
BACK TO THE MOON: THE VERIFICATION OF A SMALL
MICROPROCESSOR’S LOGIC DESIGN
Hugh Blair-Smith, Richard Katz, and Igor Kleyner,

NASA Office of Logic Design, Goddard Space Flight Center, Greenbelt, MD

Abstract

The original and primary task of self-test
program Smalley3 was independent verification
of the logic design of the LOLA DU (Lunar
Orbiter Laser Altimeter Digital Unit) micro-
processor. Tasks were added to verify continuing
correct operation of this central processing unit
(CPU) under margin testing for supply voltage,
ambient temperature, and clock frequency.
Finally, an on-orbit diagnostic task was added so
that any malfunctions of LOLA in lunar orbit
can be identified as faults in, or not in, the CPU.

The Lunar Reconnaissance Orbiter space-
craft will be launched to the Moon in 2009 with
six scientific instruments including LOLA, each
containing an embedded microprocessor to
perform real-time subsystem control calcula-
tions. LOLA's CPU is a small, custom-designed
processor, designed to meet the mission require-
ments while minimizing resources. This 8-bit
machine is essentially code compatible with
Intel's 8085 but is implemented in modern
technology, an advanced, radiation-hardened
0.15 µm gate array, with the only logic element
types being a 4:1 multiplexor and a flip-flop.

This paper explains the fundamental
structure of the verification task, shows how
particular instructions are verified, presents a
high-coverage scheme for detecting inadvertent
RAM alteration, describes subsystem testing of
RAM, and reviews the results of the verification
effort. Some infamous CPU design flaws from
both the commercial industry and aerospace
flight control systems are discussed.

Lunar Orbiter Laser Altimeter
The Lunar Reconnaissance Orbiter (LRO), to

be launched early in 2009, will carry six scientific
instruments including the Lunar Orbiter Laser

Altimeter (LOLA). Laser altimetry will produce
very detailed and precise geodetic maps (why not
“selenodetic?) to support various purposes, such as
where to drill for ice, good places to build a
permanent base, etc. Similarly to the other
instruments, LOLA’s copious data stream is
controlled by a Digital Unit (DU), whose CPU must
be radiation-hardened, nimble though not a heavy-
duty number cruncher, and above all reliable.

NASA’s Office of Logic Design (OLD) has
designed the “80k85” which fits into a compact
corner of an Actel Field Programmable Gate Array
(FPGA) to be this CPU. As the name suggests, it is
logically a near-clone of Intel’s 8085 micro-
processor, upgraded significantly in speed and
general reliability, with solid radiation hardening.
Development complexity and costs were reduced by
adopting an instruction repertoire of proven
suitability for embedded control: not a RISC
architecture, but no prodigal consumer of gates by
FPGA standards. This approach also leverages
existing software tools and the skill sets of their
users. Software development reliability is enhanced
by adding an internal interrupt trap for unimple-
mented operation codes.

Processor Design Verification Issues
Unlike software, the logic design of a

processor (or microprocessor) is broken down into a
large number of small simple design tasks that
interact in a small number of relatively simple
ways. It would be hard to imagine a design flaw in,
say, instruction implementation, that would cause
the kind of few-times-in-a-trillion hangups that
occasionally freeze our desktops and laptops.

The catch is the large number of these tasks;
somebody’s going to nod off somewhere in the
long, tedious, and repetitious path through them,
and there had better be something independent,
rigorous, and thorough to spot the problems. IBM
and Intel (though the giants of the universe) have
been caught napping, as we shall see. The other

catch is there are dimensions of design other than
logical, and we’ll examine an electrical design issue
in a spacecraft processor that might have been
spotted by such an independent-rigorous-thorough
testing tool.

IBM System 4π AP-101 Long Divide, 1987
When NASA sought a more-or-less-COTS

computer to be the Space Shuttle’s General Purpose
Computer (GPC), IBM Federal Systems Division
bid a new “Advanced Processor” variation on their
existing System 4π architecture which had seen
service in aircraft and spacecraft. A critical
requirement was that the GPC implement all the
System 360 instructions with exactly the same
results, to eliminate any discrepancies between the
GPC’s calculations and those of the 360 Model 75
mainframes in Mission Control at JSC.

In pursuit of this goal, IBM’s design for the
AP-101 included a Divide Exponential Double
(DED) to handle floating-point numbers with a
mantissa of 14 hexadecimal digits. To ensure that
interrupts would be taken quickly, they made DED
(and its register-access twin DEDR) interruptible
within itself: it could be interrupted after the
development of any quotient digit. When it was
pointed out that this DED design was so slow that a
subroutine using the single-precision DE could beat
it [1], IBM redesigned DED to run without
interruption. Perhaps because of the short time
frame for this redesign (AP-101B), it was
straightforward, simple, and correct.

For deployment in 1990, IBM was required to
re-implement the AP-101 in more up-to-date
technology, resulting in the AP-101S. Part of the
upgrade was a significantly more elegant algorithm
for DED and DEDR, which worked for most inputs
but produced wrong answers for certain cases
where the low-order part of the divisor was not zero
[2]. We haven’t found any documentation of what
verification was performed and why it wasn’t
sufficient, but the discrepancy reports noted that it
was “difficult to define” which inputs produced the
wrong results.

