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Abstract. Using multiscale spatiotemporal analysis of
bursty precipitation events in the nighttime aurora as seen by
the POLAR UVI instrument, we report a set of new statistical
signatures of high- and low-latitude auroral activity, signal-
ing a strongly non-uniform distribution of dissipation mech-
anism in the plasma sheet. We show that small-scale elec-
tron emission events that initiate in the equatorward portion
of the nighttime auroral oval (scaling modeA1) have sys-
tematically steeper power-law slopes of energy, power, area,
and lifetime probability distributions compared to the events
that initiate at higher latitudes (modeB). The low-latitude
group of events also contain a small but energetically im-
portant subpopulation of substorm-scale disturbances (mode
A2) described by anomalously low distribution exponents
characteristic of barely stable thermodynamic systems that
are prone to large-scale sporadic reorganization. The high
latitude events (modeB) can be accurately described by a
single set of distributions exponents over the entire range of
studied scales, with the exponent values consistent with glob-
ally stable self-organized critical (SOC) behavior. The low-
and high latitude events have distinct inter-trigger time statis-
tics, and are characterized by significantly different MLT dis-
tributions. Based on these results we conjecture that the in-
ner and outer portions of the plasma sheet are associated with
two (or more) mechanisms of collective dynamics that may
represent an interplay between current disruption and mag-
netic reconnection scenarios of bursty energy conversion in
the magnetotail.
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1 Introduction

Soon after the development of basic substorm phenomenol-
ogy it was realized that the nighttime auroral oval is not a
simple latitudinally bound distribution of emission bright-
ness and electric currents. In fact, the activity of this part
of the ionosphere is extremely complicated, and it incorpo-
rates a variety of effects reflecting different conditions in the
coupled solar wind - magnetosphere - ionosphere system.
Examples of these are substorm expansion onsets, pseudo-
breakups, steady magnetospheric convection events, bursty
bulk flows, sawtooth events, and other processes (e.g.Zesta
et al., 2000; Lui, 2001; Frey et al., 2004; Henderson et al.,
2006).

It has also been found that despite the diversity of phys-
ical phenomena involved in the magnetospheric response to
the changing solar wind driver, the output energy dissipation
flux as estimated from particle precipitation in the nighttime
aurora tends to cluster in intermittent spatiotemporal bursts
described by robust scale-free statistics (Lui et al., 2000; Lui,
2002; Uritsky et al., 2003, 2002, 2006).

The term “scale-free” was coined in the statistical me-
chanics of turbulent and/or critical phenomena to describe
correlated perturbations with no characteristic scales other
than the scales dictated by the finite size of the system, as
opposed to scale-dependent perturbations reflecting physi-
cal conditions that vary across different scales (Dhar, 2006;
Sreenivasan et al., 2004; Lubeck, 2004). The observational
signatures of the scale-free behavior include the power-law
shape of probability distributions, Fourier spectra, autocor-
relation functions, and other statistics, with the power-law
exponents being constant over wide ranges of scales. Some
well-known manifestations of such behavior in the geo- and
space sciences are fully developed turbulence in hydrody-
namic and magnetized flows (Lazarian, 2006), Guttenberg-
Richter statistics of earthquake magnitudes (Turcotte, 1989),
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statistical and topological scale-invariance of flaring activity
in the solar corona (Charbonneau et al., 2001).

Nighttime auroral activity provides an impressive example
of scale-free behavior. The energy probability distribution of
electron precipitation regions as seen by the POLAR satel-
lite exhibits power-law shape over about 6 orders of mag-
nitude (Uritsky et al., 2002). By combining POLAR data
with ground-based TV observations (Kozelov et al., 2004),
the power-law scaling range of energy distributions has been
extended up to 11 orders of magnitude. However, these
scale-free statistics represent long-term averaged properties
of nighttime magnetospheric disturbance, and they can mask
more complicated dynamics at the level of specific plasma
structures responsible for the generation of various forms of
auroral precipitation. Exploring these phenomena could help
to build a more solid theoretical link between the statistical
and dynamical plasma descriptions, to evaluate predictabil-
ity of different magnetospheric states, and to obtain statisti-
cal guidelines for designing future space missions targeted at
multiscale plasma disturbances.

