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[1] Advanced land surface models (LSMs) offer detailed estimates of distributed
hydrological fluxes and storages. These estimates are extremely valuable for studies of
climate and water resources, but they are difficult to verify as field measurements of soil
moisture, evapotranspiration, and surface and subsurface runoff are sparse in most regions.
In contrast, river discharge is a hydrologic flux that is recorded regularly and with
good accuracy for many of the world’s major rivers. These measurements of discharge
spatially integrate all upstream hydrological processes. As such, they can be used to
evaluate distributed LSMs, but only if the simulated runoff is properly routed through the
river basins. In this study, a rapid, computationally efficient source‐to‐sink (STS) routing
scheme is presented that generates estimates of river discharge at gauge locations based
on gridded runoff output. We applied the scheme as a postprocessor to archived
output of the Global Land Data Assimilation System (GLDAS). GLDAS integrates
satellite and ground‐based data within multiple offline LSMs to produce fields of land
surface states and fluxes. The application of the STS routing scheme allows for evaluation
of GLDAS products in regions that lack distributed in situ hydrological measurements. We
found that the four LSMs included in GLDAS yield very different estimates of river
discharge and that there are distinct geographic patterns in the accuracy of each model as
evaluated against gauged discharge. The choice of atmospheric forcing data set also had a
significant influence on the accuracy of simulated discharge.
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1. Introduction

[2] Rivers are the ultimate integrators of watershed
hydrology. The imprints of upstream climate variability, land
surface and subsurface processes, and human modifications
to the hydrological system are all present in a river hydro-
graph, making a gauged measurement of discharge one
of the most integrative observations available to landscape‐
scale hydrology. In situ measurements of precipitation,
evaporation, soil moisture, or groundwater reflect only the
local conditions. River discharge is also a historically well‐
monitored hydrological flux. River gauge records are avail-
able for decades for many of the world’s major rivers and
they typically provide reliable information, with accuracy of
up to 5% [Dingman, 2001], and generally in the range of
10–20% [Fekete et al., 2002].
[3] The duration, reliability, and integrative nature of

river gauge measurements underscore their utility in the
calibration and evaluation of Earth system models. In a
number of studies, river gauge data have been used to assess

the applicability of general circulation models [e.g., Arora et
al., 1999; Ducharne et al., 2003; Miller et al., 1994],
atmospheric and meteorological reanalyses [e.g., Dai
and Trenberth, 2002; Ngo‐Duc et al., 2005], and surface
hydrological models [e.g., Decharme et al., 2008; Oki et al.,
1999; Voisin et al., 2008]. Such studies demonstrate an
obvious complementarity between gauge measurements and
distributed models: the gauge data provide a reliable mea-
surement of basin‐net hydrological flux, while the model
simulates multiple surface and/or atmospheric processes
distributed over the basin. Gauge data offer a means for
assessing model performance, while the model explains, and,
potentially, predicts variability in gauged river discharge.
[4] In order to realize fully this complementarity, it is

necessary to implement a runoff routing scheme that trans-
ports runoff simulated at each model grid cell to the drainage
location that corresponds to the in situ gauge. A number of
routing schemes exist, and they vary widely in their com-
plexity and degree of calibration. For water management
applications on the watershed scale, highly parameterized,
geographically specific models can be used to provide
accurate estimates of streamflow and reservoir status [e.g.,
Zagona et al., 2001]. For global‐scale applications, how-
ever, computationally efficient, easily parameterized routing
methodologies are preferable.
[5] In an early and influential effort at large‐scale routing,

Vorosmarty et al. [1989] prepared a river routing network
for the Amazon basin at 0.5° resolution. Runoff produced by
a water balance approach was routed through the network
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using a linear transfer model, with flow time calculated as a
function of flow length, estimated subgrid‐scale sinuosity,
and grid‐scale velocities estimated on the basis of mean
downstream discharge [after Leopold et al., 1964]. A similar
linear transfer model was adopted by Miller et al. [1994] for
application to the Goddard Institute for Space Studies
(GISS) General Circulation Model (GCM) at global scale. In
their formulation, runoff produced by a GCM at 4° × 5° was
routed to the ocean through a 2° × 2.5° network in which
flow direction was determined by topography and velocity
was a function of slope. Because the scale of implementa-
tion was quite coarse, slope‐based estimates of velocity
were intentionally calculated to yield low values, providing
an implicit correction for subgrid‐scale sinuosity and the
time it would realistically take runoff to work its way
through the river system. Sausen et al. [1994] implemented
a linear routing scheme for the European Center Hamburg
(ECHAM) GCM, with transport parameters semiobjectively
calibrated to match observed flow in major gauged rivers. In
a study of the Amazon River system Costa and Foley [1997]
largely adopted the velocity estimation procedure of Miller
et al. [1994]. As a refinement, they estimated the sinuosity
coefficient independently for each tributary within the
Amazon basin, and they adjusted velocities as a function of
stream order. Costa and Foley [1997] further divided runoff
into surface and subsurface components and applied dif-
ferential source retention times to each. Further variants on
the Miller et al. [1994] approach include the global hydro-
logical routing algorithm (HYDRA [Coe, 2000]), which was
implemented at 5′ resolution, included variability in surface
waters, and made some adjustments to the Miller et al.
[1994] method for calculating distributed velocities. Oki
and Sud [1998] and Oki et al. [1999] continued this line
of application through the development of topographically
corrected integrating pathways for routing models.
[6] More recent studies have attempted to include tem-

porally variable estimates of flow velocity. Schultze et al.
[2005] estimated velocity using the Manning‐Strickler for-
mula, in which velocity is a function of channel slope,
channel roughness, and hydraulic radius of the river. Given
the difficulty of estimating roughness and hydraulic radius
over large areas, roughness was treated as a constant, or
alternatively, a tuning parameter. Hydraulic radius was esti-
mated on the basis of mean downstream discharge. Ngo‐Duc
et al. [2007] built on this approach to implement a variable‐
velocity routing scheme globally. In their application,
roughness was calculated as a function of channel geometry
and slope, and subgrid‐scale meandering was accounted for
in the calculation of velocity.
[7] Each of the routing studies described above utilized a

“cell‐to‐cell” (CTC) algorithm, in which runoff flux from
each analysis cell is routed to its downstream neighbor and
is tracked along the river network on the basis of mass
continuity equations [Liston et al., 1994;Miller et al., 1994].
Such CTC algorithms have been implemented with success
over a range of spatial scales [e.g., Bell et al., 2007; Coe,
1997]. They have the advantage of reporting routed dis-
charge estimates at every point in the simulation domain,
with the additional advantage that they can be coupled with
land surface models (LSMs) to simulate feedbacks between
laterally transferred moisture and other water and energy
fluxes. CTC algorithms, however, do not consider within‐
cell routing, leading to considerable inaccuracies when grid‐

cell size is large relative to hydraulic heterogeneities. This is
a particular concern because of the computationally inten-
sive nature of CTC algorithms [Olivera et al., 2000], which
discourages high‐resolution implementations for continental
or global simulations even on today’s powerful computers.
[8] An alternative to CTC routing is to employ some form