Curiously, the HAL/S compiler developers
seem to have been aware of a problem much earlier
than the date on the discrepancy reports, because
they didn’t use DED at all, or DEDR for anything

but the remainder function DMOD, which uses
short divisors (understandably), thus avoiding the
problem. At least, that’s the observation made by a
code audit triggered by the discrepancy. A
subroutine I2DEDR was substituted for DEDR, just
in case there were more error cases than had been
found, and the compiler was updated accordingly.

Intel Pentium P6 Core Long Divide, 1994
This is the famous Pentium bug [3, 4] that was

discovered by a number-theory application
developer. Intel, facing the fact that increases in
processing speed aren’t aided by an equivalent to
Moore’s Law for component density, had made a
major effort to speed up double-precision divide in
the P6 core, and it involved several tables in ROM.
The design was correct as far as we know, but the
implementation suffered from a failure to include in
the ROM a significant part of one of the tables.

It’s easy to see now that a thorough low-tech
proofreading of the ROM tables would have
prevented this embarrassment. What’s interesting
is that the kind of tool that is the subject of this
paper has only a pretty good chance of detecting
such a fault, because not all combinations of high-
precision inputs can be tested, and some kind of
sampling is the only feasible approach. For two 64-
bit inputs, the number of combinations is 2128; if
each combination takes one microsecond to test, the
test will run for 2108 seconds or about 292 days or
about 284 years—compared with the age of the
universe, about 234 years! We don’t know if Intel’s
verification suite contained the same sort of
combined systematic and Monte Carlo inputs as
Smalley3, but we can imagine that it might still
omit the cases that depend on that table.

Having said that, we can criticize Intel for not
having constructed a verification test designed to
exercise every number in all those tables.

Sandia/JPL 1802 Register Interaction, 1981-6
In the microprocessor used in Galileo, a

fabrication upgrade from a 2-inch wafer to a 4-inch
wafer included process changes to improve the
speed of a 16x16 register array. Unfortunately, this
allowed a number of analog-type issues like off-
nominal supply voltage and pulse delays in poly-
silicon lines, combined with a heavy population of

ones in certain registers, to create a digital logic
fault that copied certain bits of one register to
another register. JPL documentation declares that
understanding the exact physical mechanism was
extremely challenging, but in 1987 they were able
to identify the conditions for the fault and construct
a screening test to select the more robust units.
They also introduced a software restriction to avoid
the conditions [5].

For our 80k85 microprocessor, the approach
taken by Smalley3seems to address this kind of
problem, especially when used for testing of
voltage, temperature, and clock rate margins. In
fact, it found a somewhat similar fault, a stretching
of fan-in/fan-out rules, which was then fixed as a
logic design error.

The 80k85 Verification Challenge
The legacy of these horror stories is a top-level

requirement that 80k85 verification be rigorous and
thorough, and as close to exhaustive as is feasible.
The architecture, though generally 8-bit, is 16-bit in
places, particularly the instruction DAD (Double-
precision register Add). An exhaustive test of all
combinations of its two 16-bit inputs would
comprise 232 cases and take days to run. If the only
purpose of this effort had been to create a one-time
logic design verification test, that might have been
acceptable, but the ability to run our verification
repeatedly, varying margins or even just letting the
pseudo-random number generator produce different
Monte Carlo samples, was paramount.

Reaching way back for a successful model to
follow, we noticed that both the Block I and Block
II Apollo Guidance Computers (AGC) had self-
check programs to augment the manual design
verification process, and to assure at any time that
all of the logic in a particular AGC was still
working. That effort had the interesting side effect
that an instruction EDRUPT (Ed Smalley’s private
interrupt) was added to the design to facilitate
including interrupt logic in the test, but we didn’t
need to emulate that in the 80k85 development.

One mitigating factor in the verification
challenge was that (again like the AGC) the 80k85
had been running, apparently successfully, for some
time when the verification development began. The
phased development plan for Smalley3 was thereby

simplified, since there was no need to construct a
rigid sequence of baby steps for the first few
instructions tested. Instead, the phasing was simply
a progression from instruction verification to the
two levels of RAM testing.

While the RAM corruption detector is an
integral part of the logic design verification process
(to detect any unintended changes to RAM contents
made by instructions), the rest of the RAM testing
is really advanced burn-in and degradation
detection of the RAM as a distinct subsystem.

8085/80k85 Architecture
This is an 8-bit machine that uses 16-bit

addresses to access 64K bytes of RAM, either one
at a time or a pair in little-endian fashion. There are
7 data registers of 8 bits:

• A (accumulator);
• B, C, D, E;
• H, L

of which, BC and DE occasionally function as 16-
bit data registers, and HL frequently functions as a
16-bit indirect addressing register.

Other 16-bit addressing registers are:

• SP (stack pointer);
• PC (program counter).
There is a set of condition flags sometimes

lumped as “register F,” and the combination of F
and A sometimes functions as a 16-bit PSW
(program status word). The 8085 has an interrupt
mask and a serial I/O (UART) port, which were not
implemented in the 80k85.

For input/output purposes, 8-bit addresses are
used to access 256 ports, which in the 80k85 are
allocated 128 to input and 128 to output.

Overview of 8085/80k85 Instructions
The instruction repertoire is a rich set of

simple functions suitable for an embedded
controller/sequencer, hence its appeal for use in the
LOLA DU. It’s rich in data moving, condition-
code-driven branching, Boolean, and arithmetic
operations, but stops short of having multiply and
divide operations—or any floating point.