In a companion paper (Uritsky et al., 2008), we demon-
strated that inner and outer portions of the magnetotail
plasma sheet are characterized by substantially different scal-
ing regimes of bursty energy dissipation suggesting different
kinds of plasma turbulence in these regions. This analysis
was based on a simple subdivision of onset locations into
groups of “high” and “low” latitude events relative to the line
66◦ MLAT, which is given by the maximum in the distribu-
tion in latitude of these events.

Here we investigate in depth the scale-free and scale-
dependent modes of auroral precipitation dynamics using a
more accurate classification method based on an empirical
auroral oval model capturing nonlinear mapping effects, and
applying a more comprehensive set of statistical tools. We
compute an extensive collection of scaling exponents supple-
mented by quantitative measures of both random and system-
atic scaling errors as explained in Sect. 2.2. Our main new re-
sults include (1) demonstration of a qualitative agreement be-
tween the locations of the precipitation events detected using
our spatiotemporal algorithm and the substorm onset posi-
tions in the database byFrey et al.(2004); (2) statistical proof
of a separate group of strong low-latitude events described by
a distinct set of scaling laws; (3) power-law exponents of cu-
mulative distributions of emission event parameters found to
be consistent with probability density exponents; (4) analy-
sis of power-law distributions of the inter-trigger time of the
events revealing distinct scaling exponents for the high- and
low-latitude auroral regions; (5) comparison of the obtained
distribution exponents with structure function exponents of
the electric field fluctuations reported earlier.

These new results confirm the causal relationship between
the auroral precipitation statistics and the underlying non-
uniform morphology of the central plasma sheet (CPS). They
show that the inner and the outer CPS regions are responsi-
ble for three distinct scaling modes of the auroral precipi-

tation dynamics. Based on this picture, we propose a pre-
liminary physical interpretation for the observed latitudinal
dependence of the collective properties of nighttime precip-
itation events in terms of the current disruption and midtail
reconnection scenarios of the CPS reconfiguration.

2 Data and methods

2.1 Detection of spatiotemporal events

Our analysis is based on a collection of digital images of
nighttime northern aurora (55–80 MLAT, 20:00–04:00 MLT)
obtained from the Ultraviolet Imager (UVI) onboard the PO-
LAR spacecraft, in the 165.5 to 174.5 nm portion of the
Lyman-Birge-Hopfield spectral band, using an integration
time of 36.5 s, and a time resolution of 184 s. The studied
database includes 16 000 images taken during two observa-
tion periods (1 January 1997–28 February 1997 and 1 Jan-
uary 1998–28 February 1998), both close to a solar mini-
mum. The images were rebinned down to a uniform spatial
resolution of 70×70 km which was kept constant irrespective
of the spacecraft altitude.

In contrast to statistical approaches dealing with individ-
ual auroral images (Lui et al., 2000; Kozelov and Rypdal,
2007), our study involved spatiotemporal tracking of emis-
sion events as briefly explained below. In most cases, this
tracking made it possible to identify the precipitation events
that co-evolved simultaneously in multiple auroral locations
and could not be resolved otherwise (Uritsky et al., 2002).

The UV luminosityw(t, r) was analyzed as a function
of time t and positionr on the image plane. First, active
auroral regions were identified by applying the lower
activity thresholdwa representing a background UV flux.
Adjacent spatial regions withw(r , t)>wa were treated
as parts of evolving events. By checking for overlap of
common pixels between each pair of consecutive UVI
frames, we identified a set of 3-dimensional spatiotemporal
integration domains3i(i=1, .., N) corresponding to each
of the N individual emission events found by this method.
Thus, the events were defined as connected regions in
space-time. These domains of contiguous activity were
used to compute the lifetime,Ti= max(t∈3i)− min(t∈3i),
the energy, Ei=k

∫
3i

w(r , t) drdt , the peak power,
Wi=k max(

∫
3i (t)

w(r , t) dr), and the peak area,
Ai= max(

∫
3i (t)

dr) of every event. The factor

k=2.74×10−8 J photon−1 is an empirical constant for
converting photon fluxes to energy fluxes (Brittnacher
et al., 1997). In addition, we have computed the delay
(inter-trigger) timeD, defined as the time interval between
the beginning of a given event and the beginning of the most
recent preceding event.

The robustness of the obtained statistics was verified by
repeatedly running the algorithm with substantially differ-
ent wa . Below we show the results for the threshold
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wa=10 photons cm−2 s−1 for consistency with our previous
publications (Uritsky et al., 2002, 2006).