of “source‐to‐sink” (STS) routing algorithm [e.g., Lohmann
et al., 1996; Naden, 1993; Olivera and Maidment, 1999;
Olivera et al., 2000]. In contrast to CTC algorithms, in
which all runoff must be routed explicitly through the
conveyance and storage equations of every cell between a
runoff source and the discharge point of interest, STS solves
for discharge only at selected points on the landscape. This
approach allows for great efficiency, as the discharge at
these selected points can be solved by applying a watershed
response function to all sources of runoff within the drainage
basin. Such efficiency is particularly useful for application
to long analyses on the global scale, as one is often inter-
ested in discharge at only a small number of points—e.g.,
river outlets to the ocean or the locations of reliable river
gauges—relative to the prohibitively large number of grid
cells that would be included in a global‐scale CTC algo-
rithm implemented at high resolution. The high‐resolution
implementation of STS requires only that spatially variable
static hydrographic parameters relevant to routing be defined
at high resolution. This is done once during preprocessing
and does not require any additional computational time
during the routing simulation.
[9] Here we present results of a source‐to‐sink routing

scheme developed for the Global Land Data Assimilation
System (GLDAS [Rodell et al., 2004]). GLDAS utilizes the
Land Information System (LIS [Kumar et al., 2006]) soft-
ware to drive a suite of advanced land surface models with
observation‐based inputs toward the goal of optimal simu-
lation of global land surface states and fluxes. GLDAS results
have been used in the initialization of climate modeling
experiments [e.g., Koster et al., 2004], in the evaluation and
interpretation of new satellite data records [e.g., Syed et
al., 2008], and in the study of land‐atmosphere interac-
tions [e.g., Zhang et al., 2008]. Evaluation of GLDAS,
however, has generally been limited to the United States
and other observation‐rich regions of the world [Kato et al.,
2007], even though one of its strengths is the provision of
information on land surface processes in data poor regions.
The need for a means of validating GLDAS was a primary
motivation for the development of the routing scheme
described here, as river gauge comparisons allow for some
degree of model evaluation in regions (much of the world, in
fact) where the observations necessary for a more thorough
assessment of GLDAS model outputs are not available.
Specifically, the scheme enables evaluation of the quantity,
timing, and daily to interannual variability of simulated
runoff. These, in turn, reflect the accuracy of model
parameter fields and meteorological forcings, strengths and
weaknesses of the parameterizations of various physical
processes, and resolution and computational economics issues.
Ultimately, we hope to use this information to guide model
development and to identify optimal inputs and model con-
figurations. Such applications must be pursued with the
recognition that our present STS algorithm, as described in
the next section, includes large lakes and reservoirs but
does not account for water withdrawals or active reservoir
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management. STS results for heavily managed rivers must
therefore be interpreted with caution.

2. Source‐to‐Sink Algorithm

[10] The STS algorithm employed here is based on the
algorithm presented by Olivera et al. [2000]. It is founded
on the concept that the discharge hydrograph at a selected
“sink” on the landscape can be described as the sum of
watershed response functions for all “sources” of runoff
within the drainage basin:

Qi ¼
X
j

Qj; ð1Þ

where Qi (L
3 T −1) is the discharge hydrograph at sink i, and

Q j (L
3 T −1) is model grid cell j’s contribution to the hy-

drograph. Both Qi and Q j are vectors with a length equal to
the number of time steps included in the hydrograph. Qj is,
in turn, a function of the area of source cell j (Aj), the time
series of simulated runoff at j (vector R j (L)), and the
response function relating source j to sink i (uj):

Qj ¼ AjRj * uj; ð2Þ

where the asterisk represents the convolution integral, and
vector uj (T

−1) has a length equal to the number of time
steps included in the response function for runoff from grid
cell j to contribute to discharge at sink i.
[11] Aj is equal to the resolution of the LSM and Rj is

drawn from LSM output. Following on earlier work [Mesa
and Mifflin, 1986; Naden, 1992; Troch et al., 1994], the
response function uj is assumed to be a first‐passage‐time
distribution:

ujðtÞ ¼ 1

2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt=tjÞ=�j

p exp � 1� ðt=tjÞ
� �2
4ðt=tjÞ=�j

( )
: ð3Þ

This function includes two parameters that must be defined
for each source cell: the average flow time to sink (tj) and
the representative Peclet number (Pj), which describes the
importance of advection relative to hydrodynamic disper-
sion over the path from source to sink. Both of these para-
meters, in turn, depend on estimates of flow length (L) and
flow velocity (v) distributed over the flow path:

tj ¼
X
k

1

vk
Lk

� �
; ð4Þ

�j ¼
X
k

1

vk
Lk

� �" #2, X
k

Dk

v3k

� �
Lk

" #
: ð5Þ

In [4, 5], k refers to the segment of the flow path between
j and i for which local velocity, flow length, and dispersivity
(D (L2 T −1)) are defined. It is important to note that the size
of k can be much smaller than that of the model grid cell j.
As routing parameters in STS are static, there is only a
modest initial computational cost associated with the defi-
nition of high‐resolution response functions; once these
parameters are established, there is no additional computa-
tional expense for having defined the parameters at high
resolution.

[12] For application to GLDAS, Lk and vk were defined
globally at 1 km resolution using the USGS EROS Hydro1k
hydrologically corrected terrain data set [Verdin and Verdin,
1999]. Hydro1k is commonly used for global applications
on account of its high resolution and general reliability;
however, any discrepancies between Hydro1k basins or
flow paths and the hydrography of the actual gauged basin
will have an impact on our STS results. Weighted flow
lengths were calculated using the hydrology functions
available in ESRI ArcGIS 9.2, a set of spatial analysis tools
that make it possible to describe hydrologic characteristics
of a surface, including flow direction, watershed boundaries,
and stream networks, on the basis of gridded elevation data.
No correction was made for subgrid‐scale sinuosity, as we
assumed that the 1 km scale of calculation was sufficient to
include meanders relevant to total flow time in these large
river basins. This assumption is subject to re‐examination in
future applications of the STS algorithm. Velocity was
estimated as a function of slope following the method of
Coe [2000]:

vk ¼ v0 sk=s0ð Þ0:5; ð6Þ

where v0 is the minimum effective velocity of a river (0.8 m
s−1), sk is local slope (m m−1), and s0 is a reference slope of
0.0005. This general approach to estimating velocity has
been used in a number of previous studies [e.g., Costa and
Foley, 1997;Miller et al., 1994], with some variability in the
choice of coefficients. Lakes and reservoirs were assigned a
slower velocity, calculated as

vk ¼ vL Ak=ALð Þ0:5; ð7Þ

where vL is a reference minimum lake velocity (0.08 m s−1),
Ak is the area of the grid cell, and AL is the total area of
the lake. This formulation also derives from Coe [2000],
with the modification that we do not account for lake depth
in our calculation. Lakes were defined using the 5′ global
surface water database produced by Graham et al. [1999].
This data set includes reservoirs, so the STS parameterization
does account for the time‐mean impact that these reservoirs
have on river flow.
[13] Small or recently constructed reservoirs are not

included in the present analysis, nor is active reservoir
management. It would be possible to include these elements
in the future, more detailed applications of STS. In the
current application, the absence of small reservoirs and
active reservoir management is expected to influence STS
results in several ways. For intensely managed river basins
(e.g., Columbia, Colorado), total transport time and evapo-
rative loss during transport will both be underestimated, and
in some cases, the simulated hydrograph may overestimate
variability due to the absence of the moderating effect that
reservoir management has on discharge. These discrepancies
will be particularly significant when small reservoirs dom-
inate the basin; in river basins characterized by large lakes
and reservoirs, such as the St. Lawrence and Nelson, the
storage impact of these large water bodies on the hydro-
graph will generally overwhelm that of smaller reservoirs
and local management; large lakes and reservoirs are
included in our calculation of STS parameters.
[14] As advection is known to dominate over hydrody-

namic dispersion in large basins [Olivera and Koka, 2004],
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the dispersivity coefficient D was set to a constant value of
900 m2/s globally [after Olivera et al., 2000]. Tests in which
D was set to values as high as 2700 m2/s and as low as
300 m2/s confirmed the fact that results for the large basins
considered in this study were relatively insensitive to this
parameter.
[15] The timing and magnitude of the discharge hydro-

graph is also influenced by losses during transport. In
Olivera et al. [2000], these losses were accounted for in a
“loss coefficient” (l) assigned to each grid cell. In this
application we modified this approach, and estimated losses
due to direct evaporation on the basis of potential evapo-
ration, estimated river width, and local river velocity:

