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Introduction:  We present a new model for the 

times of deep focus moonquakes. This model assumes 
that, for each deep moonquake cluster, there is a 
unique linear combination of orbital parameters which 
is favorable for moonquake occurrence. Because of 
solar perturbations, the lunar orbit does not exhibit 
simply periodic behavior. 

Several deep moonquake clusters exhibit relatively 
simple, quasi-periodic behavior, with favored periods 
being either the anomalistic month (27.5545 days), 
which controls Earth-Moon distance and sub-Earth 
longitude, or the nodical month (27.2122 days), which 
controls sub-Earth latitude. Even in these cases, our 
model performs better, in terms of residual variance 
(Fisher-Snedecor F ratio), than a purely periodic 
model, and has the advantage of providing better in-
sight into the cause of the temporal pattern. 

Background:  One of the most intriguing findings 
of the Apollo Lunar Seismic Experiment [1] was that 
many of the deep focus events are related to tides 
raised on the Moon by the Earth [2,3,4]. However, 
despite considerable past effort [5,6,7,8], many aspects 
of the deep moonquake situation are still only rather 
poorly understood. One reason for the continuing dif-
ficulty in producing realistic models of the deep 
moonquake tidal triggering process is that the limited 
extent and number of the Apollo seismic stations 
made event location determination difficult. In addi-
tion, significant scattering within the Moon made the 
determination of fault plane orientations even more 
difficult [9,10].  

As a result of these uncertainties in moonquake 
source parameters, most of the more definitive tests 
which have been applied to cases of tidal triggering of 
Earthquakes [11-18] are not feasibly applicable at the 
Moon. If, for example, the location and orientation of 
the fault plane at a deep moonquake source were 
known, it would be a simple matter to project the 
time-varying tidal stress tensor at that location onto 
the fault plane, and see whether the resolved shear and 
normal stresses at event times had repeatable patterns. 
However, uncertainties in source locations make the 
tidal stress tensor calculations somewhat uncertain, 
and the absence of clear seismological evidence for fault 
plane orientations within the Moon severely limits the 
critical step of projecting the tensor onto the plane.  

Given the difficulty in locating and orienting deep 
moonquake sources, we are motivated to consider an 
alternative strategy, which depends only upon the very 
well known relative position and velocity of the Earth, 
as seen from the Moon. If there were a preferred tidal 
stress condition, on a deep source fault plane, then we 
would expect that those conditions would be met only 
when the tidal stress tensor had the appropriate value. 
As the tidal stress tensor depends upon both the source 
(Earth) and receiver (within the Moon) locations, tidal 
forcing will depend diagnostically upon the relative 
Earth-Moon position variations. Thus a preferred tidal 
stress state for triggering of deep moonquakes implies 
a preferred combination of position and/or velocity of 
the tide raising body.  

The primary objective of the current study is to test 
the hypothesis that there is, at each deep moonquake 
cluster, a linear combination of Earth-Moon position 
and velocity components which is nearly constant at 
the times of the seismic events at that cluster. 

Method:  Our approach to exploring the connec-
tion between orbital parameters and moonquake clus-
ter event times has several steps. The early steps are 
essentially an empirical orthogonal function (EOF) 
analysis [19]. We begin by tabulating the values of 
position and velocity of the Earth, with respect to the 
Moon, at 1 day intervals over the time span 17 April 
1969 to 13 May 1978 (3314 days). The parameters are 
Earth-Moon distance (re),  sub-Earth latitude (�e),  
sub-Earth longitude (fe),  and rates of change of these 
three. The position values were obtained from the 
USNO software MICA, and the rates were obtained 
via differentiation of a cubic-spline interpolation of 
the position values. 

It is convenient to use orbital parameters with 
identical dimensions and comparable dynamic ranges. 
We thus replace the actual Earth-Moon distance re, 
with a normalized deviation from the mean value,  
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For a given cluster, we begin by evaluating the 6 

orbital parameters at the event times for the cluster: 
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where over-dots indicate time derivatives. We then 
compute the correlation matrix for those 6 time series, 
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and determine the corresponding eigenvectors.. These 
eigenvectors (f1, .., f6) represent the linear combina-
tions of the input time series which are orthogonal, 
when evaluated at the event times. Multiplying each of 
the eigenvectors by the input parameter values, we 
thus obtain orthogonalized time series.  
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We then compute the coefficients in the series 
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which best represent our target function g = 1. These 
coefficients are obtained in the usual way, by project-
ing the basis functions onto the target function, and 
normalizing: 
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When we have the coefficients, we then evaluate 

the function g[t] at both event times and at the uni-
form 1 day time steps. The background value of the 
function, at 1 day time steps, generally has the ap-
pearance of a sum of sinusoidal oscillations with sev-
eral closely spaced frequencies, and associated ampli-
tude modulation. 

To remove the effects of oscillating basis functions 
and amplitude modulation, we then demodulate the 
signals, and compute the arcsine of the demodulated 
values. The demodulation removes longer period 
variations in amplitude, and the arcsine transforma-
tion changes sinusoidal variations into piece-wise lin-
ear variations. When those steps are completed, we 
can often find a good approximation to a constant 
target signal. 

Results:  In the space available here, we can only 
present a single example of the application of our al-
gorithm. The largest cluster, in terms of number of 
identified events, is A1 (located at {lat,lon} = {-14°, -
37°}) with 443 events [8]. It shows influence of both 
anomalistic and nodical periods. The minimum value 
of residual variance ratio obtained under the assump-
tion of purely periodic behavior is 40.4%, with a pe-
riod of 27.19 days. A secondary local minimum, of 
40.6%, occurs at a period of 27.58 days. Our orbital 
fitting solution yields a minimum variance ratio of 
33.3%, with parameter weights of {67.3, 34.9, -
34.3}% for position and { -0.2, -23.2, 50.6}%  for 
velocity. 

Figure 1 shows event times (red) and background 
times (black) modulo 27.19 days. Figure 2 shows the 
same times, but as represented in our best fitting or-
bital parameter linear combination 
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Fig 1. A1 cluster event times, modulo 27.19 days 
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Fig 2. A1 cluster orbital parameter EOF analysis. 
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