2.2 Statistical tools

The initial position of each auroral event was estimated with
a typical error of about 300 km in either spatial directions.
This error is due to the fact that the starting area of the active
auroral regions tracked by our algorithm was usually above
the image resolution. The latitudinal positionsφi were stud-
ied relative to the line given by an empirical model for the
equatorward boundary of the auroral oval due toGvozdevsky
and Sergeev(1995):

φi = MLAT i − [67.9 − 4.3 cos(π(MLT i − 23.1)/12)] (1)

Here, MLTi and MLATi are the geomagnetic coordinates of
the i-th event in our database, and the numerical constants
represent average solar wind – magnetosphere coupling con-
ditions (seeGvozdevsky and Sergeev, 1995, for details). The
model was originally designed as a proxy for the isotropic
boundary separating the inner magnetospheric region of adi-
abatic particle motion from the outer region of stochastic par-
ticle motion in the CPS.

In a strongly perturbed magnetotail state such as the one
observed during to the expansion phase onset, the equator-
ward boundary model used in Eq. (1) fails to predict the cor-
rect isotropic boundary, which can move a considerable dis-
tance due to the tail stretching and dipolarization (Donovan
et al., 2003; Meurant et al., 2007). However, this model re-
mains a valuable tool for separating the inner (near-Earth)
and the tail CPS regions in a typical magnetotail configura-
tion.

The statistics of the emission events that initiated on the
poleward (φ>0) and equatorward (φ<0) side of the au-
roral oval were characterized by sets of probability den-
sity distributionsp(x) and cumulative probability distribu-
tionsP(x)=

∫
∞

x
p(x′) dx′, wherex∈{E, W,A, T ,D}. The

absolute values of the power-law exponents of the two
groups of statistics are denoted correspondingly asτx and
θx , with the subscript indicating the variable under study.
In every case, the validity of power-law approximations
(p(x) ∝ x−τx , P(x) ∝ x−θx ) has been verified based on the
standard regression errors as well as systematic scaling er-
rors 1x=τx−θx−1. The latter approach 0 in the scale-free
case since

p(x) ∝ x−τx ⇒ P(x) ∝

∫
∞

x

(x′)−τx dx′

∝ x−τx+1 def
= x−θx ⇒ 1x = 0. (2)

We used logarithmic binning for computing bothp(x) and
P(x) distributions. The data points were merged into groups
with logarithmically scaled boundaries providing a fixed
number of bins per decade, which reduced the noise in the
tails of the distributions resulting from limited number of

Fig. 1. Onset positions of the auroral emission events obtained us-
ing the spatiotemporal detection method described in the text (grey
color, symbol size proportional to event energyE) superposed with
the auroral substorm onsets (red) from the database byFrey et al.
(2004).

large events. The accuracy of this approach is comparable
with the methods based on maximum likelihood estimators,
and is the best among graphical methods of power-law expo-
nent evaluation (Bauke, 2007).

3 Results

3.1 Data overview

Figure 1 shows the onset positions of all the events detected
by our spatiotemporal method (n=7481). These positions
are combined with the database of substorm onset positions
constructed byFrey et al.(2004) using IMAGE FUV data.
It should be understood that our database includes any au-
roral brightnings, which are not necessarily related to sub-
storm activity. Nevertheless, the statistical overlap between
the two data sets is reasonable, indicating that the auroral re-
gion prone to producing substorm breakups is also active in
a broader sense.

The scatterplot in Fig. 2 represents the statistical depen-
dence between the energyE and the relative latitudeφ of the
events in our database. The shape of the scatterplot to the left
and to the right of theφ=0 line is notably different. The sub-
set of high-latitude events (positiveφ) forms a uniform cloud
of data points, with maximum energies observed at typical
latitudinal positions of substorm breakups (Fig. 1). This en-
ergy peak extends towards negativeφ events. However, the
latter exhibit a wide gap of missing intermediate-energy ac-
tivity, which suggests two distinct subpopulations in thisφ

range.
We have found that the asymmetry seen in Fig. 2 has im-

portant implications for the scaling properties of the activity
in low- and high-latitude auroral regions. In our further anal-
ysis, we denote the small-scale and the large-scale emission
events initiated atφ<0 as modeA1 and modeA2 events,
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Fig. 2. Scatterplot of emission energies versus relative magnetic
latitudes of onset locations for the three modes of emission dy-
namics described in the text. The dashed horizontal line marks the
crossover energy separating modeA1 and modeA2 events.

respectively. The uniformφ>0 population will be referred
to as modeB events.