Evap j ¼ Wj �
X
k

Ek
1

vk
Lk

� �
; ð8Þ

where Evapj (m) is the path‐integrated evaporative loss for
runoff originating in cell j, Wj is the river width attributable
to runoff contributed from cell j, expressed as a fraction of
total routing cell width, Ek is the potential evaporation at
routing cell k, and vk and Lk are local velocity and flow
length, as defined previously.
[16] To calculate Wj, we first estimated river width at

every cell in the landscape using the method of Arora and
Boer [1999]:

Width k ¼ max 10; 6:0þ 10�4 � Qi

� � � Q0:5
k

� �
: ð9Þ

The local discharge Qk (m
3/s) was calculated as the long‐

term average simulated runoff, integrated for all points
upstream of k, without accounting for evaporation. Dis-
charge at outlet (or gauge location) Qi was calculated the
same way. For basins in which gauged discharge at i sig-
nificantly differed from simulated discharge, both Qi and Qk

were linearly corrected by multiplying by the ratio of
gauged to simulated discharge. Width at gauge location,
Widthi (m), was extracted from the Widthk field, and Wj was
estimated as

Wj ¼ Width i � Qj

Qi

1

CellWidth
: ð10Þ

Local potential evaporation Ek (m/s) was calculated for each
season (DJF, MAM, JJA, SON) as the Penman Potential
Evaporation for an open water surface [Monteith, 1981;
Penman, 1948], with all required meteorological data drawn
from the GLDAS meteorological forcing files and surface
conditions and parameters drawn from GLDAS output.
When solving equation (8), the integration function takes
into account seasonal changes in Ek for cells with a flow
time that exceeds the remainder of the season in which
runoff was generated.

3. Data and Implementation

3.1. Gauge Data

[17] Notwithstanding the recent decline in the number of
active river gauges [Vorosmarty, 2001], river discharge
continues to be one of the most widely and accurately
measured elements of the hydrological cycle. Active or
historical gauge data are available for many of the world’s
major rivers through the GRDC (http://grdc.bafg.de), a

public data repository that receives gauge records from the
national meteorological and hydrological services of World
Meteorological Organization, Geneva (WMO), member
nations. The GRDC archive currently includes data for 7332
gauges distributed around the world, though only a subset of
these has been active in recent years. For this study, the
GRDC provided daily discharge data from 66 of the world’s
largest rivers that had sufficient observations for the evalu-
ation of GLDAS (Figure 1).

3.2. GLDAS

[18] The Global Land Data Assimilation System [Rodell
et al., 2004] is designed to provide optimal estimates of
land surface fluxes and storages of water and energy. Sat-
ellite and ground‐based observations are used to parame-
terize, drive, and constrain global offline simulations of
advanced land surface models (LSMs), including Noah
[Chen et al., 1996; Ek et al., 2003; Koren et al., 1999], the
Common Land Model (CLM [Dai et al., 2003]), the Vari-
able Infiltration Capacity (VIC) model [Liang et al., 1994],
and Mosaic [Koster and Suarez, 1996]. The GLDAS
archive (http://disc.gsfc.nasa.gov/hydrology/index.shtml) con-
tains output of these simulations at 1° and 1/4° (for Noah)
resolutions beginning in 1979. GLDAS meteorological forc-
ing data come from the Global Data Assimilation System
(GDAS [Derber et al., 1991]), supplemented with a down-
scaled version of the NOAA Climate Prediction Center’s
Merged Analysis of Precipitation (CMAP [Xie and Arkin,
1997]) and satellite‐derived downward radiation from the
Air Force Weather Agency [Kopp and Kiess, 1996]. Details of
these forcing data are provided in Rodell et al. [2004] and
Kato et al. [2007]. Recently, the GLDAS record has been
extended back in time, with 52 year simulations carried out at
1° for the period 1948‐2000 using atmospheric forcing data
from the “Global Meteorological Forcing Dataset for land
surface models” described by Sheffield et al. [2006].
[19] In this paper the STS algorithm is applied to 27 years

of multimodel GLDAS output (October 1979–October
2007) for four LSMs: Noah version 2.7, CLM version 2.0,
VIC version 4.0.4 (with some patches from 4.0.5) run in
water balance mode, and Mosaic. The influence of forcing
data is also considered by including STS analyses of the
52 year 1° GLDAS‐Noah simulation (October 1948–October
2000). Initial surface states in all GLDAS simulations are
drawn from climatological time‐of‐year averages for long
simulations with the relevant LSM [Rodell et al., 2005].
Details on the five GLDAS simulations included in this
study are provided in Table 1.

3.3. Land Surface Models

3.3.1. Noah
[20] The Noah LSM [Chen et al., 1996; Ek et al., 2003;

Koren et al., 1999] was developed through a collaboration
of public and private institutions under the leadership of the
National Centers for Environmental Prediction (NCEP). It is
a one‐dimensional, free‐standing column model that can be
run in uncoupled mode or can be coupled with atmospheric
models. Noah simulates skin temperature, soil temperature
and moisture (liquid and frozen) for all soil layers (four in
this application), snow depth, snow water equivalent, can-
opy water content, and surface energy and water fluxes. It
has been used operationally in NCEP models for over a
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Figure 1. (a) Basins included in the study. (b) Evans plot showing the month of peak discharge (color
hue) and magnitude of the annual range in discharge (maximum daily flow‐minimum daily flow) as a
fraction of to mean discharge (color saturation), based on Global Runoff Data Center (GRDC) gauge cli-
matalogically averaged daily data.
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decade, and is in active development. Noah applies finite
difference spatial discretization methods and a Crank‐
Nicholson time‐integration scheme to solve the governing
physically based equations of the soil‐vegetation‐snowpack
medium. Of relevance to this study, Noah 2.7 includes
treatment of frozen soil physics, but has a relatively simple,
one‐layer snow model. This version of the model is known
to suffer from an early melt bias [Sheffield et al., 2003;
Zaitchik and Rodell, 2009] that has been addressed in sub-
sequent model development.
3.3.2. Common Land Model (CLM)
[21] CLM [Dai et al., 2003] is a community supported