Instructions are one to three bytes in length,
with all operation coding within the first byte. The
second byte of 2-byte instructions is immediate data
or an I/O port address; the second and third bytes of
3-byte instructions are direct RAM addresses.

In principle, this implies 256 distinct operation
codes, but 10 are unused and one (DAA, Decimal
Adjust) is not implemented in the 80k85 because it
is dedicated to decimal arithmetic. However, there
are only 70 functionally distinct instructions, many
with parametric variations such as 3-bit register
addresses and 3-bit condition code tags. The
extreme case is MOV, with only 2 bits of op code
and register addresses of 3 bits for both source and
destination. One of the 3-bit addresses specifies,
not a register, but indirect access to a byte of RAM
via the HL pair.

The 80k85 implements four of the five 8085
interrupts, but does not implement their priority
scheme.

Functional Grouping of 80k85 Instructions
To allow design verification to focus on

particular functional areas, or even test incomplete
80k85 units, ten independently testable functional
groups of instructions were defined:

1. NOP and single-byte transfers;

2. Double-byte transfers;

3. Single-byte arithmetic binary operations;

4. Double-byte arithmetic binary operations;

5. Single-byte Boolean binary operations;

6. Assorted unary operations;

7. Transfers of control (except HLT);

8. Stack operations;

9. Data input & output operations;

10. Interrupt management & illegal op codes,

where “binary” and “unary” refer to the number of
inputs to a given operation. Verification of HLT is
obviously a very special case, but it is addressed.

Introduction to Smalley3
The primary purpose of Smalley3 is to validate

the fidelity of the 80k85’s behavior, when executing

Intel 8085 instructions and interrupts, to the “gold
standard” of 8085 function exhibited by the Harris
80C85RH, except as noted herein. The 80k85 is an
image, in the Actel RTAX-S FPGA, created by
NASA’s Office of Logic Design (“OLD”) to allow
8085 code to run on a machine much faster and
more radiation-hardened than Intel’s original chip.
Intel’s chip, never radiation-hardened, was
introduced in the mid-70s and has been out of
production for years. The radiation-hardened
Harris processor is also out of production. A
secondary purpose is applicable after the logic
design validation is complete; it exploits the fact
that Smalley3 is a self-test program running on the
80k85. Smalley3 can be rerun as desired to verify
the continued correct operation in laboratory stress
testing and even in lunar orbit. To serve this second
purpose, two tests are included that exercise the
parts of the 64KB RAM not occupied by Smalley3
code.

The lunar orbit environment, which has
determined several programmatic factors in the
requirements for and design of Smalley3, is the
application of the 80k85 as the CPU for the LOLA
DU (Lunar Orbiter Laser Altimeter Digital Unit) in
the LRO (Lunar Reconnaissance Orbiter) to be
launched in 2009.

Smalley3 is named in honor of Ed Smalley of
MIT’s Instrumentation Laboratory (now the Charles
Stark Draper Laboratory, Inc.), who in the 1960s
developed somewhat similar self-test software for
the Apollo Guidance Computer (“AGC”) at the
heart of the Primary Guidance Navigation and
Control System (“PGNCS”) used in both the
Command Module and the Lunar Module of the
Apollo spacecraft. Ed’s software, which we hereby
retroactively name Smalley1 for the Block I AGC
and Smalley2 for the Block II AGC, verified the
function of all the AGC’s instructions to catch any
faults caused by degradation of the hardware.

The bulk of Smalley3 validates the logic
design of the 80k85, that is, the “netlist” that
determines how the FPGA’s multiplex gates and
flip-flops are interconnected to functionally emulate
an actual 8085. In order to catch sneak paths, fan-in
and fan-out problems, and subtle cross-talk issues,
its function goes well beyond simply checking that
each instruction does what it is supposed to do, by
verifying also that it has no side effects on the state

of the CPU or the I/O ports. Smalley3 also verifies
the absence of side effects that corrupt RAM
locations which should be unaffected by the
instruction under test; this is done for just 2
locations that may be closely related to what that
instruction does, and at greater intervals for the
entire 64KB SRAM. Finally, there are two tests of
the approximately 55KB of SRAM not needed for
Smalley3 code. One, called “Yozzle” in memory of
a Honeywell 800/1800 tape drive diagnostic from
the ’60s, stresses the memory by forcing very
frequent bit value reversals. The other applies the
theory of pattern-sensitive faults (“PSF”) to catch
any cross-talk between each bit of memory and the
bits immediately adjacent in two dimensions.

In the development laboratory environment,
the 80k85 operates under the control of Bench
Check Equipment (“BCE”) which functions as a
console. In a flight or all-up system test
environment, all BCE commands are implemented
through uplink.

In the LOLA flight configuration, the 64KB
SRAM is overlaid from EEPROM pages; several of
these contain copies of the operational flight
program, and another contains the approximately
10KB Smalley3 program. When it is the active
overlay, Smalley3 controls the entire 64KB address
space of the 80k85.

Top-Level Design of Smalley3
A Smalley3 run consists of one or more Test

Cycles, either a specified number or indefinitely
until a fault or a manual stop occurs. Because the
pseudo-random seed is not re-initialized between
Test Cycles, multiple cycles do generate different
sequences of random data. The RAM subsystem
tests (Yozzle and PSF) occur only at the end of an
automatically halted run.

