-generated cloud properties by using the
guidance of observed TBs in an effort to improve the
supporting database utilized by cloud retrieval algorithms.
A basic assumption to fulfill the modification is that the
model-generated database supports some part of intrinsic
relations between cloud properties and TB signatures in
observations. If so, we can infer cloud properties from
observed TBs using the relations obtained by the model-
generated database. That is, the relations can be interpolated
and extrapolated within and beyond the boundary of the
model-generated TBs in various ways.
[18] By doing so, we could construct new cloud proper-

ties and then calculate TBs at satellite observation channels.
To investigate properness of the newly constructed data-
base, the multivariate relations between TBs and hydro-
meteors (that is, EOFs) and the TB manifolds in two major
EOF space were compared to those in observations and the
model-generated database. The results indicate that cloud
characteristics in the new database lie more closely to those
of observations compared to the original model-generated
database. In the meantime, stronger efforts should be made
to produce hydrometeor distributions from cloud-resolving
model simulations that are more realistic.
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