model built on components of the NCAR land surface
model [Bonan, 1998], the biosphere‐atmosphere transfer
scheme [Dickinson et al., 1993], and the LSM of the Insti-
tute of Atmospheric Physics of the Chinese Academy of
Sciences [Dai and Zeng, 1997]. Like Noah, CLM is a stand‐
alone one‐dimensional model that can run in uncoupled or
coupled mode. Numerically, the model uses finite difference
spatial discretization methods and a fully implicit time‐
integration scheme to integrate governing equations. CLM
2.0, the version used in this study, divides the soil column
into ten horizontal layers. Notably, CLM 2.0 has a smaller
dynamic soil moisture range than other models included in
the study, which leads to higher simulated runoff (and lower
simulated evapotranspiration) under wet conditions. CLM
includes a multiple layer snow model and accounts for
frozen soil physics.
3.3.3. Variable Infiltration Capacity (VIC) model
[22] Unlike the other GLDAS LSMs included in this

study, the VIC model [Cherkauer and Lettenmaier, 1999;
Liang et al., 1994, 1996] was developed as an uncoupled,
calibrated hydrology model, and was only later adopted for
coupling with climate models [Mitchell et al., 2004]. VIC
4.0.4 is a one‐dimensional, stand‐alone LSM that can be run
in either an energy balance or a water balance mode. It is
important to note that within GLDAS, VIC is currently only
run in water balance mode, meaning it does not solve the
surface energy balance explicitly and does not include fro-
zen soil physics. VIC 4.0.4 contains three soil layers and a
two layer snow model. The energy balance within the
snowpack is solved even when VIC is run in water balance
mode. VIC also has the capability to define subgrid snow
bands on the basis of elevation, but this feature was not
activated. VIC has been applied in numerous studies of large
river basins [Lohmann et al., 1998; Nijssen et al., 1997] and
at the continental and global scales [Maurer et al., 2002;
Nijssen et al., 2003].
3.3.4. Mosaic
[23] Mosaic [Koster and Suarez, 1996] is a stand‐alone,

one‐dimensional LSM that was originally developed for use
with the NASA global climate model. The Mosaic physics

and surface flux calculations are based on those of the
simple biosphere model [Sellers et al., 1986]. The model
includes three soil layers and a simple one‐layer snow
model in which melt rate is calculated as the residual of the
surface energy balance. Mosaic was the first LSM that al-
lowed grid cells to be subdivided into vegetation tiles to
allow for the simulation of subgrid‐scale variability [Avissar
and Pielke, 1989]. GLDAS applies Mosaic’s tiling approach
to all LSMs, including Noah, CLM, and VIC, in order to
represent subgrid vegetation heterogeneity in relatively
coarse simulations (1° in this application). Multiple vege-
tation types and/or bare ground defined by the 1 km UMD
land cover data set [Hansen et al., 2000] can coexist within
a grid if they cover more than 10% of total tiles. The grid
fluxes and states are weighted average of tiles.

3.4. Implementation of STS

[24] The STS algorithm was applied to GLDAS gridded
runoff fields as a post‐processor. The convolution integral
was solved using a fast‐Fourier transform (FFT) applied to
daily surface and subsurface GLDAS runoff. The FFT was
used to calculate instantaneous hydrographs on an annual
basis, allowing for a response function uj of length =
900 days, which is long enough to capture the dispersion tail
of the longest estimated flow times. Annual hydrographs
were summed to produce a continuous record that includes
the long tail of the response function. The first 2 years of
calculated discharge were discarded in the analyses of results
to remove initial condition effects.
[25] In the calculation of travel time tj, 15 days were

added for subsurface runoff, as an estimate for in‐cell delays
during infiltration and lateral flow, while only 2 h were
added to surface runoff [Coe, 2000; Costa and Foley, 1997].
These are first‐order approximations based on earlier mod-
eling experience and will need to be refined in future
analyses. The influence of these parameters on STS output
is greater for smaller basins, in which in‐cell transport
represents a larger fraction of total flow time. Nearest‐
neighbor sampling was used to assign GLDAS grid cells to
STS drainage basins. For the purposes of this methodolog-
ical study, STS “sinks” were the gauge locations for all
major basins for which adequate river gauge data were
available from the GRDC. These basins provide extensive
coverage of global land areas, including the full range of
climate and ecological zones (Figure 1). Global STS
parameter fields have also been generated, and are available
upon request from the authors.

4. Results

[26] Three elements of the GLDAS‐STS simulated
hydrographs are considered: (1) mean discharge, (2) seasonal
and intraseasonal variability, and (3) interannual variability.
In each case, results are presented for multiple models im-
plemented using the standard GLDAS forcing, simulations
N1, C1, V1, and M1, as defined in Table 1, as well as for a
single model, Noah, implemented with the Sheffield et al.
[2006] atmospheric forcing data set (N50+). In presenting
our results, we compare simulations to gauged discharge for
all dates on which gauged data are available for each basin.
For this reason, the evaluation period is different for basins
with limited gauge records. Similarly, the gauge comparison

Table 1. Simulations Included in the Studya

Name LSM Time Period Forcing Reference

N1 Noah 2.7 1979–2007 GDAS+CMAP+AGRMET
C1 CLM 2.0 1979–2007 GDAS+CMAP+AGRMET
V1 VIC 4.0.4 1979–2007 GDAS+CMAP+AGRMET
M1 Mosaic 1979–2007 GDAS+CMAP+AGRMET
N50+ Noah 2.7 1948–2000 Sheffield et al. [2006]

aForcing data sets are described in the text. VIC 4.0.4 is run in water
balance mode.
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data record for N50+ differs from that of other simulations
due to the difference in time coverage.
[27] In general, STS routing produced simulated dis-

charge hydrographs that were smoothed and had a delayed
peak relative to the time series of simulated GLDAS runoff
for the watershed (e.g., Figure 2), as a routing scheme
should. As expected, smoothing and delay were most pro-
nounced for large watersheds and for those with more lake
coverage.

4.1. Annual Discharge

[28] Figure 3 lists mean flow rate for each simulation in
selected rivers, along with the corresponding gauged aver-
age. The contribution of the routing scheme to this result is
relatively minor, as evaporative loss during transport is
small relative to mean discharge in almost all cases (<5% of
mean simulated runoff in all basins, for all models). Use of
the STS routing scheme does, however, facilitate the com-
parison with gauged discharge in cases where gauge reports
are sporadic; without a routing scheme, there is no way to
determine proper dates of comparison for an incomplete
gauge data set.
[29] For standard GLDAS forcing, the four LSMs differed

substantially in their simulation of mean discharge over the
observed record (Figure 4). C1 exhibited the largest average
discharge, producing estimates that were generally higher
than observed discharge for much of Europe, all basins in
Africa, and certain basins in North America and Asia. N1
results were somewhat drier: simulated discharge was lower

than observed for all large basins in the Western Hemi-
sphere and for several in Asia. Results in Europe and Africa
were, on average, somewhat wetter than observed. V1 dis-
charge estimates were lower than observed for almost all
basins, with the largest discrepancies occurring in North
and South America and in Asia. M1 results were similar
to V1. Summed for each continent, and defining estimation
within 20% of observed discharge as accurate, V1 and M1
underestimated total discharge for Africa, South America,
North America, and Asia, N1 was low in South America,
North America, and Asia, C1 underestimated only for
South America, and N50+ was not systematically low for
any continent (Figure 5). C1 and N50+ produced high
discharge estimates relative to observations in Europe and
Africa. Summed over all continents, the C1 and N50+
simulations were within 20% of gauged discharge while all
other simulations were dry relative to observation.
[30] Low estimates of discharge in the M1 simulation are