Each Test Cycle in a run tests a specified
subset of the ten functional groups. Within each
functional group, testing is performed on a specified
subset of its functionally distinct operations. For
each distinct operation, testing covers a specified
subset of its parametric variations as defined by all
8 bits of the first byte (e.g., distinguishing MOV
A,M from MOV D,H). For each such parametric
variation, testing used 16 systematic data value sets
and a specified number of pseudo-random data sets.

All this flexibility, which in the event has been
lightly used, seems complex but is driven quite
simply by tables for each level. The specifications
mentioned above are performed mostly by patching
the tables, and in some cases by initializing a few
input ports.

The RAM corruption check can be run at any
of these levels (as noted above), but in any case
runs once at the end of each automatically halted
run, whether or not a fault was detected. This
supports a major goal of presenting a maximum of
information for analysis whenever a fault stops a
run.

Input operations are tested by periodic loads of
the input ports generated by the BCE at intervals
that are regular but look truly random to the 80k85
instruction flow. When read by the IN instruction
during such a load, the value read may be old, new,
or a mixture. Output operations depend on reading
the values back from the relevant output port.

In accordance with the designed interrupt
schedule in the spacecraft, the four types of
interrupts are triggered by the BCE in a regular
sequence, separated to prevent any problems from
the lack of priority and maskability. This regular
sequence, like that of input data, looks truly random
from the point of view of instruction flow.

Design Considerations in Smalley3
Ideally, every instruction would be tested in

every possible machine state, but realistically
what’s possible is a considerable variety of central
register and RAM states, comprising not only the
registers and RAM locations involved in the
instruction, but also the other registers. This variety
is described below under Systematic or Random
Data Environment.

Other principles governing instruction testing
include watching as widely as is practicable for
unintended side effects, minimizing the inherent
“conflict of interest” when a computer tests itself,
and presenting for analysis enough data to handle
multiple errors arising from a single fault. These
are described below under Instruction Testing.

Rigorous and thorough testing of input/output
operations has many aspects that don’t figure in

other instruction types. These get a section of their
own, Input/Output Testing.

Similarly, external interrupts are a major
special case, described below under Interrupt
Testing.

Detection of unintended corruption of RAM
contents required some innovative developments
described below under RAM Corruption Detection.

Finally, there is a section covering the Yozzle
and PSF tests under RAM Subsystem Testing.

Systematic or Random Data Environment
The artificial machine-state data that varies the

environment in which each instruction test runs is
placed into all possible register pairs before the test,
with the obvious exception of PC. There is also a
restriction on the range of values placed into SP, to
prevent stack operations or interrupts from stepping
on Smalley3’s code or scratch locations. This is a
case where the flags and accumulator are treated as
a pair, so that the arbitrary values are imposed on
the condition codes as well as the ordinary registers.

Artificial machine-state data is also used for
the address of a pair of bytes in RAM and for their
initial contents. The address is in a restricted range
of values to avoid stepping on the stack or on
Smalley3’s code or scratch locations. Furthermore,
3-byte instructions are made to use this address, and
2-byte instructions are made to use artificial data as
either immediate data or an I/O port address, as
appropriate.

Systematic Artificial Data Sets
The goal here is to include sixteen of the most

“interesting and edgy” patterns of bits: heavy on the
ones, heavy on the zeros, alternating ones & zeros,
etc. For efficiency, each pattern is generated as a
pair of bytes even though sometimes only half the
pattern is used. Each systematic data pattern is
placed in all the machine-state registers and the
selected port and RAM locations, subject to the
constraints on SP and the RAM address, so that
whatever is interesting about it will apply to as
much of the total machine state as possible. In
systematic mode, Smalley3’s Content Engine
composes sixteen patterns of 16 bits from the
following categories:

• All 16 bits the same;

• Alternating 8 zeros with 8 ones;
• 4 zeros, 4 ones, 4 zeros, 4 ones;
• Alternating pairs of zeros and ones;
• Alternating zero and one bits.

Pseudo-Random Artificial Data Sets
An 8-bit Linear Feedback Shift Register

(LFSR) is implemented in Smalley3’s code, with
special-case logic to prevent 00000000 from being
a lockup state, to cycle in a non-obvious sequence
through all the 256 states of one byte. This function
is called a Pseudo-Random Number Generator
(PRNG), and is called twice by the Content Engine
in random mode to produce each pseudo-random
16-bit pattern.

In contrast to the systematic mode, each
register pair, RAM location, etc. gets a different
PRNG value, applying required constraints as
appropriate. The seed value is never reset; that’s
why repeated Test Cycles get different values for
each particular instruction test, increasing the odds
of finding the rarest and most obscure data pattern
sensitivities.

Instruction Testing
Each instruction test must verify that the

instruction does everything it is supposed to do, and
nothing else. Any given instruction properly affects
only a small part of the machine state (often, just
one register), but its unintended side effects could
affect any part of the total machine state. As we
said before, we had to limit the scope in which
unintended side effects are detected during the
instruction test:

• All the central and special registers;
• The most relevant two bytes of RAM,

which are the top 2 bytes of the stack
when appropriate, or just two bytes
arbitrarily chosen when none are
relevant;

• The most relevant I/O port, or just one
arbitrarily chosen when none is relevant.