3.2 Event classification

Figures 3–6 show probability distributions for the emission
events which were initiated above (φ>0) and below (φ<0)
the auroral boundary defined by Eq. (1). The numerical val-
ues of the scaling exponents describing the shape of these
distributions are summarized in Table 1.

The results obtained indicate thatA1, A2 and B events
have significantly different statistical features as discussed
below.

High-latitude events: φ>0. The events whose onsets
are described by positiveφ are characterized by broad-band
power-law statistics with no distinct characteristic scales
(scaling modeB according to our classification). The scale-
free nature of these events is confirmed by small systematic
errors1x (see Table 1) indicating a consistency ofτx andθx

exponents with the scaling relations (2) predicted for power-
law distributions with single log-log slopes.

We note that the range of scales of this power-law behav-
ior involves both small auroral activations and rather large
events whose energy and power outputs lie in the range of
fully developed substorms (Carbary et al., 2000). The expo-
nentsτE , τW , τA andτT are close to the corresponding values
reported earlier for the same observation period without fil-
tering the activity by the onset location (Uritsky et al., 2002,
2003, 2006).

Low-latitude events: φ<0. The events described by
negative φ have a more complicated statistical pattern.
Their probability functions demonstrate a crossover behavior

Table 1. Comparative parameters of the three scaling modes of the
emission dynamics.

Parameter A1 A2 B

Defining characteristics

Onset latitude φ<0 φ<0 φ>0
E, J <5×1012 >5×1012 109

−1015

Relative contribution

% of events 19.3% ∼0.3% 80.4%
E6 , J 3.06×1013 6.89×1015 4.97×1015

E6
Etot

×100% ∼0.3% 57.9% 41.8%

Scaling exponents± standard errors

τE 1.93±0.04 0.97±0.14 1.63±0.02
θE 0.92±0.02 0.54±0.07 0.62±0.01
1E 0.01±0.04 −0.57±0.14 0.01±0.02

τW 2.45±0.20 0.91±0.37 1.88±0.02
θW 1.11±0.05 0.64±0.23 0.93±0.01
1W 0.34±0.20 −0.73±0.37 −0.05±0.02

τT 3.23±0.08 −
a 2.47±0.08

θT 2.22±0.12 − 1.51±0.05
1T 0.01±0.12 − −0.04±0.08

τA 2.49±0.10 0.88±0.26 1.97±0.02
θA 1.31±0.04 0.76±0.18 1.02±0.02
1A 0.18±0.10 −0.88±0.26 −0.05±0.02

τD 1.72±0.05 −
b 2.05±0.11

θD 0.86±0.03 − 1.10±0.03
1D −0.14±0.05 − −0.05±0.08

a,b Exponents omitted due to insufficient accuracy.

which includes small scale portions withτx andθx exponents
considerably greater than the corresponding exponents of the
high-latitude events, as well as large-scale portions exhibit-
ing the opposite tendency. To quantify these crossovers, we
divided the whole set of events withφ<0 into two subgroups
based on the criteriaE>E∗ andE<E∗, whereE∗

=5×1012 J
is the approximate energy level marking the transition be-
tween the steep and shallow log-log slopes in thep(E) dis-
tribution. The exponents below and aboveE∗ have differ-
ent values. Also, for small-scale events (scaling modeA1),
the relationτx−θx−1=0 approximately holds (1x errors are
relatively small), while for large-scale events (scaling mode
A2), this relation is effectively invalid. These observations
strongly suggest that the studied activity is, in fact, a scale-
dependent process whose dynamical features at small and
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Fig. 3. Probability density (top row) and cumulative (bottom row) distributions of emission energyE, peak emission powerW , emission
lifetime T , and peak emission areaA, constructed for precipitation events which initiated above and below theφ=0 boundary. Low-latitude
distributions are shifted downward for easier comparison. The plots reveal three distinct modes of ionospheric unloading described by
significantly different distribution slopes: small-scale (A1 mode) and large-scale (modeA2) events started atφ<0, as well as the events
which started atφ>0 irrespective of their size (B mode). The dotted lines show linear regression slopes forA1 andB emission modes. Note
the absence of distribution crossovers for the high-latitude events.

large emission scales are governed by substantially different
physical mechanisms.