generally consistent with earlier studies in which Mosaic has
often yielded above‐average evapotranspiration and soil
moisture variability and low estimates of runoff relative to
other LSMs [Kato et al., 2007; Lohmann et al., 2004]. The
low discharge values of V1 differ from some other multi-
model comparison studies, possibly because we used VIC in
water balance mode. In studies that have applied VIC in full
energy balance mode, the model has been known to yield
high estimates of runoff and low estimates of evapotrans-
piration relative to Mosaic and other LSMs [e.g., Lohmann
et al., 2004; Slater et al., 2007]. Efforts are underway to
implement a full energy balance version of VIC within
GLDAS.
[31] We note that the low runoff tendency of GLDAS in

most basins cannot be attributed to the STS routing scheme.
Evaporative losses during transport were small relative to
the difference between gauged discharge and simulated
runoff in all cases, and routing simulations in which evap-
orative loss was set to 0 yielded results of the same char-
acter. As the routing scheme only accounts for direct
evaporation from the river channel, it produces conservative
estimates of loss during transport, particularly for basins that
include inland deltas, human water withdrawals, or signifi-
cant re‐infiltration from the river bed. For this reason, simu-
lations with discharge estimates higher than observation may
be somewhat more accurate than those that yield low esti-
mates of discharge.
[32] Results of the N50+ simulation demonstrate the

importance of the meteorological forcing data set. Where the
N1 simulation produced underestimates of discharge
throughout North and South America, N50+ returned mixed
results on those continents (Figure 4e). Indeed, in the global
average N50+ simulation yielded the smallest bias relative
to observed discharge of any simulation. This result does
not, in itself, allow for a definitive judgment on the two
forcing data sets because how a model partitions precipita-
tion into runoff and evapotranspiration is as important as the
precipitation input itself. What can be said is that for typi-
cally configured simulations implemented at 1° resolution,
the standard GLDAS atmospheric forcing causes Noah,
VIC, and Mosaic to underestimate runoff. The Sheffield et
al. [2006] data set causes Noah to produce more runoff,
and thus to be more consistent with observed discharge data.
[33] It is noteworthy, however, that the GLDAS forcing

led to underestimation of runoff for three out of four LSMs.

Figure 2. Hydrograph of daily average rates of: summed
C1 distributed surface and subsurface runoff (light blue),
C1 STS‐routed simulated discharge (dark blue), and GRDC
observed discharge (red) for the Mississippi, St. Lawrence,
and Connecticut rivers. Units are thousand meters cubed
per second.
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The GLDAS precipitation data set was selected as a result of
extensive comparison between available precipitation forc-
ing options [Gottschalck et al., 2005]. Nevertheless, its
precipitation forcing (derived from CMAP) has a low bias
relative to a number of earlier precipitation data sets that
were used during the development of LSMs, and which
likely informed parameterization of the models used in this
study.

4.2. Timing of Peak Flow

[34] In analyzing the simulation of seasonal discharge
variability, we consider both timing and magnitude of peak
flow. The day of annual maximum flow is a useful indicator
of whether the GLDAS‐STS system properly captures the
seasonal cycle of runoff. Differences between simulations
reveal key strengths and possible weaknesses of each model

Figure 3. Mean annual discharge, climatological peak discharge day, standard deviation of daily
discharge, climatological average range between annual high flow and low flow, correlation of daily dis-
charge with GRDC gauge data, and interannual standard deviation in peak flow volume for rivers repre-
senting a range of climate conditions, geographies, and basin sizes. For mean discharge, daily standard
deviation, annual range, and standard deviation of annual peak flow rate, blue shading indicates simula-
tion values that are 20% larger than observed or more, orange indicates values that are 20% lower than
observed or less, and green indicates values within 20%. For peak day, blue indicates simulated peaks
that are 20 or more days earlier than observed, orange peaks that are 20 or more days later, and green
peaks that are within 20 days of the observation. Values of peak day are for the day of the hydrologic
year (1 October–30 September). For daily correlations, correlation values greater than 0.7 are shaded
green and less than 0.3 are shaded orange. Note that the period of gauge evaluation for N50+
(GRDC50) differs from that of other simulations.
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within the GLDAS system. For example, in high‐latitude
basins, simulated peak discharge was systematically early in
both the N1 and N50+ simulations (Figure 6). This is con-
sistent with a known tendency of Noah v2.7: that it often
exhibits premature melt in simulations of regions with a
deep seasonal snowpack [e.g., Sheffield et al., 2003;
Zaitchik and Rodell, 2009], a bias that is associated with the
model’s low values for snow surface albedo. Recent
experimental updates to the Noah model have sought to
address this issue. The M1 simulation, meanwhile, exhibits
systematically late discharge peaks in these same snow‐
dominated basins, suggesting that Mosaic retains the
snowpack too late into the spring. Indeed, in applications to
the United States, Rodell and Houser [2004] found that
Mosaic had a tendency to overestimate snow cover in late
winter and spring.
[35] Both V1 and C1 match the timing of observed dis-

charge reasonably well in basins with deep snow, and these
two simulations provide the best simulation of peak dis-
charge timing globally as well. For V1, this is a testament to
the model’s legacy in hydrological applications. We note

that the large difference between N50+ and the GLDAS
evaluations in the Nelson River (central Canada) results
from differences in the gauge evaluation data, not in the
simulations themselves. In fact, all simulated hydrographs
and gauge data indicate that the climatologically averaged
seasonal hydrograph is essentially flat for this lake‐
dominated basin. Seemingly large differences in peak day
result from small shifts in gauged discharge, and they should
not be overinterpreted. The GLDAS simulations performed
poorly in the Congo and Amur (Russia/China) basins, both
of which have bimodal hydrographs. N50+, however,
evaluated well in these basins. Poor GLDAS results are
likely a product of errors in the precipitation forcing, com-
bined with a short gauge record for evaluation. Finally,
Figure 6f shows that a multimodel average generally mat-
ches the timing of gauge hydrographs better than any single
GLDAS simulation. This is consistent with a guiding prin-
ciple of GLDAS: that LSMs all have strengths and weak-
nesses, so a suite of models often provides better insight on
land surface processes than does any single model [Rodell et
al., 2004].

Figure 4. Mean annual simulated discharge for each of the five simulations included in the study,
mapped as the percentage difference from GRDC reported discharge: 100 * Simulated/Observed through
100. Brown colors indicate simulations that are dry relative to observation, blues indicate simulations that
are wet relative to observation, and green indicates a simulation within 10% of observation.
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[36] Timing errors tended to balance out in the continental
average (Figure 5), with some exceptions. Africa appears to
be one such exception, though this is largely due to a pau-
city of evaluation data for the Congo River during the
GLDAS period. GRDC gauge data for the Congo ends in
1984, providing only a short period of overlap with
GLDAS. During this brief period, apparent errors in the
precipitation forcing caused the N1, C1, V1, and M1 simu-
lations to reverse the magnitude of the winter and summer
discharge peaks of the bimodal Congo hydrograph (e.g.,
Figure 7a). In fact, over the entire 1979–2007 period, the
GLDAS‐STS simulations generally simulated the magni-
tude of these peaks correctly, placing the larger peak in
winter (e.g., Figure 7b). The N50+ simulation also simulated
these peaks correctly, and because a longer gauge record
was available for that simulation, this fact is reflected in the
results; N50+ discharge is high relative to gauge data, but
the timing of peaks is approximately correct (Figure 7c). All

simulations of the Congo would benefit from more detailed
analysis of this large and data‐poor basin, but the poor
gauge comparisons presented in this paper have more to do
with lack of evaluation data than with model inaccuracies.
As the largest river in Africa, results for the Congo dominate
the summed continental results presented in Figure 5.