Initialize, Predict, and Verify Machine State
Smalley3’s scratch locations include three

instances of the limited machine state, called PRE,
POST, and FOUND. The PRE values are of course
filled in from the artificial data sets described
above. The POST values are initialized from the

PRE values, since any one instruction is supposed
to affect only a little of even the limited state.

Then ad hoc logic for each parametric
variation of each instruction type predicts what the
instruction should do, and updates the POST values
accordingly.

After the instruction is executed (under strict
control to keep it from gaining control of the
machine), the actual state of the machine goes into
the FOUND values. Verification consists of
comparing FOUND to POST values over the entire
limited machine state.

Principles for Prediction
Ideally, each instruction’s results would be

predicted by code that includes no instances of the
instruction under test. In a self-test program, this is
naturally not possible, but a substantial step in this
direction was nonetheless achieved in Smalley3. In
several cases, the predicted results are obtained
from tables entered with the input data as
arguments. Specifically, there is a routine called
Blackadder that predicts the results of all addition
and subtraction operations using 256-byte tables
whose addresses are aligned so that entering them is
nothing but setting the L register (lower half of
indirect address). The only way the 80k85’s adder
takes part in this process is the unavoidable one of
incrementing PC.

Prediction of the results of Boolean operations
loops through the 8 bit positions, shifting as
required and using the condition codes to control
branching, but includes no Boolean operations.

Verification and Analysis Support
Smalley3’s scratch locations are laid out in a

concentrated area of low memory so that a small
memory dump will supply as much information as
possible about what error or errors are induced by a
fault. The PRE, POST, and FOUND instances
described above are in locations aligned to facilitate
manual comparison. There are also a number of
variables called BADS that contain the exclusive
OR of the FOUND and POST instances, to exhibit
clearly which bits are wrong. These are arranged in
a tree to facilitate navigating to the error bits: a
master byte FBADS shows not only which flag bits
are bad but uses non-flag bit positions to point to
other BADS data. One of these is RBADS, which
is simply a set of bits indicating which registers

contain discrepancies, thereby pointing in effect to
whichever BADS value actually exhibits the
discrepancies.

Special Note on “Testing” HLT
In a self-check program, there is no way to

make HLT do anything but halt the machine, which
means there’s no hope of filling in the FOUND
variables. However, the test engineer has some
control over what the machine state is when HLT is
used to bring a test run to an automatic end, because
the same sort of setup of PRE and POST variables
is done before such a HLT. Observation of the
machine’s actual state when halted can be
compared against the POST values. Variations in
the manual setup of the next run (initial random
seed, number of random data sets per instruction,
etc.) will force changes in the PRE-POST setup for
the next run’s halt. You can’t control what the new
values will be, but they will almost certainly be
different.

Input/Output Testing
The customary way to test I/O functions is to

write output ports and incorporate some kind of
wraparound in the BCE to allow those values to be
read back in and compared to the original outputs.
In this project, the BCE couldn’t do that, so it
doesn’t contribute to output testing at all.

The 80k85’s 128 input ports can be initialized
by the BCE, and are updated periodically with a
mixture of systematic and pseudo-random data
produced by the BCE. As noted above, the
updating of a particular port can be caught in a
partial state by an IN instruction, so software logic
had to be introduced to discard half-baked data.

Systematic and Random Input Data
When just one or a limited number of Test

Cycles are run, the BCE supplies only pseudo-
random data, but in an open-ended test run, it
supplies a few systematic data inputs first and then
the pseudo-random data. The systematic data is all
zeros into all ports followed by all ones into all
ports, which is certainly a minimum set.

Late in the project we noticed that these would
not allow detection of a wiring error that reversed
two bit positions in some port(s). We identified 3
more systematic data sets that would provide this
coverage but did not have time to incorporate them.

Verifying Input Data
Verifying the input of systematic data is

straightforward because Smalley3 knows a priori
what the values should be. No such knowledge can
be feasibly provided for random data, so we
borrowed an old magnetic tape SEC-DED
technique from the 1960’s, Honeywell 800/1800’s
“Orthotronic Control®” in which each port’s data
obeys a parity rule and there is a longitudinal
checksum for each bit position over the 128 input
ports as a whole. This allows Smalley3 to identify
a single bad port, and even a single bad bit within it;
if there are multiple errors, at least one bad port is
identified. To gain a little extra coverage, the parity
rule for each random data set is the reverse of the
one used in the previous set.

Asynchronicity Issues in Testing Inputs
The replacement of one data set in the input

ports by another, though regular and straight-
forward from the BCE’s point of view, is a long
asynchronous process from Smalley3’s point of
view. Our approach is to assign the highest-
numbered input port, 7F, as the longitudinal
checksum and arbitrarily rule out 00000000 as a
checksum value. The BCE, when ready to replace
an input data set, first zeros port 7F as a signal that
the input ports as a whole are not in a stable state.
Smalley3 samples port 7F often enough to see the
nonzero-to-zero transition before reading any port
that will be affected. Then it suspends reading until
port 7F becomes nonzero again, which is the BCE’s
signal that the new update is complete.

Because the ports are updated in order of
ascending port addresses, all of ports 00-7E are
guaranteed to contain new stable values when the
nonzero checksum appears. Thus the “half-baked
data” issue arises only for the checksum itself, but
this doesn’t matter because the input testing logic
starts reading the new data set at port 00, so the
checksum is long since stable when it finally gets
read.