The existence of two separate subgroups ofφ<0 events
is more evident in terms of the dependent variable
y=f (E)≡ log10(E). Sincep(E) is a monotonic function,
thep(y) distribution is given by the probabilistic transform

p(y) =
p(f −1(y))

f ′(f −1(y))
(3)

in which f −1
=10y is the inverse function and

f ′
= log10(e)/E is the derivative off (E). Denote the

power-law slopes ofp(E) below and above the thresholdE∗

asτ
(1)
E , andτ

(2)
E , respectively. Then Eq. (3) yields

p(y) ∝

10
y
(
1−τ

(1)
E

)
, y < log10(E

∗)

10
y
(
1−τ

(2)
E

)
, y ≥ log10(E

∗)

(4)

For the negativeφ populationτ
(1)
E ≈2 andτ

(2)
E ≈1 (see Ta-

ble 1), and so we expect the semilogarithmic plot log10[p(y)]

vs.y to have a slope of−1 for y< log10(E
∗)≈12.7 and to be

horizontal otherwise. For the positiveφ population (mode
B events), a single log10[p(y)] slope of about−0.6 is ex-
pected. Figure 4 shows the actual data that confirm the pre-
dicted scaling behaviors. The distinction between the statis-
tics of A1 andA2 is very clear, despite the small size of the
A2 population. It can also be seen that the boundary between
the two scaling modes is fairly close to the selected energy
threshold.

The inter-trigger time distributions (Fig. 5) of both high-
and low-latitude events have power-law form. The difference
between theτD exponents of the low- and high-latitude pop-
ulations is statistically significant (p<0.05).

To complete the statistical picture, Fig. 6 shows the occur-
rence probability of precipitation events as a function of mag-
netic latitude and MLT. The energy threshold used for con-
structing these distributions is an order of magnitude lower
that the one used in Figs. 3 and 4, which allowed us to in-
clude both large- and medium- size events associated with
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Fig. 4. Distributions of low-latitude (diamonds) and high-
latitude (stars) emission events over the quantityy≡ log10E. The
pronounced break in the low-latitude distribution occurring at
E∗

=5×1012J (shown with dashed vertical line) confirms the ex-
istence of two distinct subpopulations (A1 andA2) in this auroral
region. The slopes to the left and to the right of this break are con-
sistent with the shape of the energy distributionp(E) as discussed
in the text.

-9

-6

-3

0

2 3 4 5
log10 D  [s]

lo
g

1
0
p

φ > 0
φ < 0

τD=2.05 ± 0.05

τD=1.72 ± 0.05

Fig. 5. Inter-trigger time distributions of low- and high-latitude
events exhibiting distinct power-law slopes.

substorms and pseudobreakup activities. The MLAT distri-
bution (built without pre-filtering byφ) displays a single peak
consistent with the average location of the electron aurora
(Hartz and Brice, 1967; Frey et al., 2004). The MLT dis-
tributions for the negative and positiveφ populations differ
in their shape. The high-latitude events peak approximately
an hour before magnetic midnight while the lower latitude
events peak on the dawn side approximately 2 h after local
midnight. This observation is consistent with our event clas-
sification as we discuss in the next section.

Fig. 6. Normalized occurrence frequency of magnetic latitudes
(top) and magnetic local times (bottom) of medium- and large-scale
events withE>5×1011. Note that the MLT distribution of the low-
latitude events peaks in the morning auroral sector.

4 Discussion

Our main findings can be briefly summarized as follows:

1. The emission events whose onsets are located poleward
of the average isotropic boundary are characterized by
broad-band power-law statistics with no distinct charac-
teristic scales;

2. The events that initiate equatorward of this boundary
constitute a non-uniform statistical population with an
energy crossover separating large and small auroral ac-
tivations;

3. The scaling behavior of the low- and high-latitude activ-
ity is different within the entire range of scales studied.

Statistically, modeA1 events have a relatively high occur-
rence frequency but a vanishing precipitation energy (see Ta-
ble 1). The strong low-latitude events ascribed to the scaling
modeA2 are quite infrequent. However, due to their large
size, they carry almost 60% of the precipitated energy and
thus represent a very important aspect of the auroral dissipa-
tion.