4.3. Intra‐annual Variability

[37] In addition to providing an estimate of the day of
annual peak flow, STS routing allows us to compare vari-
ability of simulated discharge to gauge data on daily and
seasonal timescales. In both regards, there are considerable
differences between simulations included in this study. C1
yielded estimates of daily and seasonal variability that were
large relative to observations for most river basins, while
results for the N1 and N50+ differed among basins (Figure 3),
but were similar to observations when averaged across

Figure 5. As in Figure 3, but for continental, and where appropriate, global totals for the GRDC gauged
basins included in this study. NA, North America; SA, South America; EU, Europe; AS, Asia; AF,
Africa.
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continents (Figure 5). V1 and M1 both exhibited low daily
variability and a small seasonal range relative to observed
discharge in the majority of basins and in the continental
total for Asia and South America. Europe is the only con-
tinent for which variability in V1 and M1 exceeds variability
in gauge data—a result driven by large simulated seasonal
variability in Rhine River discharge that is not observed in
the gauge records of this highly managed river (Figure 3).
Apparently, discrepancies between modeled and observed
variability are more strongly influenced by the choice of
model than by any shortcomings of the routing scheme.
[38] The influence of STS routing on the variability and

timing of simulated discharge can be visualized using
Taylor plots. Figure 8a plots the correlation and standard
deviation of summed C1 simulated daily runoff (shaded
circles) and C1 routed daily discharge (black circles) relative
to gauge reports for 15 of the world’s largest river basins. As
expected, summed distributed runoff exhibits substantially
larger daily variability than gauged discharge, while routed
discharge estimates exhibit variability that is on the same
order as gauged variability in most basins. This result is
most pronounced for rivers that include large lakes—for
example, the St. Lawrence (number 14). Routed discharge
also shows substantially larger correlation with daily gauge
data. In addition to demonstrating the utility of the routing

algorithm, the results in Figure 8a provide insight on C1
performance in various river basins. For example, we see
that in the Brahmaputra basin (number 5), the C1 simulation
underestimated daily variability in runoff such that no
routing scheme could provide adequate estimates of dis-
charge. For this basin, it would be necessary to scale model
results or, more importantly, reinvestigate the accuracy of
meteorological forcing and model parameters in the Brah-
maputra region. For the Pechora River (number 20), C1
produced large estimates of daily variability, and even
routed discharge was twice as variable as gauge reports. In
this basin we are investigating STS routing parameters as
well as meteorological data and model parameters.
[39] Figure 8b shows the annual range relative to gauge

data and the correlation with gauge data for daily discharge
in all five simulations for selected rivers of interest. In some
rivers, including the Mississippi (number 7), the majority of
models perform well by these metrics. In others, such as the
Ob (number 10), there is a wide spread in simulation results.
More generally, C1 tended to overestimate seasonal vari-
ability in discharge while M1 and V1 tended to underesti-
mate variability. This is confirmed in Figures 8c and 8d,
which show average results for each model for continents
and for the globe, respectively. Results for Africa (Figure 8c)
show the lowest accuracy and widest model range, which

Figure 6. Difference in the climatalogical date of peak discharge in simulations relative to gauge data
(in months). Blue colors indicate simulated peaks that are early relative to observed, red colors peaks that
are late relative to observed, and shading indicates timing that is within a month of observed.
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traces back to the deficiency of gauge records and of
observation‐based knowledge of that continent. Results for
Europe, Asia, and North America are more tightly clustered
and are better on average. Globally, and for each continent
except for Africa, the multimodel average falls within 30%
of gauged seasonal variability and provides daily correla-
tions of 0.5 or better.

4.4. Interannual Variability

[40] Simulation of interannual variability in peak dis-
charge is a product of the combined properties of forcing
data, the distributed LSM, and the routing scheme. As seen
in Figure 3, simulations in this study overestimated the
variability of annual peak discharge relative to observation
in some major river basins and underestimated it in others.
In the aggregate, simulations tended to underestimate
interannual peak variability relative to gauge data in South
America and to overestimate it in Europe and Africa
(Figure 5). Globally, C1 produced overestimates of peak
flow variability while all other simulations fell within 20%
of summed observed discharge variability. C1 overestimates
are a reflection of CLM2’s relatively small dynamic range in
soil moisture relative to other models. This small dynamic
range causes the soil to saturate at lower values than is the
case for other models, resulting in larger partitioning to
runoff in general. Because runoff is a threshold process, this
characteristic is particularly pronounced in wet years, when
CLM2 produces more frequent runoff events relative to
other models and particularly high simulations of peak
discharge.

[41] While the magnitude of discharge peaks varies
between models, the correlation between interannual peak
variability in simulated discharge and gauge records is
largely a function of the precipitation forcing data set. As
such, the GLDAS simulations included in the study gener-
ally yielded similar results (Table 2). Somewhat lower
correlations for small basins in the N50+ simulation may
result from the fact that the Sheffield et al. [2006] data set is
based on resampled daily precipitation data that may not
preserve the exact dates of storms. The routing algorithm did
improve the strength of correlation with gauged data for
most basins relative to unrouted, summed runoff. This
improvement reflects the fact that the STS scheme skillfully
translates and attenuates distributed runoff from across the
basin, taking into account variability in transport time, and
for larger basins, that transport time from headwaters
regions can exceed the calendar year, such that a year with
high precipitation (and thus high distributed runoff) will lead
to above‐average discharge in the following year. This
effect is particularly pronounced for the Amazon River. The
few exceptions to STS improvement (N1 in the Congo and
N1, V1, and M1 in the Mekong) result from cases in which
models either failed to capture or falsely produced one or
two large runoff events that dominated the correlation sig-
nal. For both of these rivers the period of gauge data is only
a few years long, such that a single event can have this effect
on interannual statistics.

5. Discussion

[42] It is not surprising to find substantial differences in
simulated runoff among simulations which used the same
meteorological forcing data but different LSMs (N1, C1,
V1, and M1). Numerous multimodel studies of the Project
for Intercomparison of Land Surface Parameterization
Schemes [Henderson‐Sellers et al., 1995], the Global Soil
Wetness Project [Dirmeyer et al., 1999; IGPO, 2002], and
GLDAS have found that the choice of LSM is often the
dominant determinant of simulated water and energy fluxes.
These studies considered multiple models, meteorological
forcing data sets, spatial resolutions, and/or surface para-
meterizations [e.g., Dirmeyer et al., 2006; Kato et al., 2007;
Liang et al., 1998; Lohmann et al., 1998]. Specifically to
GLDAS, Kato et al. [2007] found that the choice of LSM
had a substantial impact on the simulation of evapotrans-
piration at selected coordinated enhanced observing period
(CEOP) sites. In particular, GLDAS/CLM2 tended to
underestimate evapotranspiration. Our results complement
that finding, as we found that CLM2 (simulation C1) gen-
erally yielded the highest estimates of runoff. Mosaic (M1)
produced the least runoff and was well below gauged dis-
charge in most cases, and Noah (N1 and N50+) and VIC
(V1) also tended to underestimate runoff.
[43] Our results are also broadly consistent with earlier

LSM intercomparison studies. In an analysis of the North
American Land Data Assimilation System (NLDAS),
Lohmann et al. [2004] found that Mosaic yielded high
estimates of evapotranspiration and low estimates of runoff
relative to Noah LSM and relative to gauge records of river
discharge. In contrast to our study, Lohmann et al. [2004]
found that VIC gave the highest estimates of runoff, but
this may be explained by the fact that we used VIC in
water balance mode rather than full energy balance mode.