Smalley3 continues to loop through the input
ports, using the SEC-DED logic each time until port
7F again becomes zero, at which point the current
loop is abandoned to await the completion of the
new data set. This leaves one narrow crack of a
“half-baked data” problem, if the sampling of port
7F happens to coincide with the zeroing of it in
such a way that the IN instruction finds some but

not all of the one bits still there. That situation is
perceived as a longitudinal checksum error, so an
apparently bad checksum is read again to see if it
has settled out to zero, in which case the current
port loop is abandoned as above.

Verifying Output Data
Using the regular data sets from the Content

Engine, Smalley3 loops through the output ports
80-FF, writing systematic or random data and then
reading it back. That leaves uncovered the
correctness of the wiring from the output ports to
the outside world; we identified but didn’t have the
resources to implement a way to gain such coverage
within the BCE’s functional limitations. It would
involve the BCE remembering the last data set it
put into the input ports, and Smalley3 would copy
each input data set into the corresponding output
ports, leaving it up to the BCE to read the output
ports and decide whether that data matched the last
input data set.

Interrupt Testing
Interrupts are triggered by the BCE at regular

intervals, and are separated in time so that they can
be assumed to arrive “one at a time” and no
interrupt will arrive while another is still in
progress, but each arrival seems to the 80k85
instruction flow to be at a completely random time.
Smalley3 retains some control by planting its own
addresses in the interrupt vector, but the
PRE/POST/FOUND architecture for testing
instructions doesn’t apply. Verification consists of
checking that each interrupt uses its correct target
location in low memory and saves and restores PC
and SP correctly (since an interrupt is essentially an
externally triggered CALL). More important, we
verify that it does not corrupt the progression of
programmed logic driven by Smalley3, even though
it necessarily makes one modification by leaving
the “resume address” in RAM next to the top of the
stack.

RAM Corruption Detection
This feature uses the 512 highest addresses in

RAM to maintain row and column XOR-style
checksums for all 64K bytes of RAM, where “row”
means 256 consecutive locations and “column”
means 256 locations whose addresses are 256 apart.
The idea is that any one-byte corruption can be

located by discovering checksum errors for its row
(low half of its address) and column (high half of its
address). Furthermore, the check can reconstruct
the corrupted byte and therefore shows which bits
are bad. Row 254 (addresses FExx) contains
checksums for 256 columns each covering row
positions 0-253, and row 255 (addresses FFxx)
contains checksums of every row including itself.

An interesting sidelight of the checking routine
is the fact that the loop that XORs all the bytes that
contribute to a given checksum cannot modify any
part of RAM while it runs, and must maintain all of
its state information in central registers.

The actual coverage obtained by this method is
a little less than the full 64K bytes, because it would
use too much time to construct the checksums often
enough. Coverage of Smalley3’s scratch locations
is negated by a scheme of shadow locations that
prevent those locations from making any
contribution to the checksums. That is, each scratch
location is shadowed by 3 other locations, one in
the same row, one in the same column, and one at
the intersection of those two shadows. Each triad of
shadows is copied from its scratch location at the
beginning of the run, before the checksums are
initially generated. Then when it’s time to perform
a check, each triad is updated from its scratch
location (which would hide any corruption of the
scratch location itself), but some coverage is
regained by verifying that the 3 shadows agree with
each other, showing that none of them has been
corrupted since the previous check. A scheme of
restorations applies to stack and other RAM
locations outside the scratch area which have been
properly modified by instruction testing.

There is also some logic to ignore any stack
area location that may have been affected by an
interrupt. Having built all this logic to handle
scratch locations and made it work, we have to
wonder whether it was the best use of resources,
compared to a much simpler scheme to generate
and check checksums of all of RAM except the
scratch area. For the purposes of this paper, it
serves as an interesting demonstration of what’s
possible; for purposes of the spacecraft, it does no
harm and does obtain a little coverage in the scratch
area.

RAM Subsystem Testing
Two tests, philosophically distinct from the

design verification focus discussed so far, were
added for the flight software. They are addressed to
electrical design issues: the ability of the RAM to
withstand abnormally high rates of state reversal,
and possible crosstalk between bit positions that are
“adjacent” in some sense.

Stress RAM by Rapid Bit Reversals: Yozzle
The name Yozzle is taken from a Honeywell

mainframe diagnostic used in the 1960s to stress a
magnetic tape drive’s servos and tape handler by
“yozzling,” i.e. reversing the direction of the tape’s
motion as rapidly as possible.

There can be only one occurrence of Yozzle
per run, following the final occurrence of Elliot-
Ness and preceding the one occurrence of PSF.
Like PSF, it operates on the contiguous majority of
RAM addresses above Smalley3’s program code,
that is, about 54KB out of the total of 64KB.

The essence of this stress test is to fill the
subject RAM with alternating bytes such that every
odd location contains the one’s complement of the
even location preceding it, and then reverse all 16
bits of each such location pair repeatedly, as rapidly
as possible, for a parametrically varying number of
repetitions. This is done by making each such pair
the head of the stack, loading the one’s complement
of the pair’s initial state into registers H and L, and
using the XTHL (exchange top of stack with HL)
instruction to do the reversals.