ModeB appears to be the most common scaling mode re-
sponsible for as much as 4/5 of the total number of the ob-
served emission events. This explains why the scale-free be-
havior of high-latitude events is close to the overall auroral
statistics reported in our previous publicationsUritsky et al.
(2002, 2003, 2006). The energy output of the modeB events
is also very significant (more than 40% of the entire auroral
emission energy deposition), which implies that the scale-
free magnetotail activity responsible for this emission mode
plays a considerable, if not dominating, part in the intermit-
tent bursty activity of the nightside magnetosphere.
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The power-law shape of thep(D) distributions (Fig. 5)
may indicate that the triggering mechanism that starts the
emission events involves a highly correlated driver, such as
e.g. the reconnection rate at the dayside magnetopause, the
global cross-tail current, or the magnetic pressure in the tail
lobes, which introduces a long-range coherence of the dis-
sipation bursts beyond the one reflected by their lifetime
distributions. If this interpretation is correct, our results
imply that this driver has a more organized dynamics in
the case of small-scale low-latitude events (τT −τD=1.51,
modeA1) than it does in the case of high-latitude events
(τT −τD=0.42). However, it should be noted that our defi-
nition of D is different from the definitions of “waiting” or
“quiet” times in avalanching systems that have been studied
in this context earlier (Sanches et al., 2002; Paczuski et al.,
2005). This difference leaves a possibility that the observed
long-range correlations of the onset timing originate from an
intrinsic CPS dynamics rather than from an external driving
process.

Our analysis suggests a consistent picture in which the
modeB events initiate in the outer CPS regions, with the
strongest emission bursts occurring in a rather stretched mag-
netic field configuration. The energy conversion in this re-
gion is believed to be dominated by magnetic reconnection.
To the extent the electron emission flux can be used as a
proxy for the magnetic energy release in the tail (Shue et al.,
2003), our results show that the midtail reconnection is a
highly turbulent bursty process with no well-defined dissi-
pation scales. Its scale-free component has been succcess-
fully reproduced in a driven current sheet simulation (Kli-
mas et al., 2004). Interestingly, this simulation yielded a set
of critical exponents which are fairly close to the exponents
characterizing modeB emission events in our present analy-
sis. Judging by its relative energy contribution (Table 1), the
scale-free dynamics in the reconnection regions has a con-
siderable impact on the nightside magnetosphere.

The modeA1 andA2 events defined by negativeφ values
are mainly produced in the inner CPS. Due to a more stable
magnetic field topology, this region is not a preferred loca-
tion for the magnetic reconnection. However, it can be prone
to current disruption, which offers an alternative mechanism
for the energy release in the inner tail. The anomalously low
distribution exponents observed forA2 events are character-
istic of barely stable thermodynamic systems that are prone
to large-scale sporadic reorganization. This type of statistics
may be a manifestation of an avalanching behavior of local-
ized dipolarization regions in the near-Earth CPS region (Lui,
2002; Consolini et al., 2005).

The differing MLT peaks seen in Fig. 6 which reflect
a large-scale inhomogeneity of plasma sheet provide addi-
tional evidence for the magnetotail origin of the observed ef-
fects. The two populations seen in this figure have previously
been identified in auroral data (seeHartz and Brice, 1967,
and references therein) and can be explained by the access
of plasma sheet electrons to the inner magnetosphere. Elec-

trons are naturally driven to the dawnside magnetosphere due
to gradient curvature drifts, with the radial location of the
population controlled, in large part, by the competing cross-
tail and co-rotation electric fields. For any given energy and
species of inner CPS particle the path that it takes through the
system is completely controlled by these factors (e.g.Friedel
et al., 2001). On average, the transport of electrons through
the system will bring them closer to Earth on the dawn-side
than in the evening sector, in agreement with our observa-
tions.

Our results characterize the collective behavior of the
emission events in the nightside sector of the auroral oval.
Several recent publications focused on the electric field fluc-
tuations in the same region (Abel et al., 2006, 2007; Parkin-
son, 2006, 2008). Although the scaling exponents reported
in these papers describe a different aspect of auroral com-
plexity, they can be reconciled with our analysis assuming
that the electric field and the emission intensity fluctuations
are generated by the same physical phenomenon. If the au-
roral turbulence is driven by an avalanching process in the
tail, one can expect that the ratioz between the spatial (α)
and the temporal (β) exponents of the second-order structure
function of the electric field fluctuations obeys the theoreti-
cal scaling relationz=α/β=γ (2−τ) (Paczuski et al., 1996;
Aegerter et al., 2003), whereτ≡τE andγ is the finite-size
scaling exponent of thep(E) distribution.