Figure 7. Climatological average hydrograph for Noah
simulations of the Congo Basin. Runoff (light blue), routed
simulated discharge (dark blue), and gauged discharge (red)
for (a) N1 for the period of gauge record, (b) N1 for the
entire 1979–2007 simulation, and (c) N50+.
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Slater et al. [2007] applied a suite of LSMs to estimate
runoff from major Arctic rivers. Four out of five LSMs
included in their study underestimated mean discharge in
the Yenisei, Lena, and Mackenzie rivers, while the opposite
was true for the Ob River. Similarly, we found that all
simulations except for C1 underestimated discharge in the
Yenisei, Lena, and Mackenzie, while results for the Ob
were mixed, with the multimodel mean approximately equal
to observed discharge. It is noteworthy that Slater et al.
[2007] used ERA‐40 meteorological forcing data, which
we did not include in our study; our similar results in these
basins, then, may be related to model failure to replicate

the high partitioning of precipitation into runoff that has
been observed in the Yenisei and Lena [Slater et al., 2007].

5.1. High‐Latitude Rivers

[44] High‐latitude basins exhibit a distinctive discharge
peak associated with snowmelt. This peak leads to hydro-
graphs with large annual range and a peak in late spring or
early summer (Figure 1). In these basins, simulation V1 best
captured the timing of the discharge peak, but both V1 and
M1 yielded underestimates of total discharge and the mag-
nitude of seasonal variability. C1 and N50+, meanwhile,

Figure 8. Taylor Plots showing: (a) the correlation and standard deviation of C1 daily summed runoff
(grey circles) and daily routed discharge (black circles) for fifteen of the largest river basins included in
the study, relative to gauge observations of daily discharge. Arrows connect runoff to discharge for each
basin, and numbers are as listed in Figure 1. (b) Daily correlation and average seasonal variability
(maximum daily flow – minimum daily flow) for selected basins of interest for each simulation and for
the mean of all simulations, relative to gauge observations. (c) As in Figure 8b, but for totals over each
continent. (d) As in Figure 8b, but for the total of all basins included in the study. Note that in Figure 8d,
N1 falls on top of AVG.
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provided the most accurate simulations of the magnitude of
mean annual discharge, but both tended to melt snow too
early in the spring, leading to erroneously early peaks in
simulated river discharge. The V1 results suggest that the
VIC snowmelt scheme performs well for these regions of
deep seasonal snowpack, as has been shown in previous
studies [e.g., Pan et al., 2003; Sheffield et al., 2003; Su et
al., 2006], but that the V1 simulation of runoff suffers
from a dry bias—either the GLDAS precipitation forcing
data set underrepresents runoff‐inducing events or VIC
parameterizations systematically cause underestimates of
runoff in partitioning the local water balance. Given that
precipitation data sets suffer from a scarcity of observations
at high latitudes and typically underestimate snowfall and
alpine precipitation (in part due to gauge undercatch, which
is not directly addressed for gauge data used in CMAP), we
can speculate that the precipitation forcing may be the cul-
prit here. The situation is similar for M1, which also pro-
duces small discharge peaks relative to observed discharge
that are reasonably accurate in their timing. The N50+ and
N1 results suggest that Noah version 2.7 has a tendency to
melt the seasonal snowpack prematurely. This was a known
model development issue in Noah for some time and has
been a focus of recent experimental model updates. N50+
yields slightly more accurate estimates of mean annual
discharge for high‐latitude basins, suggesting that the
combination of Noah v2.7 with the Sheffield et al. [2006]
forcing provides better representations of high‐latitude
hydrology than Noah version 2.7 forced with the standard
GLDAS meteorological data sets. The C1 results for high‐
latitude basins indicate that there is a slight tendency toward
premature snowmelt in CLM2, though results varied
between basins. C1 results for mean annual discharge and
seasonal variability indicate that the combination of CLM2
and standard GLDAS meteorological forcing is effective for
high‐latitude basins. In the context of our other results,
however, it seems that this effective combination is actually
a fortuitous product of offsetting biases: the CMAP ten-
dency to give low estimates of precipitation balances
CLM2’s tendency to overestimate runoff on account of the
relatively small dynamic soil moisture range in that model.

5.2. Midlatitude Rivers

[45] Results for midlatitude river basins were less con-
sistent than for high‐latitude basins, reflecting the diverse
processes that influence the generation of runoff across these
latitudes. In both North America and Asia, the C1 and N50+
simulations tended to produce reasonable estimates of mean
annual discharge and seasonal variability while V1, M1, and
N1 tended to show less total discharge and seasonal vari-
ability than gauge data. Europe was an exception in this
regard, as both C1 and N50+ appear to overestimate dis-
charge while V1, M1, and N1 are more similar to gauge
reports. Simulations of the timing of peak discharge were
mixed between models and across different regions. Overall,
the multimodel average tended to outperform any single
model, though timing results are particularly difficult to
evaluate in midlatitude rivers due to water management:
the STS parameters used in this study accounted for large
reservoirs but not for smaller reservoirs or active water
management, so our evaluation of the results in intensely
managed river basins is limited. This limitation can be
addressed in future studies by performing more detailed
parameterization in selected river basins of interest, or
alternatively, by evaluating STS results against naturalized
streamflow data [e.g., Maurer et al., 2002]. Evaluation at
midlatitudes also suffered from a shortage of daily discharge
data from most major rivers in the semi‐arid regions of the
Middle East and Central Asia. The underrepresentation of
these river basins in global, publicly available hydrological
databases is a perpetual obstacle for studies of climate and
water resources in these critically water‐stressed regions.

5.3. Tropical Rivers

[46] Simulations N1, C1, V1, and M1 all underestimated
discharge in the Amazon and Orinoco, while N50+ provided
reasonable estimates. This result strongly suggests that the
GLDAS (CMAP) precipitation data underestimate precipi-
tation in tropical South America. Allowing for this under-
estimate, however, N1 and C1 did provide reasonably
accurate simulations of the timing of peak discharge and of
seasonal variability. Interannual variability was under-
estimated for the Amazon but estimated accurately for the

Table 2. Interannual Variability in Peak Dischargea

River

N1 C1 V1 M1 N50+ Avg.