Any failure discovered by the YOZZLE test
places data in RAM, overlaying certain locations
that are normally used by the instruction testing but
do not contribute information to the dump analysis.
This data includes the address where RAM failed,
the intended content, and the found content, each
two bytes.

Pattern-Sensitive Testing of RAM: PSF
This test is based on John P. Hayes, Testing

Memories for Single-Cell Pattern-Sensitive Faults
[6]. As will be seen, it cannot be a rigorously exact
implementation of the documented test because of
the 80k85’s architecture.

Hayes's notation is based on the "cell," that is,
storage in RAM for a single bit, and on a tiling
"neighborhood" consisting of a particular cell and 4

adjacent cells, immediately left, right, above, and
below the cell under consideration. In the RAM
occupied by Smalley3, the memory range to be
tested is approximately the same as for Yozzle;
however, there must be a whole number of 256-byte
rows. The lowest available whole row is 2700-
27FF, so the number of cells in the address range is
444,416 (55,552 bytes).

The documented test seems to assume the
addressing of individual bits in a RAM chip, which
is a normal environment for RAM testing in a chip
foundry, but the 80k85 architecture addresses RAM
bits 8 at a time. We assigned to the words “left”
and “right” the meanings that are (mostly) intuitive
in 80k85 architecture:

• left and right bit positions within a byte;
• to the left of the leftmost bit position of a

byte is the rightmost bit position of the
next-lower-addressed byte;

• to the right of the rightmost bit position
of a byte is the leftmost bit position of
the next-higher-addressed byte;

• but there is a wraparound rule to prevent
the next byte (whether higher or lower)
from going outside the row xx00-xxFF.

We assigned to the words “above” and “below”
similarly intuitive meanings:

• above a bit position in any byte is the
same bit position in the byte whose
address is 256 higher than the subject
byte;

• below a bit position in any byte is the
same bit position in the byte whose
address is 256 lower than the subject
byte;

• but instead of a vertical wraparound rule,
we restrict the “top” row FF00-FFFF to
contain bits “above” bytes in row FE00-
FEFF in this sense,

• and we restrict the “bottom” row 2700-
27FF to contain bits “below” bytes in
row 2800-28FF in this sense.

Even though Smalley3’s PSF reads and writes
bits 8 at a time, we believe that the fault coverage is
substantially the same. The logic is too complex to
try to summarize here; interested parties can consult

the reference or even obtain the heavily commented
Smalley3 source code from OLD at GSFC.

Summary and Conclusions

Technical Summary
The fact that Smalley3 occupies the low 9.3

kbytes of RAM not only demonstrates how much
function can be packed into a modest-sized
assembly-language program, but also suggests how
software reliability suitable for spacecraft can be
obtained (in part) by staying away from the
gigabytes of OS and related infrasoftware that are
common to PCs. Of course, the absence of any
requirement for a graphical interface helps too.

Only 5.8 kbytes are executable code; 2.7
kbytes are tables, and 1.1 kbytes are variables.
Those add up to more than 9.3 kbytes because some
of the initialization code gets overlaid by variables.

Running time for each instruction test cycle
with a maximum set of Monte Carlo initial states
for each instruction is 14 seconds. Each cycle of
the RAM corruption detector “Elliot-Ness” takes
about 0.1 second; these can be commanded to occur
at 6 different frequencies, but only the higher
frequencies consume significant running time, 1.8
hours maximum. The Yozzle test runs for about ¼
second, but the PSF test takes about 500 seconds.
All times are based on a 4 MIPS processing rate.

Programmatic Observations
The 80k85, a small 8-bit microprocessor with

no instructions as complicated as even
multiplication, seems to present a simple problem in
design verification. However, the requirements for
rigorous and thorough testing cast quite a long
shadow for any computer, no matter how simple:

• largest practicable variety of initial
machine states for each instruction;

• detection of largest practicable variety of
unintended side effects of any
instruction;

• detection of largest practicable variety of
interference between programmed and
unprogrammed activity (i.e., interrupts
and arrival of inputs);

• verification of input/output wiring
harness configurations;

• excitation of RAM components in ways
that normal software wouldn’t induce.

Despite the complexity to fulfill these
requirements, the development of Smalley3 itself
was fairly straightforward thanks to a good-quality
8085 simulator usable at the development site.
Most of the bugs in Smalley3 code resembled
80k85 faults and were readily resolved by using the
dump analysis features addressing such faults, with
a major assist from the simulator’s instruction-level
trace. However, the fidelity of the 8085 simulator
to the 80k85 was less than complete and had to be
worked around. Also, test runs often had to
incorporate artificial simplifications of long and
complex runs because the simulator couldn’t record
more than 1 million instruction executions.

Some of the complexities could have been
reduced or avoided by enhancements of the 80k85
and BCE design:

• 80k85 design could have been more of a
clone of the 8085 design without hurting
objectives;

• BCE could have supported wrap-back of
outputs to inputs to facilitate I/O testing;

• BCE/80k85 interface could have
provided an interlock to prevent the
reading of an input port in a “half-baked”
(partially updated) state.