Based on our present results, it is clear thatz should exhibit
a strong latitudinal dependence. Indeed, substituting theτE

values from Table 1, and using the previously obtained aver-
age valueγ=2.14 characterizing the electron aurora (Uritsky
et al., 2006), we find thatz=0.15, 2.35, and 0.79 for the scal-
ing modesA1, A2, andB, respectively. The spatial and tem-
poral electric field scaling exponents reported byAbel et al.
(2006) andParkinson(2006) for the auroral region equator-
ward of the open-closed boundary relate to each other as
0.39/0.21≈1.86. In the monofractal approximation (Parkin-
son, 2008), this ratio should be equal toz, and the scaling
relation given above should hold. Using the estimates ofz

given above, one can conjecture that the correlation structure
of the auroral electric field fluctuations is largely controlled
by theA2 mode of bursty CPS dynamics, which is consistent
with the dominating energy contribution of this mode.

In order to prove this link in a more rigorous way, a more
careful analysis will be needed in which all of the exponents
involved in the discussed relation will be measured for the
same set of auroral events organized by latitude according
to the same procedure. It is worth noting that the relation-
ship between the structure function and avalanche exponents
is at the heart of the ongoing search for a unified complexity
scenario reconciling intermittent turbulence and SOC (Urit-
sky et al., 2007; Rypdal et al., 2008). The proposed analy-
sis could provide an experimental basis for validating such a
scenario in the magnetosphere.

It should be emphasized that the magnetosphere-
ionosphere interaction may play a noticeable role in the
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observed effects. Although it is unlikely that the distinct scal-
ing regimes reported here are created by this interaction, it
could well lead to additional systematic errors of measured
scaling exponents (for example, by filtering-out small-scale
magnetotail activity, or by introducing more complicated dis-
tortions caused by plasma turbulence in the acceleration re-
gion), which will require careful consideration in future stud-
ies.

5 Conclusions

We have reported a new set of statistical signatures of elec-
tron emission events in the northern aurora based on an auto-
mated spatiotemporal analysis of POLAR UVI images. Our
analysis has revealed several distinct types of precipitation
dynamics defined by the initial location of the events rela-
tive to the average position of the isotropic boundary. The
events that initiate in the equatorward portion of the auroral
oval exhibit bifractal energy, power, area, and lifetime prob-
ability distributions described by different sets of power-law
exponents referring to small and large emission scales. The
small-energy events (modeA1, E<5×1012 J) are described
by the distribution slopes that are systematically steeper than
the corresponding slopes of large-energy events (modeA2,
E>5×1012 J). The events that initiate in the poleward por-
tion of the auroral oval (modeB) demonstrate robust scale-
free monofractal behavior described by constant distribution
slopes over the entire range of the observed precipitation en-
ergies.

The probability density exponents shown in Table 1 are
approximately consistent withτx exponents obtained ear-
lier from a less accurate latitudinal classification of emission
events (Uritsky et al., 2008). The new exponentsθx and1x

confirm the scale-dependent nature of the low-latitude emis-
sion dynamics, whereas the exponentτD suggests more orga-
nized driving and/or dissipation mechanisms underlying the
activity in the inner CPS region.

The emission events produced in the outer CPS have con-
siderably higher relative occurrence compared to the inner
CPS events and therefore dominate the overall auroral statis-
tics, making the scale-dependent behavior of the equatorward
portion of the auroral oval a second-order effect in the statis-
tical sense. However, the contribution of the equatorward
events to the energy budget of the nighttime aurora is impor-
tant and it needs to be addressed in future models of multi-
scale dissipation in the magnetotail.

A natural next step in this research line is to look for pat-
terns, within our database, of event classes we know to exist.
For example, what subset of our event database would be
classified as substorms? Do substorms organize themselves
in this manner in the parameter space of auroral scaling expo-
nents? And if so, can this analysis be used as an independent
test for alternative substorm onset scenarios?
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