SR Q SR Q SR Q SR Q SR Q SR Q

Amazon 0.07 0.68 −0.16 0.61 0.06 0.66 0.09 0.60 0.57 0.75 0.13 0.66
Congo 0.83 0.79 0.78 0.91 0.39 0.40 0.52 0.76 0.53 0.55 0.61 0.68
Yenisey 0.28 0.29 0.55 0.68 0.13 0.15 0.28 0.34 0.26 0.28 0.30 0.35
Mississippi 0.71 0.76 0.45 0.54 0.62 0.75 0.52 0.71 0.74 0.69 0.61 0.69
Mekong 0.80 0.45 0.72 0.81 0.69 0.46 0.19 −0.18 0.62 0.61 0.60 0.43
Ganges 0.94 0.96 0.68 0.79 0.85 0.98 0.74 0.92 0.38 0.34 0.72 0.80
Mackenzie 0.39 0.41 0.40 0.49 0.14 0.13 0.32 0.34 0.40 0.45 0.33 0.37
Yukon 0.21 0.32 0.41 0.38 0.11 0.17 0.22 0.20 0.56 0.83 0.30 0.38
Kolyma 0.88 0.86 0.87 0.87 0.59 0.67 0.65 0.72 0.60 0.79 0.72 0.78
Rhine 0.54 0.54 0.32 0.55 0.30 0.48 0.34 0.37 0.44 0.49 0.39 0.49
Copper 0.60 0.66 0.76 0.73 0.59 0.60 0.52 0.61 −0.01 0.08 0.49 0.54
Po 0.76 0.75 0.56 0.91 0.49 0.68 0.58 0.75 0.72 0.86 0.62 0.79
Glama 0.42 0.56 0.56 0.70 0.67 0.70 0.68 0.66 0.42 0.51 0.55 0.62
Connecticut 0.50 0.71 0.38 0.68 0.36 0.62 0.33 0.44 0.29 0.28 0.37 0.55
Colorado 0.55 0.73 0.33 0.46 0.59 0.62 0.21 0.28 0.15 0.26 0.37 0.47
All 0.57 0.63 0.51 0.67 0.44 0.54 0.41 0.50 0.44 0.52 0.47 0.57

aCorrelation between GRDC gauged discharge and SR, basin‐summed daily simulated runoff, and Q, the GLDAS‐STS simulated daily discharge, for
the same selected basins listed in Table 2. The multimodel average correlations for each river are also shown, as are the (unweighted) average for all rivers
included in the table.
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Orinoco in all simulations. Results for tropical rivers of
Africa and Asia were mixed. In Africa, N50+ tended to yield
the best estimates of peak discharge timing, a result that
benefits from a longer period of gauge comparison than was
available for GLDAS, while N1 tended to be closest in the
simulation of mean annual discharge and V1 and M1 yiel-
ded the best estimates of seasonal variability. C1 and N50+
overestimated discharge and seasonal variability. All models
overestimated interannual variability in the large African
rivers, indicating the need for more reliable precipitation
records in many of these basins. Results for large African
basins are particularly difficult to assess given the complex
hydrology of these rivers: the Niger River has a large
internal delta that influences evaporation, groundwater
interaction, and flow velocity in ways that are probably not
fully captured by the STS parameterization, while the
Congo has a bimodal seasonal hydrograph and limited
evaluation data.
[47] In Asia, all simulations underestimated mean annual

discharge and interannual variability for the Mekong River,
but C1, N1, and N50+ provided good estimates of daily
variability, seasonal variability, and timing of peak flow.
Similar patterns held for the Brahmaputra and Irrawaddy,
where models tended to underestimate mean discharge but
captured timing, and in some cases, seasonal and subseasonal
variability. In the Ganges and Chao Phraya, simulations
provided mixed results; as in other regions, C1 and N50+
produced the highest discharge estimates and V1 and M1
were dry relative to gauge observations. These geographical
differences in model performance within tropical Asia
indicate that a more detailed assessment of precipitation
forcing data is required. All of these rivers are dominated by
the signal of the Asian monsoon, but their headwaters regions
are affected by the monsoon in different ways. More accurate
representation of the volume, timing, and spatial distribution
of monsoon precipitation is critical for hydrological analysis
and prediction in these basins.

6. Conclusions

[48] A simple, computationally efficient source‐to‐sink
(STS) routing scheme was applied to the Global Land Data
Assimilation System (GLDAS). The routing scheme requires
minimal parameterization and can be applied as a post-
processor to large inventories of distributed runoff data of
the type generated by global climate models, reanalyses, and
offline LSM simulations. Parameters for the scheme were
estimated using previously published methods, and the
behavior of the routing system was physically reasonable for
all basins.
[49] Applying STS to GLDAS runoff fields provides a

method for assessing GLDAS hydrology in regions with
limited observations of distributed hydrological fluxes.
These assessments are in no sense a complete evaluation of
model performance, but they yield useful insights on the
differing behaviors of various LSMs and the confidence that
we can place in their ability to simulate water cycle pro-
cesses under differing geographies and climate conditions.
For example, the results of this study clearly indicate that
over much of the globe the combination of standard GLDAS
forcing with the Mosaic and VIC LSMs (as currently
implemented in GLDAS) yield simulations that significantly
underestimate runoff. The comparison of standard GLDAS

forcing with the long‐term forcing data set of Sheffield et al.
[2006], meanwhile, indicates that Noah version 2.7 with
standard GLDAS forcing yields lower estimates of runoff
than Noah version 2.7 with Sheffield et al. [2006] forcing,
and that results with Sheffield et al. [2006] forcing tend to
more closely resemble observed discharge. This encourages
us to perform further experiments with the Sheffield et al.
[2006] forcing, as both VIC and Mosaic will likely yield
better results with this data set. At the same time, the study
suggests that GLDAS precipitation may suffer from a dry
bias in a number of important regions, and this will need to
be investigated. The study also indicates that V1 was gener-
ally quite accurate in estimating the timing of peak discharge,
while M1 peaks were late relative to gauge observations in
the majority of midlatitude and high‐latitude basins. In part,
these results reflect known characteristics of these LSMs:
VIC was designed for hydrological application and has been
tested repeatedly against river discharge estimates, while
Mosaic has a known tendency to retain water, leading to
high estimates of soil moisture and evapotranspiration rel-
ative to other models. Forcing data may also play a role in
these results, and this will be explored in future studies.
[50] For simulations that use the standard GLDAS forc-

ing, this study indicates that CLM2 provides the most
realistic simulations of mean annual runoff, a result that
may, in many basins, be the product of an offset between a
dry precipitation bias in GLDAS and a small dynamic range
of soil moisture in CLM2. However, Noah, VIC, and, to a
lesser degree, Mosaic, provide better simulations of seasonal
and interannual variability in many cases. Simulation of
peak discharge timing varied between models and regions,
with a multimodel average frequently yielding the most
reliable estimate. The selection of the “best” model or
combination of models for any given application, then,
depends on the region of interest and scientific goal of the
study. In addition, future GLDAS‐STS studies will investi-
gate the sensitivity of simulated discharge to parameteriza-
tions of convective precipitation and to the frequency and
spatial resolution of meteorological forcing data: these factors
are expected to have a considerable impact on the simulation
of runoff in any offline LSM.
[51] Finally, it must be noted that this was a global study,

and that STS parameters will require further refinement in
many basins. For example, the current parameterization does
not include seasonal variability in river velocity or sub-
seasonal variability in rates of direct evaporation. The STS
parameters also fail to account for small reservoirs or active
dam management, and the complex hydrology of inland
deltas and seasonal wetlands demand further attention.
Some of these factors will be included in future refinements
of the global STS presented in this paper, while others are
more appropriately addressed in regional or watershed‐scale
applications. We anticipate that the simplicity, scalability,
and computational efficiency of the STS algorithm will
encourage multiple independent efforts to improve and
customize the routing system.
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