Scalability Considerations
What if the processor had a 16-bit, 32-bit, or

64-bit architecture? There would certainly be a
larger number of functionally distinct instructions,
and they would include more complex functions
like multiply and divide, floating point, possibly
even vector and trig functions and decimal
arithmetic. That much would produce an increase
in the amount self-check code, and require
enormously larger look-up tables, but no great
change in qualitative complexity. However, the
introduction of base and index registers would
complicate the behaviors of all instructions and
increase the variety of initial machine states.

We would expect vastly greater amounts of
RAM, which would help with the larger tables

(though probably not enough), and would take
considerably more time to check. There might also
be a more complex I/O architecture with, say,
programmed channels instead of just ports.

This challenge could perhaps be eased if the
designs of the bigger computers included some
Built-In Self-Test logic. For example, in 1970 the
MIT Instrumentation Lab designed a SIRU
(Strapdown Inertial Measurement Unit) controller
whose arithmetic instructions calculated both direct
and complement results and compared them. Still,
that doesn’t overcome the need for design
verification and operational checking of the Built-In
Self-Test logic. The boldest argument against such
logic that we can recall was made by Seymour
Cray, who left parity checking out of the design of
the CDC 6600 because, as he said, you never can
tell whether your checking logic is working.

Achievements and Utilization
In support of the 80k85 development phase,

Smalley3 made three major contributions:

• Caught a failure to carry a design detail
into the netlist—this affected CMP B
(Compare Accumulator vs. B register),
which evidently hadn’t occurred in the
testing of application code;

• Identified a weak point in the electrical
design of non-80k85 parts of the FPGA
chip, based on a fan-out limit violation—
seen in low-voltage tests that made a
particular instruction fail;

• Exposed a poor margin in CPU-memory
slew rate during high-temperature
testing.

These achievements motivated NASA to apply
Smalley3 also to the operational phase, so that any
suspicion regarding the LOLA DU’s operation on
lunar orbit can be investigated to see whether the
root cause is a fault in the 80k85. This application
was the impetus for adding the RAM subsystem
testing.

Controversial Observation

A Minority Opinion on a Design Point
This is a minority opinion in the sense that

only one of the three authors (Hugh Blair-Smith)
embraces it. In a nutshell: the full power of
external interrupts is more trouble in an embedded
system than it’s worth. Mainframes and other
highly multi-tasking systems need interrupts to
arbitrate among execution streams from many
independent sources, some of which can be
expected to do bad things like infinite loops. In a
small embedded processor, the number of tasks is
limited and well known, and their interaction is
specified and designed in great detail. That means
that frequent sampling or polling for external
events, at points convenient to the logic, becomes
feasible.

In the Space Shuttle GPC software, the rules
for synchronizing redundant-set machines require
essentially this scheme. Interrupts exist, but they
don’t do anything until all GPCs in the set agree on
what’s the highest-priority thing to do. These
agreements are called “sync points,” and one of the
rules is that any routine that runs longer than a
millisecond must perform a programmed sync point
to effectively poll the interrupt subsystem.

The full flexibility of interrupt logic makes
design verification harder and the possible paths
through the code more numerous and less well
known. Having said that, this is a controversial
viewpoint, partly because considering backing away
from interrupts is something of a cultural shock in
real-time control, and partly because it can be
mistaken for a plea for excessively rigid “washing-
machine cycle” multi-tasking logic, the sort of thing
that would not have survived the Apollo 11
program alarm (1202) caused by an unforeseen
torrent of DMA cycles. Task priorities, which did
save Apollo 11, do still matter.

References
1. Blair-Smith, Hugh, c. 1972, personal

recollection of conversation with IBM Federal
Systems Division engineers and submission of
the subject subroutine to them, Cambridge MA.

2. Miller, Jim et al, c. 1973-2005, HAL/S
Compiler System Specification, United Space

Alliance (but originated by Intermetrics, Inc.),
pp 3-16 and 6-12 (which references CR11164
and DR106660), Houston TX,
http://klabs.org/richcontent/software_content/ha
l_s/hal-s_compiler_system_specification.pdf

3. Nicely, Thomas R, 1994, e-mail
communication to whom it may concern,
Lynchburg College, Lynchburg VA,
http://www.emery.com/bizstuff/nicely.htm

4. Peterson, Ivars, 1997, Pentium Bug Revisited,
Math Trek posted on MAA Online
(Mathematical Association of America),
Washington DC,
http://www.maa.org/mathland/mathland_5_12.h
tml.

5. Stott, F., 1987, Register Interaction in the 1802
Microprocessor (Interoffice Memo 514-B-761-
87, with PIP No. 201 attached), Jet Propulsion
Laboratory, Pasadena CA,
http://klabs.org/DEI/Processor/1802/register_int
eraction/stott_memo/stott_memo.htm.

6. Hayes, John P, 1980, Testing Memories for
Single-Cell Pattern-Sensitive Faults, IEEE
Transactions on Computers, Vol. C-29, No. 3,
March 1980, pp 249-254, available through
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?ar
number=1675556. This article seeks to
generalize the somewhat more accessible
Efficient Algorithm for Testing Semiconductor
Random-Access Memories by R. Nair, S.
Thatte, and J. Abraham, ibid, Vol. C-27, No. 6,
June 1978. The latter cites Hayes's earlier
work, Detection of Pattern-Sensitive Faults in
Random-Access Memories, ibid, Vol. C-24, No.
2, February 1975, but criticizes the method set
forth there as lacking significant coverage.

27th Digital Avionics Systems Conference

October 26-30, 2008

